The Effects of Different Forms of Butyric Acid on the Performance of Turkeys, Carcass Quality, Incidence of Footpad Dermatitis and Economic Efficiency
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design and Diets
2.2. Sample Collection and Laboratory Analyses
2.3. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Quality and Breast Muscle Composition
3.3. Footpad Dermatitis and Faecal Dry Matter
3.4. Economic Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huyghebaert, G.; Ducatelle, R.; Van Immerseel, F. An Update on Alternatives to Antimicrobial Growth Promoters for Broilers. Vet. J. 2011, 187, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, J.P.; Boland, J.J.; Silbergeld, E. Growth Promoting Antibiotics in Food Animal Production: An Economic Analysis. Public Health Rep. 2007, 122, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Upadhayay, U.; Vishwa, P.C.V. Growth Promoters and Novel Feed Additives Improving Poultry Production and Health, Bioactive Principles and Beneficial Applications: The Trends and Advances-a Review. Int. J. Pharmacol. 2014, 10, 129–159. [Google Scholar]
- Apata, D.F. Antibiotic Resistance in Poultry. Int. J. Poult. Sci. 2009, 8, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to Antibiotics for Maximizing Growth Performance and Feed Efficiency in Poultry: A Review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Suresh, G.; Das, R.K.; Kaur Brar, S.; Rouissi, T.; Avalos Ramirez, A.; Chorfi, Y.; Godbout, S. Alternatives to Antibiotics in Poultry Feed: Molecular Perspectives. Crit. Rev. Microbiol. 2018, 44, 318–335. [Google Scholar] [CrossRef]
- Adil, S.; Banday, T.; Bhat, G.A.; Mir, M.S.; Rehman, M. Effect of Dietary Supplementation of Organic Acids on Performance, Intestinal Histomorphology, and Serum Biochemistry of Broiler Chicken. Vet. Med. Int. 2010, 2010, 479485. [Google Scholar] [CrossRef] [Green Version]
- Saki, A.A.; Harcini, R.N.; Rahmatnejad, E.; Salary, J. Herbal Additives and Organic Acids as Antibiotic Alternatives in Broiler Chickens Diet for Organic Production. Afr. J. Biotechnol. 2012, 11, 2139–2145. [Google Scholar]
- Menconi, A.; Kuttappan, V.A.; Hernandez-Velasco, X.; Urbano, T.; Matté, F.; Layton, S.; Kallapura, G.; Latorre, J.; Morales, B.E.; Prado, O. Evaluation of a Commercially Available Organic Acid Product on Body Weight Loss, Carcass Yield, and Meat Quality during Preslaughter Feed Withdrawal in Broiler Chickens: A Poultry Welfare and Economic Perspective. Poult. Sci. 2014, 93, 448–455. [Google Scholar] [CrossRef]
- Banday, M.T.; Adil, S.; Khan, A.A.; Untoo, M. A Study on Efficacy of Fumaric Acid Supplementation in Diet of Broiler Chicken. Int. J. Poult. Sci. 2015, 14, 589. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.K.; Rao, S.V.; Raju, M.; Sunder, G.S. Effect of Butyric Acid on Performance, Gastrointestinal Tract Health and Carcass Characteristics in Broiler Chickens. Asian-Australas. J. Anim. Sci. 2009, 22, 1026–1031. [Google Scholar] [CrossRef]
