First Description of Serological Evidence for SARS-CoV-2 in Lactating Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Nucleic Acid Extraction
2.3. SARS-CoV-2 Immunoassays
2.4. Microneutralisation Test (MTN) for SARS-CoV-2 and BCoV
2.4.1. MTN for SARS-CoV-2
2.4.2. MTN for BCoV
2.5. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Moralesg, A.J. Coronavirus Disease 2019-COVID-19. Clin. Microbiol. Rev. 2020, 33, e00028-20. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science. 2020, 368, 1016–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Boni, M.F.; Lemey, P.; Jiang, X.; Lam, T.T.; Perry, B.W.; Castoe, T.A.; Andrew Rambaut, A.; Robertson, D.L. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 2020, 5, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wei, X.; Li, Q.; Li, L.; Yang, Z.; Shi, Y.; Qin, Y.; Zhang, X.; Wang, X.; Zhi, X.; et al. Single-cell RNA analysis on ACE2 expression provides insights into SARS-CoV-2 potential entry into the bloodstream and heart injury. J. Cell. Physiol. 2020, 235, 9884–9894. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Hu, B.; Si, H.R.; Zhu, Y.; Zhang, W.; Li, B.; Li, A.; Geng, R.; Lin, H.F.; Yang, X.L.; et al. Identification of a novel lineage bat SARS-related coronaviruses that use bat ACE2 receptor. Emerg. Microbes Infect. 2021, 10, 1507–1514. [Google Scholar] [CrossRef]
- Jo, W.K.; de Oliveira-Filho, E.F.; Rasche, A.; Greenwood, A.D.; Osterrieder, K.; Drexler, J.F. Potential zoonotic sources of SARS-CoV-2 infections. Transbound. Emerg. Dis. 2021, 68, 1824–1834. [Google Scholar] [CrossRef] [PubMed]
- Decaro, N.; Balboni, A.; Bertolotti, L.; Martino, P.A.; Mazzei, M.; Mira, F.; Pagnini, U. SARS-CoV-2 Infection in Dogs and Cats: Facts and Speculations. Front. Vet. Sci. 2021, 8, 619207. [Google Scholar] [CrossRef]
- Delahay, R.J.; de la Fuente, J.; Smith, G.C.; Sharun, K.; Snary, E.L.; Flores Girón, L.; Nziza, J.; Fooks, A.R.; Brookes, S.M.; Lean, F.Z.X.; et al. Assessing the risks of SARS-CoV-2 in wildlife. One Health Outlook 2021, 7, 7. [Google Scholar] [CrossRef]
- Fenollar, F.; Mediannikov, O.; Maurin, M.; Devaux, C.; Colson, P.; Levasseur, A.; Fournier, P.E.; Raoult, D. Mink, SARS-CoV-2, and the Human-Animal Interface. Front. Microbiol. 2021, 12, 663815. [Google Scholar] [CrossRef]
- Gortázar, C.; Barroso-Arévalo, S.; Ferreras-Colino, E.; Isla, J.; de la Fuente, G.; Rivera, B.; de la Fuente, L.D.J.; Sánchez-Vizcaíno, J.M. Natural SARS-CoV-2 Infection in Kept Ferrets, Spain. Emerg. Infect. Dis. 2021, 27, 1994–1996. [Google Scholar]
- Palmer, M.V.; Martins, M.; Falkenberg, S.; Buckley, A.; Caserta, L.C.; Mitchell, P.K.; Cassmann, E.D.; Rollins, A.; Zylich, N.C.; Renshaw, R.W.; et al. Susceptibility of white-tailed deer (Odocoileus virginianus) to SARS-CoV-2. J. Virol. 2021, 95, e00083-21. [Google Scholar] [CrossRef] [PubMed]
- Clayton, E.; Ackerley, J.; Aelmans, M.; Ali, N.; Ashcroft, Z.; Ashton, C.; Barker, R.; Budryte, V.; Burrows, C.; Cai, S.; et al. Structural Bases of Zoonotic and Zooanthroponotic Transmission of SARS-CoV-2. Viruses 2022, 14, 418. [Google Scholar] [CrossRef] [PubMed]
