Whole Corn Germ as an Energy Source in the Feeding of Feedlot Lambs: Metabolic and Productive Performance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Ethical Considerations
2.2. Experiment 1
2.2.1. Animals, Experimental Design and Diets
2.2.2. Nutrient Intake
2.2.3. Fecal Collection and Nutrient Digestibility Trial
2.2.4. Urine Collection and Nitrogen Balance Trial
2.3. Experiment II
2.3.1. Animals, Experimental Design and Diets
2.3.2. Nutrient Intake
2.3.3. Feeding Behavior
2.3.4. Blood Metabolites
2.3.5. Performance
2.3.6. Laboratory Analysis
2.3.7. Fatty Acid Profile
2.4. Statistical Analysis
3. Results
3.1. Experiment I
3.1.1. Nutrient Intake and Digestibility
3.1.2. Nitrogen Balance
3.2. Experiment II
3.2.1. Intake of Nutritional Components
3.2.2. Blood Metabolites
3.2.3. Feeding Behavior and Performance
4. Discussion
4.1. Experiment I
4.2. Experiment II
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saoussem, H.; Sadok, B.; Habib, K.; Mayer, P.M. Fatty acid accumulation in the different fractions of the developing corn kernel. Food Chem. 2009, 117, 432–437. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, S.; Li, L.; Zhang, M.; Tian, S.; Wang, D.; Liu, K.; Liu, H.; Zhu, W.; Wang, X. Comprehensive utilization of corn starch processing by-products: A review. Grain Oil Sci. Technol. 2021, 4, 89–107. [Google Scholar] [CrossRef]
- Lima, M.B.; Rabello, C.B.-V.; Da Silva, E.P.; Lima, R.B.; De Arruda, E.M.F.; Albino, L.F.T. Effect of broiler chicken age on ileal digestibility of corn germ meal. Acta Scient. Ani. Sci. 2012, 34, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Brito, A.B.D.; Stringhini, J.H.; Cruz, C.P.D.; Xavier, S.A.G.; Leandro, N.S.M.; Café, M.B. Effect of whole corn germ on broiler carcass performance and yield. Arq. Bras. Med. Vet. Zootec. 2005, 57, 241–249. [Google Scholar] [CrossRef]
- Urbano, S.A.; Ferreira, M.D.A.; Madruga, M.S.; de Azevedo, P.S.; Bispo, S.V.; da Silva, E.C. Corn germ as a substitute for corn in the diet of confined Santa Inês sheep: Chemical and lipid composition of meat. Ciênc. Agrotecnol. 2014, 38, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Abdelqader, M.M.; Hippen, A.R.; Kalscheur, K.F.; Schingoethe, D.J.; Karges, K.; Gibson, M.L. Evaluation of corn germ from ethanol production as an alternative fat source in dairy cow diets. J. Dairy Sci. 2009, 92, 1023–1037. [Google Scholar] [CrossRef]
- Albuquerque, C.; Rabello, C.B.-V.; Santos, M.; Lima, M.; Silva, E.; Lima, T.; Ventura, D.; Dutra, W., Jr. Chemical composition and metabolizable energy values of corn germ meal obtained by wet milling for layers. Braz. J. Poul. Sci. 2014, 16, 107–112. [Google Scholar] [CrossRef]
- Nascimento, C.; Pina, D.; Cirne, L.; Santos, S.; Araújo, M.; Rodrigues, T.; Silva, W.; Souza, M.; Alba, H.; de Carvalho, G. Effects of whole corn germ, a source of linoleic acid, on carcass characteristics and meat quality of feedlot lambs. Animals 2021, 11, 267. [Google Scholar] [CrossRef]