- Czerwiński, J.; H⊘jberg, O.; Smulikowska, S.; Engberg, R.M.; Mieczkowska, A. Influence of Dietary Peas and Organic Acids and Probiotic Supplementation on Performance and Caecal Microbial Ecology of Broiler Chickens. Br. Poult. Sci. 2010, 51, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Boroojeni, F.G.; Vahjen, W.; Mader, A.; Knorr, F.; Ruhnke, I.; Röhe, I.; Hafeez, A.; Villodre, C.; Männer, K.; Zentek, J. The Effects of Different Thermal Treatments and Organic Acid Levels in Feed on Microbial Composition and Activity in Gastrointestinal Tract of Broilers. Poult. Sci. 2014, 93, 1440–1452. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.H.; Lee, K.Y.; Mohammadigheisar, M.; Kim, I.H. Evaluation of the Blend of Organic Acids and Medium-Chain Fatty Acids in Matrix Coating as Antibiotic Growth Promoter Alternative on Growth Performance, Nutrient Digestibility, Blood Profiles, Excreta Microflora, and Carcass Quality in Broilers. Poult. Sci. 2018, 97, 4351–4358. [Google Scholar] [CrossRef] [PubMed]
- Nezhad, Y.E.; Gale-Kandi, J.G.; Farahvash, T.; Yeganeh, A.R. Effect of Combination of Citric Acid and Microbial Phytase on Digestibility of Calcium, Phosphorous and Mineralization Parameters of Tibia Bone in Broilers. Afr. J. Biotechnol. 2011, 10, 15089–15093. [Google Scholar] [CrossRef]
- Emami, N.K.; Naeini, S.Z.; Ruiz-Feria, C.A. Growth Performance, Digestibility, Immune Response and Intestinal Morphology of Male Broilers Fed Phosphorus Deficient Diets Supplemented with Microbial Phytase and Organic Acids. Livest. Sci. 2013, 157, 506–513. [Google Scholar] [CrossRef]
- Dalmasso, G.; Nguyen, H.T.T.; Yan, Y.; Charrier-Hisamuddin, L.; Sitaraman, S.V.; Merlin, D. Butyrate Transcriptionally Enhances Peptide Transporter PepT1 Expression and Activity. PLoS ONE 2008, 3, e2476. [Google Scholar] [CrossRef] [Green Version]
- Smulikowska, S.; Czerwinski, J.; Mieczkowska, A.; Jankowiak, J. The Effect of Fat-Coated Organic Acid Salts and a Feed Enzyme on Growth Performance, Nutrient Utilization, Microflora Activity, and Morphology of the Small Intestine in Broiler Chickens. J. Anim. Feed Sci. 2009, 18, 478–489. [Google Scholar] [CrossRef]
- Sharma, R.; Schumacher, U.; Ronaasen, V.; Coates, M. Rat Intestinal Mucosal Responses to a Microbial Flora and Different Diets. Gut 1995, 36, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Guilloteau, P.; Martin, L.; Eeckhaut, V.; Ducatelle, R.; Zabielski, R.; Van Immerseel, F. From the Gut to the Peripheral Tissues: The Multiple Effects of Butyrate. Nutr. Res. Rev. 2010, 23, 366–384. [Google Scholar] [CrossRef] [Green Version]
- Elnesr, S.S.; Alagawany, M.; Elwan, H.A.; Fathi, M.A.; Farag, M.R. Effect of Sodium Butyrate on Intestinal Health of Poultry–a Review. Ann. Anim. Sci. 2020, 20, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, S.A.; Barri, A.; Hejdysz, M.; Rutkowski, A. Effect of Different Doses of Coated Butyric Acid on Growth Performance and Energy Utilization in Broilers. Poult. Sci. 2016, 95, 851–859. [Google Scholar] [CrossRef] [PubMed]
- van der Wielen, P.W.; Biesterveld, S.; Notermans, S.; Hofstra, H.; Urlings, B.A.; van Knapen, F. Role of Volatile Fatty Acids in Development of the Cecal Microflora in Broiler Chickens during Growth. Appl. Environ. Microbiol. 2000, 66, 2536–2540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youn, B.S.; Nam, K.T.; Chang, K.M.; Hwang, S.G.; Choe, I.S. Effects of Wood Vinegar Addition for Meat Quality Improvement of Old Layer. Korean J. Poult. Sci. 2005, 32, 101–106. [Google Scholar]
- Cox, M.A.; Jackson, J.; Stanton, M.; Rojas-Triana, A.; Bober, L.; Laverty, M.; Yang, X.; Zhu, F.; Liu, J.; Wang, S. Short-Chain Fatty Acids Act as Antiinflammatory Mediators by Regulating Prostaglandin E2 and Cytokines. World J. Gastroenterol. WJG 2009, 15, 5549. [Google Scholar] [CrossRef]