- Cerino, P.; Buonerba, C.; Brambilla, G.; Atripaldi, L.; Tafuro, M.; Di Concilio, D.; Vassallo, L.; Lo Conte, G.; Cuomo, M.C.; Maiello, I.; et al. No detection of SARS-CoV-2 in animals exposed to infected keepers: Results of a COVID-19 surveillance program. Future Sci. OA 2021, 7, FSO711. [Google Scholar] [CrossRef]
- Ulrich, L.; Wernike, K.; Hoffmann, D.; Mettenleiter, T.C.; Beer, M. Experimental Infection of Cattle with SARS-CoV-2. Emerg. Infect. Dis. 2020, 26, 2979–2981. [Google Scholar] [CrossRef]
- Falkenberg, S.; Buckley, A.; Laverack, M.; Martins, M.; Palmer, M.V.; Lager, K.; Diel, D.G. Experimental Inoculation of Young Calves with SARS-CoV-2. Viruses 2021, 13, 441. [Google Scholar] [CrossRef]
- Natale, A.; Mazzotta, E.; Mason, N.; Ceglie, L.; Mion, M.; Stefani, A.; Fincato, A.; Bonfante, F.; Bortolami, A.; Monne, I.; et al. SARS-Cov-2 Natural Infection in a Symptomatic Cat: Diagnostic, Clinical and Medical Management in a One Health Vision. Animals 2021, 11, 1640. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Trujilloa, J.D.; Carossino, M.; Meekins, D.A.; Morozov, I.; Madden, D.W.; Indran, S.V.; Bold, D.; Balaramana, V.; Kwon, T.; et al. SARS-CoV-2 infection, disease and transmission in domestic cats. Emerg. Microbes Infect. 2020, 9, 2322–2332. [Google Scholar] [CrossRef]
- Alenius, S.; Niskanen, R.; Juntti, N.; Larsson, B. Bovine coronavirus as the causative agent of winter dysentery: Serological evidence. Acta Vet. Scand. 1991, 32, 163–170. [Google Scholar] [CrossRef]
- Tsunemitsu, H.; Yonemichi, H.; Hirai, T.; Kudo, T.; Onoe, S.; Mori, K.; Shimizu, M. Isolation of bovine coronavirus from feces and nasal swabs of calves with diarrhea. J. Vet. Med. Sci. 1991, 53, 433–437. [Google Scholar] [CrossRef] [Green Version]
- Tuncer, P.; Yeşilbağ, K. Serological detection of infection dynamics for respiratory viruses among dairy calves. Vet. Microbiol. 2015, 180, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Wensman, J.J.; Stokstad, M. Could Naturally Occurring Coronaviral Diseases in Animals Serve as Models for COVID-19? A Review Focusing on the Bovine Model. Pathogens 2020, 9, 991. [Google Scholar] [CrossRef] [PubMed]
- Wernike, K.; Aebischer, A.; Michelitsch, A.; Hoffmann, D.; Freuling, C.; Balkema-Buschmann, A.; Graaf, A.; Müller, T.; Osterrieder, N.; Rissmann, M.; et al. Multi-species ELISA for the detection of antibodies against SARS-CoV-2 in animals. Transbound. Emerg. Dis. 2021, 68, 1779–1785. [Google Scholar] [CrossRef] [PubMed]
- Criscuolo, E.; Diotti, R.A.; Strollo, M.; Rolla, S.; Ambrosi, A.; Locatelli, M.; Burioni, R.; Mancini, N.; Clementi, M.; Clementi, N. Weak correlation between antibody titers and neutralizing activity in sera from SARS-CoV-2 infected subjects. J. Med. Virol. 2021, 93, 2160–2167. [Google Scholar] [CrossRef]
- Montesinos, I.; Dahma, H.; Wolff, F.; Dauby, N.; Delaunoy, S.; Wuyts, M.; Detemmerman, C.; Duterme, C.; Vandenberg, O.; Martin, C.; et al. Neutralizing antibody responses following natural SARS-CoV-2 infection: Dynamics and correlation with commercial serologic tests. J. Clin. Virol. 2021, 144, 104988. [Google Scholar] [CrossRef]
- Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier, A.; et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021, 371, eabf4063. [Google Scholar] [CrossRef]