- Miller, W.F.; Shirley, J.E.; Titgemeyer, E.C.; Brouk, M.J. Comparison of full-fat corn germ, whole cottonseed, and tallow as fat sources for lactating dairy cattle. J. Dairy Sci. 2009, 92, 3386–3391. [Google Scholar] [CrossRef]
- NRC—National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academic Press: Washington, DC, USA, 2007. [Google Scholar]
- Chizzotti, M.L.; Valadares Filho, S.C.; Valadares, R.F.D.; Chizzotti, F.H.M.; Tedeschi, L.O. Determination of creatinine excretion and evaluation of spot urine sampling in Holstein cattle. Livest. Sci. 2008, 113, 218–225. [Google Scholar] [CrossRef]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists Inc.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Johnson, T.R.; Combs, D.K. Effects of prepartum diet, inert rumen bulk, and dietary polythyleneglicol on dry matter intake of lactating dairy cows. J. Dairy Sci. 1991, 74, 933–944. [Google Scholar] [CrossRef]
- Polli, V.A.; Restle, J.; Senna, D.B.; Almeida, S.R.S. Aspects related to the rumination of cattle and buffaloes under confinement. Rev. Bras. Zoot. 1996, 25, 987–993. [Google Scholar]
- Bürger, P.J.; Pereira, J.C.; De Queiroz, A.C.; Da Silva, J.F.C.; Filho, S.D.C.V.; Cecon, P.R.; Casali, A.D.P. Ingestive behavior in Dutch calves fed diets containing different levels of concentrate. Rev. Bras. Zootec. 2000, 29, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; Association of Official Analytical Chemists Inc.: Washington, DC, USA, 2002. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Hall, M.B. Calculation of Non-Structural Carbohydrate Content of Feeds that Contain Non-Protein Nitrogen; University of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
- da Cruz, C.H.; Santos, S.A.; de Carvalho, G.G.P.; Azevedo, J.A.G.; Detmann, E.; Filho, S.D.C.V.; Mariz, L.D.S.; Pereira, E.S.; Nicory, I.M.C.; Tosto, M.S.L.; et al. Estimating digestible nutrients in diets for small ruminants fed with tropical forages. Livest. Sci. 2021, 249, 104532. [Google Scholar] [CrossRef]
- Weiss, W.P.; Tebbe, A.W. Estimating digestible energy values of feeds and diets and integrating those values into net energy systems. Transl. Anim. Sci. 2019, 3, 953–961. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester (FAME) synthesis: Application to wet 5 meat tissues, oils and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [Green Version]
- Kramer, J.K.; Blackadar, C.B.; Zhou, J. Evaluation of two GC columns (60-m SUPELCOWAX 10 and 100-m CP sil 88) for analysis of milkfat with emphasis on CLA, 18:1, 18:2 and 18:3 isomers, and short-and long-chain FA. Lipids 2002, 37, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Lamas, L.; Barron, L.J.; Kramer, J.K.; Etaio, I.; Aldai, N. Characterization of the fatty acid composition of lamb commercially available in northern Spain: Emphasis on the trans-18: 1 and CLA content and profile. Meat Sci. 2016, 117, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Allen, M.S. Control of feed intake by hepatic oxidation in ruminant animals: Integration of homeostasis and homeorhesis. Animal 2020, 14, s55–s64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.L.F.; de Carvalho, G.G.P.; Silva, R.R.; da Silva Magalhães, T.; Viana, P.T.; de Almeida Rufino, L.M.; Eiras, C.E. Effect of calcium lignosulfonate supplementation on metabolic profiles of confined lambs. Environ. Sci. Pollut. Res. 2018, 25, 19953–19961. [Google Scholar] [CrossRef] [PubMed]
- Alba, H.D.R.; Freitas Júnior, J.E.D.; Leite, L.C.; Azevêdo, J.A.; Santos, S.A.; Pina, D.S.; Carvalho, G.G. Protected or unprotected fat addition for feedlot lambs: Feeding behavior, carcass traits, and meat quality. Animals 2021, 11, 328. [Google Scholar] [CrossRef]
- Cirne, L.G.A.; de Carvalho, G.G.P.; Viana, P.T.; dos Santos Luz, Y.; da Silva Reis, M.J.; de Figueiredo, M.P.; Freitas Júnior, J.E. Impact of high-concentrate diets with cottonseed associated with calcium lignosulfonate on the metabolic, productive, and carcass characteristics of feedlot lambs. Trop. Anim. Health Prod. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, C.R.N.; Santos, S.A.; Mariz, L.D.S.; Carvalho, G.G.P.; de Azevêdo, J.A.G.; Tosto, M.S.L.; dos Santos, A.C.S. Dietary phase-feeding as feedlot strategy for Santa Ines lambs: Performance, N retention and meat quality. Livest. Sci. 2020, 239, 104106. [Google Scholar] [CrossRef]
- Lima, A.G.V.O.; Silva, T.M.; Bezerra, L.R.; Pereira, E.S.; Barbosa, A.M.; Ribeiro, R.D.X.; Oliveira, R.L. Intake, digestibility, nitrogen balance, performance and carcass traits of Santa Ines lamb fed with sunflower cake from biodiesel production. Small Rumin. Res. 2018, 168, 19–24. [Google Scholar] [CrossRef]
- Da Silva, E.C.; Ferreira, M.D.A.; Verás, A.S.C.; Bispo, S.V.; Da Conceição, M.G.; De Siqueira, M.C.B.; Salla, L.E.; Souza, A.R.D.L. Replacement of corn meal by corn germ meal in lamb diets. Pesq. Agropec. Bras. 2013, 48, 442–449. [Google Scholar] [CrossRef]
- Urbano, S.A.; de Andrade Ferreira, M.; Bispo, S.V.; da Silva, E.C.; Suassuna, J.M.A.; de Oliveira, J.P.F. Corn germ meal in replacement of corn in Santa Ines sheep diet: Carcass characteristics and tissue composition. Acta Vet. Bras. 2016, 10, 165–171. [Google Scholar] [CrossRef]
- Oliveira, R.L.; de Carvalho, G.G.P.; Oliveira, R.L.; Tosto, M.S.L.; Santos, E.M.; Ribeiro, R.D.X.; Rufino, L.M.A. Palm kernel cake obtained from biodiesel production in diets for goats: Feeding behavior and physiological parameters. Trop. Anim. Healt. Prod. 2017, 49, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- Miotto, F.R.C.; Neiva, J.N.M.; Restle, J.; Falcão, A.J.D.S.; Castro, K.J.D.; Maciel, R.P. Ingestive behavior of bulls fed diets containing levels of whole corn germ. Ciênc. Anim. Bras. 2014, 15, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Mertens, D.R. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef]