- Langhout, D.J.; Schutte, J.B.; Van Leeuwen, P.; Wiebenga, J.; Tamminga, S. Effect of Dietary High-and Low-Methylated Citrus Pectin on the Activity of the Ileal Microflora and Morphology of the Small Intestinal Wall of Broiler Chicks. Br. Poult. Sci. 1999, 40, 340–347. [Google Scholar] [CrossRef]
- Fang, C.L.; Sun, H.; Wu, J.; Niu, H.H.; Feng, J. Effects of Sodium Butyrate on Growth Performance, Haematological and Immunological Characteristics of Weanling Piglets. J. Anim. Physiol. Anim. Nutr. 2014, 98, 680–685. [Google Scholar] [CrossRef]
- Smith, D.J.; Barri, A.; Herges, G.; Hahn, J.; Yersin, A.G.; Jourdan, A. In Vitro Dissolution and in Vivo Absorption of Calcium [1-14C] Butyrate in Free or Protected Forms. J. Agric. Food Chem. 2012, 60, 3151–3157. [Google Scholar] [CrossRef]
- Leeson, S.; Namkung, H.; Antongiovanni, M.; Lee, E.H. Effect of Butyric Acid on the Performance and Carcass Yield of Broiler Chickens. Poult. Sci. 2005, 84, 1418–1422. [Google Scholar] [CrossRef]
- Dehghani-Tafti, N.; Jahanian, R. Effect of Supplemental Organic Acids on Performance, Carcass Characteristics, and Serum Biochemical Metabolites in Broilers Fed Diets Containing Different Crude Protein Levels. Anim. Feed Sci. Technol. 2016, 211, 109–116. [Google Scholar] [CrossRef]
- Bedford, A.; Yu, H.; Squires, E.J.; Leeson, S.; Gong, J. Effects of Supplementation Level and Feeding Schedule of Butyrate Glycerides on the Growth Performance and Carcass Composition of Broiler Chickens. Poult. Sci. 2017, 96, 3221–3228. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Washington, DC, USA, 2005. [Google Scholar]
- Nutrient Requirements of Poultry. Nutritional Recommendations and Nutritive Value of Feed; Smulikowska, S., Rutkowski, A., Eds.; Instytut Fizjologii i Żywienia Zwierząt, Polish Academy of Science: Jabłonna, Poland, 2018. [Google Scholar]
- Ekstrand, C.; Algers, B. Rearing Conditions and Foot-Pad Dermatitis in Swedish Turkey Poults. Acta Vet. Scand. 1997, 38, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Muir, J.G.; Gibson, P.R. Does Butyrate Protect from Colorectal Cancer? J. Gastroenterol. Hepatol. 2006, 21, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Seddiek, S.A.; Khater, H.F. Effect of Butyrate, Clopidol and Their Combination on the Performance of Broilers Infected with Eimeria Maxima. Br. Poult. Sci. 2014, 55, 474–482. [Google Scholar] [CrossRef]
- Mátis, G.; Petrilla, J.; Kulcsár, A.; van den Bighelaar, H.; Boomsma, B.; Neogrády, Z.; Fébel, H. Effects of Dietary Butyrate Supplementation and Crude Protein Level on Carcass Traits and Meat Composition of Broiler Chickens. Arch. Anim. Breed. 2019, 62, 527–536. [Google Scholar] [CrossRef] [Green Version]
- Yin, F.; Yu, H.; Lepp, D.; Shi, X.; Yang, X.; Hu, J.; Leeson, S.; Yang, C.; Nie, S.; Hou, Y. Transcriptome Analysis Reveals Regulation of Gene Expression for Lipid Catabolism in Young Broilers by Butyrate Glycerides. PLoS ONE 2016, 11, e0160751. [Google Scholar]
- Heimann, E.; Nyman, M.; Degerman, E. Propionic Acid and Butyric Acid Inhibit Lipolysis and de Novo Lipogenesis and Increase Insulin-Stimulated Glucose Uptake in Primary Rat Adipocytes. Adipocyte 2015, 4, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Van Immerseel, F.; Russell, J.B.; Flythe, M.D.; Gantois, I.; Timbermont, L.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R. The Use of Organic Acids to Combat Salmonella in Poultry: A Mechanistic Explanation of the Efficacy. Avian Pathol. 2006, 35, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Deepa, K.; Purushothaman, M.R.; Vasanthakumar, P.; Sivakumar, K. Effect of Sodium Butyrate as an Antibiotic Substitute on Production Performance, Carcass Characteristics and Economics in Broiler Chicken. Anim. Nutr. Feed Technol. 2018, 18, 377–387. [Google Scholar] [CrossRef]