- Decaro, N.; Vaccari, G.; Lorusso, A.; Lorusso, E.; De Sabato, L.; Patterson, E.I.; Di Bartolo, I.; Hughes, G.L.; Teodori, L.; Desario, C.; et al. Possible Human-to-Dog Transmission of SARS-CoV-2, Italy, 2020. Emerg. Infect. Dis. 2021, 27, 1981–1984. [Google Scholar] [CrossRef]
- Felsenstein, S.; Hedrich, C.M. SARS-CoV-2 infections in children and young people. Clin. Immunol. 2020, 220, 108588. [Google Scholar] [CrossRef]
- Wu, P.; Liang, L.; Chen, C.; Nie, S. A child confirmed COVID-19 with only symptoms of conjunctivitis and eyelid dermatitis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 1565–1566. [Google Scholar] [CrossRef]
- Dioguardi, M.; Cazzolla, A.P.; Arena, C.; Sovereto, D.; Caloro, G.A.; Dioguardi, A.; Crincoli, V.; Laino, L.; Troiano, G.; Lo Muzio, L. Innate Immunity in Children and the Role of ACE2 Expression in SARS-CoV-2. Infection. Pediatr. Rep. 2021, 13, 45. [Google Scholar] [CrossRef]
- Wiedenmann, M.; Goutaki, M.; Keiser, O.; Stringhini, S.; Tanner, M.; Low, N. The role of children and adolescents in the SARS-CoV-2 pandemic: A rapid review. Swiss Med. Wkly. 2021, 151, w30058. [Google Scholar] [PubMed]
- Zhang, Z.; Guo, L.; Huang, L.; Zhang, C.; Luo, R.; Zeng, L.; Liang, H.; Li, Q.; Lu, X.; Wang, X.; et al. Distinct disease severity between children and older adults with COVID-19: Impacts of ACE2 expression, distribution, and lung progenitor cells. Clin. Infect. Dis. 2021, 73, e4154–e4165. [Google Scholar] [CrossRef] [PubMed]
- Cool, K.; Gaudreault, N.N.; Morozov, I.; Trujillo, J.D.; Meekins, D.A.; McDowell, C.; Carossino, M.; Bold, D.; Mitzel, D.; Kwon, T.; et al. Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. Emerg. Microbes Infect. 2022, 11, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Salma, U. Relationship of COVID-19 with pregnancy. Taiwan. J. Obstet. Gynecol. 2021, 60, 405–411. [Google Scholar] [CrossRef]
- Lean, F.Z.X.; Núñez, A.; Spiro, S.; Priestnall, S.L.; Vreman, S.; Bailey, D.; James, J.; Wrigglesworth, E.; Suarez-Bonnet, A.; Conceicao, C.; et al. Differential susceptibility of SARS-CoV-2 in animals: Evidence of ACE2 host receptor distribution in companion animals, livestock and wildlife by immunohistochemical characterization. Transbound. Emerg. Dis. 2021. [Google Scholar] [CrossRef]
- Liu, B.; Liu, S.; Zhang, S.; Bai, L.; Liu, E. Bioinformatic evaluation of the potential animal models for studying SARS-Cov-2. Heliyon 2020, 6, e05725. [Google Scholar] [CrossRef]
- Bentum, K.; Shaddox, S.; Ware, C.; Reddy, G.; Abebe, W.; Folitse, R.; Martin, P.; Samuel, T. Molecular phylogeny of coronaviruses and host receptors among domestic and close-contact animals reveals subgenome-level conservation, crossover, and divergence. BMC Vet. Res. 2022, 18, 124. [Google Scholar] [CrossRef]
- Bovo, S.; Schiavo, G.; Fontanesi, L. One Health and Cattle Genetic Resources: Mining More than 500 Cattle Genomes to Identify Variants in Candidate Genes Potentially Affecting Coronavirus Infections. Animals 2022, 12, 838. [Google Scholar] [CrossRef]