- De Souza, J.; Batistel, F.; Santos, F.A.P. Effect of sources of calcium salts of fatty acids on production, nutrient digestibility, energy balance, and carryover effects of early lactation grazing dairy cows. J. Dairy Sci. 2017, 100, 1072–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, D.A.; Selaive-Villarroel, A.B.; Pereira, E.S.; Osório, J.C.S.; Teixeira, A. Growth performance, feed efficiency and carcass characteristics of lambs produced from Dorper sheep crossed with Santa Inês or Brazilian Somali sheep. Small Rum. Res. 2013, 114, 51–55. [Google Scholar] [CrossRef]
- Bouda, J.; Quiroz-Rocha, G. Uso de Provas de Campo e Laboratório Clínico em Doenças Metabólicas e Ruminais Dos Bovinos. In Perfil Metabólico em Ruminantes: Seu Uso em Nutrição e Doenças Nutricionais; González, H.D., Barcellos, J., Patinõ, H.O., Ribeiro, L.A.O., Eds.; Gráfica da Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil, 2000; pp. 128–159. [Google Scholar]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Abdel-Ghani, A.A.; Solouma, G.A.; Kassab, A.Y.; Soliman, E.B. Productive performance and blood metabolites as affected by protected protein in sheep. J. Anim. Sci. 2011, 1, 24. [Google Scholar] [CrossRef] [Green Version]
Item | Inclusion Level of WCG (g/kg DM) | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | L | Q | ||
Intake (g/day) | ||||||||
Dry matter | 1232.1 | 1140.0 | 1003.1 | 1032.3 | 1051.3 | 52.02 | <0.01 | 0.06 |
Organic matter | 1185.1 | 1096.2 | 965.0 | 992.7 | 1010.1 | 50.36 | <0.01 | 0.06 |
Crude protein | 227.2 | 209.5 | 186.9 | 189.2 | 195.5 | 8.85 | <0.01 | 0.04 |
Ether extract | 40.8 | 52.7 | 62.0 | 76.8 | 94.4 | 2.81 | <0.01 | 0.12 |
Neutral detergent fiber | 441.7 | 419.3 | 473.3 | 394.5 | 394.9 | 21.15 | 0.09 | 0.17 |
Non-fibrous carbohydrates | 478.3 | 418.4 | 347.7 | 336.7 | 331.3 | 17.90 | <0.01 | 0.02 |
Total digestible nutrients | 810.5 | 798.5 | 692.2 | 712.0 | 755.6 | 45.81 | 0.19 | 0.19 |
Digestibility coefficient (%) | ||||||||
Dry matter | 61.6 | 65.2 | 60.6 | 60.2 | 61.0 | 2.07 | 0.37 | 0.86 |
Organic matter | 64.1 | 67.1 | 62.7 | 62.5 | 63.2 | 1.97 | 0.32 | 0.96 |
Crude protein | 63.1 | 66.4 | 65.6 | 65.0 | 68.1 | 1.87 | 0.16 | 0.99 |
Ether extract | 80.0 | 85.2 | 86.8 | 87.4 | 89.5 | 0.77 | <0.01 | 0.02 |
Neutral detergent fiber | 45.9 | 52.6 | 48.6 | 47.5 | 46.5 | 3.18 | 0.70 | 0.31 |
Non-fibrous carbohydrates | 79.7 | 79.9 | 72.8 | 73.3 | 73.0 | 1.77 | <0.01 | 0.34 |
Total digestible nutrients | 65.2 | 69.8 | 67.8 | 68.9 | 71.4 | 1.75 | 0.05 | 0.88 |
Nitrogen (g/day) | Inclusion Level of WCG (g/kg DM) | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | L | Q | ||
Intake | 36.4 | 33.5 | 29.6 | 30.5 | 31.2 | 1.41 | <0.01 | 0.03 |
Fecal | 13.2 | 11.1 | 9.8 | 10.4 | 10.1 | 0.60 | <0.01 | 0.02 |
Urinary | 7.5 | 5.9 | 4.5 | 6.5 | 6.4 | 1.12 | 0.66 | 0.15 |
Absorbed | 23.1 | 22.3 | 19.7 | 20.3 | 21.1 | 1.31 | 0.15 | 0.21 |