- Warnecke, T.; Gill, R.T. Organic Acid Toxicity, Tolerance, and Production in Escherichia Coli Biorefining Applications. Microb. Cell Factories 2005, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, U.; Cengiz, Ö.; Raza, I.; Kuter, E.; Chacher, M.F.A.; Iqbal, Z.; Umar, S.; Çakir, S. Sodium Butyrate in Chicken Nutrition: The Dynamics of Performance, Gut Microbiota, Gut Morphology, and Immunity. Worlds Poult. Sci. J. 2016, 72, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Van Immerseel, F.; Boyen, F.; Gantois, I.; Timbermont, L.; Bohez, L.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R. Supplementation of Coated Butyric Acid in the Feed Reduces Colonization and Shedding of Salmonella in Poultry. Poult. Sci. 2005, 84, 1851–1856. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rubio, C.; Ordonez, C.; Abad-González, J.; Garcia-Gallego, A.; Honrubia, M.P.; Mallo, J.J.; Balana-Fouce, R. Butyric Acid-Based Feed Additives Help Protect Broiler Chickens from Salmonella Enteritidis Infection. Poult. Sci. 2009, 88, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Abdelqader, A.; Al-Fataftah, A.-R. Effect of Dietary Butyric Acid on Performance, Intestinal Morphology, Microflora Composition and Intestinal Recovery of Heat-Stressed Broilers. Livest. Sci. 2016, 183, 78–83. [Google Scholar] [CrossRef]
- Makled, M.N.; Abouelezz, K.F.M.; Gad-Elkareem, A.E.G.; Sayed, A.M. Comparative Influence of Dietary Probiotic, Yoghurt, and Sodium Butyrate on Growth Performance, Intestinal Microbiota, Blood Hematology, and Immune Response of Meat-Type Chickens. Trop. Anim. Health Prod. 2019, 51, 2333–2342. [Google Scholar] [CrossRef]
- Collett, S.R. Nutrition and Wet Litter Problems in Poultry. Anim. Feed Sci. Technol. 2012, 173, 65–75. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Arczewska-Wlosek, A.; Jozefiak, D. The Nutrition of Poultry as a Factor Affecting Litter Quality and Foot Pad Dermatitis–an Updated Review. J. Anim. Physiol. Anim. Nutr. 2017, 101, e14–e20. [Google Scholar] [CrossRef]
- Lipiński, K.; Vuorenmaa, J.; Mazur-Kuśnirek, M.; Sartowska-Żygowska, K.; Kettunen, H. Dietary Resin Acid Concentrate Improved Performance of Broiler Chickens and Litter Quality in Three Experiments. Animals 2021, 11, 3045. [Google Scholar] [CrossRef]
- Khosravinia, H. Effect of Dietary Supplementation of Medium-Chain Fatty Acids on Growth Performance and Prevalence of Carcass Defects in Broiler Chickens Raised in Different Stocking Densities. J. Appl. Poult. Res. 2015, 24, 1–9. [Google Scholar] [CrossRef]
- Kettunen, H.; Van Eerden, E.; Lipiński, K.; Rinttilä, T.; Valkonen, E.; Vuorenmaa, J. Dietary Resin Acid Composition as a Performance Enhancer for Broiler Chickens. J. Appl. Anim. Nutr. 2017, 5, e3. [Google Scholar] [CrossRef]
- Lipiński, K.; Vuorenmaa, J.; Mazur-Kuśnirek, M.; Antoszkiewicz, Z. Effect of Resin Acid Composition on Growth Performance, Footpad Dermatitis, Slaughter Value, and Gastrointestinal Tract Development in Turkeys. J. Appl. Poult. Res. 2021, 30, 100112. [Google Scholar] [CrossRef]