- Lupala, C.S.; Kumar, V.; Su, X.; Wu, C.; Liu, H. Computational insights into differential interaction of mammalian angiotensin-converting enzyme 2 with the SARS-CoV-2 spike receptor binding domain. Comput. Biol. Med. 2022, 141, 105017. [Google Scholar] [CrossRef]
- Sun, K.; Gu, L.; Ma, L.; Duan, Y. Atlas of ACE2 gene expression in mammals reveals novel insights in transmission of SARS-Cov-2. bioRxiv 2020, 7, e05850. [Google Scholar]
- Di Teodoro, G.; Valleriani, F.; Puglia, I.; Monaco, F.; Di Pancrazio, C.; Luciani, M.; Krasteva, I.; Petrini, A.; Marcacci, M.; D’Alterio, N.; et al. SARS-CoV-2 replicates in respiratory ex vivo organ cultures of domestic ruminant species. Vet. Microbiol. 2021, 252, 108933. [Google Scholar] [CrossRef] [PubMed]
- Subedi, S.; Koirala, S.; Chai, L. COVID-19 in Farm Animals: Host Susceptibility and Prevention Strategies. Animals 2021, 11, 640. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Age (In Years) | Ab Anti-N SARS-CoV-2 (r-n COI *) | Ab Anti-S SARS-CoV-2 (U/mL) | MTN ** for SARS-CoV-2 | MTN for BCoV |
---|---|---|---|---|---|
1 | 3 | - | - | - | - |
2 | 8 | 1.45 | 1.74 | 1:80 | - |
3 | 6 | 3.57 | 1.41 | 1:40 | - |
4 | 5 | - | - | - | - |
5 | 10 | 5.02 | 249.00 | 1:160 | - |
6 | 2 | - | - | - | - |
7 | 2 | - | - | - | - |
8 | 11 | - | 26.25 | 1:40 | - |
9 | 3 | 5.60 | 219.20 | 1:160 | - |
10 | 2 | - | - | - | - |
11 | 10 | - | 3.47 | - | - |
12 | 3 | 4.71 | - | 1:20 | - |
13 | 2 | - | - | - | - |
14 | 7 | 2.27 | 1.60 | - | - |
15 | 11 | - | 68.59 | 1:40 | - |
16 | 3 | - | - | - | - |
17 | 7 | 1.38 | - | 1:80 | - |
18 | 10 | - | - | - | - |
19 | 10 | 2.21 | 58.66 | 1:40 | - |
20 | 13 | 1.56 | 39.28 | 1:20 | - |
21 | 18 | 2.45 | 176.40 | 1:20 | - |
22 | 9 | 7.40 | 247.50 | 1:80 | - |
23 | 11 | - | 80.06 | 1:80 | - |
24 | 13 | - | 12.04 | - | - |
Pos Ab ≥ 1 COI | Pos Ab ≥ 0.8 COI | Pos MNT ≥ 20 | Pos MNT ≥ 4 |
Age (Years) | n. Heads | Positivity for SARS-CoV-2 | Positive Pregnant Cows |
---|---|---|---|
1–5 | 9 | 2/9 (22%, 95% CI −5–49) | 1/6 (17%, 95% CI −13–47) |
6–10 | 9 | 6/9 (67%, 95% CI 36–98) | 3/6 (50%, 95% CI 10–90) |
>10 | 6 | 5/6 (83%, 95% CI 53–113) | 2/6 (33%, 95% CI −5–71) |
Age in Years | Anti-N Ab | Anti-S Ab | Neutralising Ab | |
---|---|---|---|---|
Age (in years) | 1 | |||
Anti-N Ab | 0.055 | 1 | ||
Anti-S Ab | 0.502 * | 0.603 ** | 1 | |
Neutralising Ab | 0.487 * | 0.334 | 0.258 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorito, F.; Iovane, V.; Pagnini, U.; Cerracchio, C.; Brandi, S.; Levante, M.; Marati, L.; Ferrara, G.; Tammaro, V.; De Carlo, E.; et al. First Description of Serological Evidence for SARS-CoV-2 in Lactating Cows. Animals 2022, 12, 1459. https://doi.org/10.3390/ani12111459
Fiorito F, Iovane V, Pagnini U, Cerracchio C, Brandi S, Levante M, Marati L, Ferrara G, Tammaro V, De Carlo E, et al. First Description of Serological Evidence for SARS-CoV-2 in Lactating Cows. Animals. 2022; 12(11):1459. https://doi.org/10.3390/ani12111459
Chicago/Turabian StyleFiorito, Filomena, Valentina Iovane, Ugo Pagnini, Claudia Cerracchio, Sergio Brandi, Martina Levante, Luisa Marati, Gianmarco Ferrara, Virginio Tammaro, Esterina De Carlo, and et al. 2022. "First Description of Serological Evidence for SARS-CoV-2 in Lactating Cows" Animals 12, no. 11: 1459. https://doi.org/10.3390/ani12111459