- Biggs, P.; Parsons, C.M. The Effects of Several Organic Acids on Growth Performance, Nutrient Digestibilities, and Cecal Microbial Populations in Young Chicks. Poult. Sci. 2008, 87, 2581–2589. [Google Scholar] [CrossRef] [PubMed]
- Nava, G.M.; Attene-Ramos, M.S.; Gaskins, H.R.; Richards, J.D. Molecular Analysis of Microbial Community Structure in the Chicken Ileum Following Organic Acid Supplementation. Vet. Microbiol. 2009, 137, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Kamel, E.R.; Mohamed, L.S. Effect of Dietary Supplementation of Probiotics, Prebiotics, Synbiotics, Organic Acids and Enzymes on Productive and Economic Efficiency of Broiler Chicks. Alex. J. Vet. Sci. 2016, 50, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Onunkwo, D.N.; Jabbar, A.; Talha, M.; Rauf, A.; Javaid, H.; Munir, M.U.; Irm, N.; Saleem, M.H. Response of Starter Broiler Chickens to Feed Diets Treated with Organic Acids. Adv. Life Sci. 2021, 8, 257–261. [Google Scholar]
Specification | Starter 1 | Starter 2 | Grower 1 | Grower 2 | Finisher |
---|---|---|---|---|---|
0–3 Weeks | 4–6 Weeks | 7–9 Weeks | 10–12 Weeks | 13–15 Weeks | |
Ingredient [g/kg] | |||||
Wheat | 261.9 | 310.3 | 416.7 | 515.8 | 590.4 |
Maize | 200.0 | 200.0 | 150.0 | 100.0 | 100.0 |
Soybean meal | 358.2 | 360.9 | 347.4 | 300.0 | 225.1 |
Full-fat soybeans | 100.0 | 50.0 | - | - | - |
Blood meal | 20.0 | 10.0 | - | - | - |
Soybean oil | 5.2 | 19.2 | 39.1 | 45.1 | 47.8 |
L-lysine HCl | 3.1 | 3.6 | 3.7 | 3.2 | 4.0 |
DL-methionine | 3.5 | 2.6 | 2.4 | 2.6 | 2.5 |
L-threonine | 0.7 | 0.7 | 1.1 | 0.7 | 1.0 |
Limestone | 18.8 | 14.5 | 13.4 | 11.1 | 9.7 |
Calcium phosphate | 22.1 | 19.9 | 17.7 | 13.1 | 11.1 |
Sodium bicarbonate | 0.1 | 1.3 | 1.2 | 0.7 | 0.7 |
NaCl | 2.0 | 1.9 | 2.2 | 2.6 | 2.7 |
Feed enzymes | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Premix * | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
Nutritional value | |||||
MEN, [kcal/kg] | 2800 | 2880 | 3000 | 3100 | 3200 |
Crude Protein, % | 27.51 | 25.49 | 23.24 | 22.31 | 20.13 |
Crude Fibre, % | 3.22 | 2.96 | 2.90 | 3.19 | 3.22 |
Ether Extract, % | 3.52 | 4.13 | 5.31 | 5.77 | 6.66 |
Lysine, [%] | 1.77 | 1.65 | 1.45 | 1.30 | 1.17 |
Methionine + Cysteine, [%] | 1.15 | 1.02 | 0.95 | 0.93 | 0.85 |
Ca, [g] | 1.40 | 1.20 | 1.15 | 1.00 | 0.90 |
P available, [g] | 0.70 | 0.65 | 0.60 | 0.50 | 0.45 |
Na, [g] | 0.13 | 0.15 | 0.15 | 0.15 | 0.15 |
Specification | Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
1-Control | 2-SB | 3-CSB | 4-BAG | |||
Body weight, g | ||||||
8 weeks | 3.77 a | 3.91 b | 3.97 b | 3.87 b | 0.024 | 0.010 |
15 weeks | 9.59 | 9.67 | 9.78 | 9.79 | 0.033 | 0.087 |
Feed intake-cumulative, g | ||||||
8 weeks | 6.49 a | 6.75 b | 6.84 b | 6.68 b | 0.041 | 0.002 |
15 weeks | 22.41 | 22.26 | 22.21 | 22.16 | 0.108 | 0.890 |
FCR-cumulative, kg/kg | ||||||
8 weeks | 1.75 | 1.75 | 1.75 | 1.74 | 0.005 | 0.690 |
15 weeks | 2.35 a | 2.32 ab | 2.29 b | 2.28 b | 0.010 | 0.015 |
Mortality, % | 7.00 | 7.00 | 7.00 | 6.00 | 0.547 | 0.907 |
EEI, points | 407.65 a | 417.19 a | 427.75 b | 429.87 b | 2.537 | <0.001 |
Specification | Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
1-Control | 2-SB | 3-CSB | 4-BAG | |||
Dressing percentage, % | 81.56 ab | 81.21 b | 82.45 ab | 82.70 a | 0.242 | 0.087 |
Organ proportions in the carcass, % | ||||||
Breast muscles | 26.78 b | 27.73 ab | 28.28 a | 28.08 ab | 0.238 | 0.015 |
Gizzard | 1.15 a | 1.00 b | 0.98 b | 1.05 ab | 0.021 | 0.026 |
Heart | 0.35 | 0.38 | 0.37 | 0.36 | 0.006 | 0.209 |
Liver | 1.71 a | 0.96 b | 1.62 a | 1.49 a | 0.068 | <0.001 |
Chemical composition of breast muscles, % | ||||||
Dry matter | 26.25 | 25.55 | 26.29 | 26.22 | 0.1660 | 0.309 |
Crude ash | 1.19 | 1.23 | 1.20 | 1.22 | 0.01 | 0.060 |
Crude protein | 24.99 | 24.78 | 24.93 | 25.07 | 0.07 | 0.564 |
Crude fat | 0.58 a | 0.66 a | 0.65 a | 0.40 b | 0.03 | 0.001 |
Specification | Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
1-Control | 2-SB | 3-CSB | 4-BAG | |||
FPD score ** | ||||||
−3 weeks | 11.50 | 5.00 | 7.00 | 9.00 | 1.519 | 0.498 |
−6 weeks | 15.50 | 10.50 | 9.00 | 10.00 | 1.919 | 0.656 |
−9 weeks | 60.00 a | 44.50 b | 38.50 b | 42.00 b | 2.052 | <0.001 |
−15 weeks | 92.50 a | 78.50 b | 75.00 b | 74.00 b | 2.200 | <0.001 |
Faecal dry matter, % | ||||||
−3 weeks | 14.61 b | 17.83 a | 17.85 a | 19.48 a | 0.482 | ≤0.01 |
−6 weeks | 12.88 b | 17.44 a | 16.63 a | 16.49 a | 0.469 | ≤0.01 |
−9 weeks | 14.65 c | 20.23 a | 21.82 a | 18.14 b | 0.645 | ≤0.01 |
−15 weeks | 12.71 b | 23.12 a | 23.80 a | 23.14 a | 1.135 | <0.01 |
Specification | Groups | |||
---|---|---|---|---|
1-Control | 2-SB | 3-CSB | 4-BAG | |
Price per kg of live weight, EUR/kg | 1.63 | |||
Cost of feed additives | ||||
SB, EUR/kg | - | 3.60 | - | - |
CSB, EUR/kg | - | - | 3.80 | - |
BAG, EUR/kg | - | - | - | 3.80 |
Average cost of diets, EUR/kg | 0.477 | 0.481 | 0.490 | 0.493 |
+0.004 | +0.013 | +0.015 | ||
Farm Performance: | ||||
Live weight, kg | 9.59 | 9.67 | 9.78 | 9.79 |
FCR, kg/kg | 2.35 | 2.32 | 2.29 | 2.28 |
Feed consumed, kg | 22.54 | 22.43 | 22.40 | 22.32 |
Financial Performance (EUR): | ||||
Feed price, kg | 0.477 | 0.481 | 0.491 | 0.494 |
Feed cost/bird | 10.76 | 10.79 | 10.97 | 11.00 |
Feed cost/kg live weight | 1.12 | 1.12 | 1.12 | 1.12 |
Total cost/bird | 15.37 | 15.42 | 15.68 | 15.71 |
Total cost/kg live weight | 1.60 | 1.59 | 1.60 | 1.60 |
Revenue/kg | 1.63 | 1.63 | 1.63 | 1.63 |
Revenue/bird | 15.63 | 15.76 | 15.94 | 15.96 |
Margin/kg live weight | 0.03 | 0.04 | 0.03 | 0.03 |
Margin/bird | 0.288 | 0.387 | 0.293 | 0.294 |
Difference | 0.099 | 0.006 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makowski, Z.; Lipiński, K.; Mazur-Kuśnirek, M. The Effects of Different Forms of Butyric Acid on the Performance of Turkeys, Carcass Quality, Incidence of Footpad Dermatitis and Economic Efficiency. Animals 2022, 12, 1458. https://doi.org/10.3390/ani12111458
Makowski Z, Lipiński K, Mazur-Kuśnirek M. The Effects of Different Forms of Butyric Acid on the Performance of Turkeys, Carcass Quality, Incidence of Footpad Dermatitis and Economic Efficiency. Animals. 2022; 12(11):1458. https://doi.org/10.3390/ani12111458
Chicago/Turabian StyleMakowski, Zbigniew, Krzysztof Lipiński, and Magdalena Mazur-Kuśnirek. 2022. "The Effects of Different Forms of Butyric Acid on the Performance of Turkeys, Carcass Quality, Incidence of Footpad Dermatitis and Economic Efficiency" Animals 12, no. 11: 1458. https://doi.org/10.3390/ani12111458
APA StyleMakowski, Z., Lipiński, K., & Mazur-Kuśnirek, M. (2022). The Effects of Different Forms of Butyric Acid on the Performance of Turkeys, Carcass Quality, Incidence of Footpad Dermatitis and Economic Efficiency. Animals, 12(11), 1458. https://doi.org/10.3390/ani12111458