Retained | 15.6 | 16.4 | 15.2 | 13.8 | 14.7 | 1.69 | 0.41 | 0.99 |
Item | Inclusion Level of WCG (g/kg DM) | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | L | Q | ||
Nutrient intake (g/day) | ||||||||
Dry matter | 1232.1 | 1140.0 | 1003.1 | 1032.3 | 1051.3 | 52.02 | <0.01 | 0.06 |
Organic matter | 1185.1 | 1096.2 | 965.0 | 992.7 | 1010.1 | 50.36 | <0.01 | 0.06 |
Crude protein | 227.2 | 209.5 | 186.9 | 189.2 | 195.5 | 8.85 | <0.01 | 0.04 |
Ether extract | 40.8 | 52.7 | 62.0 | 76.8 | 94.4 | 2.81 | <0.01 | 0.12 |
Neutral detergent fiber | 441.7 | 419.3 | 473.3 | 394.5 | 394.9 | 21.15 | 0.09 | 0.17 |
Non-fibrous carbohydrates | 478.3 | 418.4 | 347.7 | 336.7 | 331.3 | 17.90 | <0.01 | 0.02 |
Total digestible nutrients | 810.5 | 798.5 | 692.2 | 712.0 | 755.6 | 45.81 | 0.19 | 0.19 |
Actually consumed fraction of the diet (%) | ||||||||
Dry matter | 36.4 | 33.5 | 29.6 | 30.5 | 31.2 | 1.41 | <0.01 | 0.03 |
Organic matter | 13.2 | 11.1 | 9.8 | 10.4 | 10.1 | 0.60 | <0.01 | 0.02 |
Crude protein | 7.5 | 5.9 | 4.5 | 6.5 | 6.4 | 1.12 | 0.66 | 0.15 |
Ether extract | 23.1 | 22.3 | 19.7 | 20.3 | 21.1 | 1.31 | 0.15 | 0.21 |
Neutral detergent fiber | 15.6 | 16.4 | 15.2 | 13.8 | 14.7 | 1.69 | 0.41 | 0.99 |
Non-fibrous carbohydrates | 36.4 | 33.5 | 29.6 | 30.5 | 31.2 | 1.41 | <0.01 | 0.03 |
Total digestible nutrients | 13.2 | 11.1 | 9.8 | 10.4 | 10.1 | 0.60 | <0.01 | 0.02 |
Item | Inclusion Level of WCG (g/kg DM) | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | L | Q | ||
Blood metabolites (mg/dL) | ||||||||
Total proteins | 6.10 | 6.03 | 5.94 | 6.31 | 6.55 | 0.17 | 0.03 | 0.10 |
Albumin (A) | 2.51 | 2.51 | 2.47 | 2.40 | 2.14 | 0.05 | <0.01 | 0.01 |
Globulin (G) | 3.59 | 3.51 | 3.56 | 3.90 | 4.40 | 0.14 | <0.01 | 0.01 |
A:G | 0.70 | 0.72 | 0.69 | 0.63 | 0.49 | 0.02 | <0.01 | <0.01 |
Triglycerides | 35.0 | 33.9 | 34.8 | 31.7 | 29.8 | 3.33 | 0.27 | 0.67 |
Cholesterol | 41.6 | 53.0 | 49.4 | 46.9 | 43.8 | 3.75 | 0.88 | 0.05 |
Liver enzymes (IU/L) | ||||||||
Alanine aminotransferase | 10.0 | 9.6 | 9.6 | 11.1 | 9.75 | 1.48 | 0.83 | 0.92 |
Aspartate aminotransferase | 76.4 | 79.6 | 87.0 | 91.8 | 90.4 | 4.08 | <0.01 | 0.47 |
Gamma-glutamyl transferase | 54.0 | 55.8 | 54.8 | 46.8 | 52.9 | 2.85 | 0.22 | 0.88 |
Item 1 | Inclusion Level of WCG (g/kg DM) | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | L | Q | ||
Feeding time (min/day) | 193.8 | 204.6 | 200.5 | 197.6 | 195.2 | 9.52 | 0.89 | 0.48 |
Rumination time (min/day) | 489.8 | 510.0 | 517.4 | 545.8 | 551.0 | 17.40 | <0.01 | 0.89 |
Idling (min/day) | 756.4 | 725.4 | 722.1 | 696.6 | 693.8 | 16.55 | <0.01 | 0.58 |
Chewing (n/cud/day) | 703 | 684 | 736 | 712 | 729 | 31.30 | 0.42 | 0.97 |
Chewing (n/cud/h) | 87.3 | 80.8 | 86.0 | 78.5 | 80.0 | 3.60 | 0.15 | 0.82 |
Chewing (s/cud) | 41.8 | 45.4 | 43.1 | 46.1 | 44.4 | 1.97 | 0.34 | 0.46 |
Chewing (n/day) | 29,392 | 30,594 | 31,036 | 32,751 | 33,054 | 1044.5 | <0.01 | 0.89 |
Chewing (g DM/cud) | 2.0 | 1.9 | 1.7 | 1.6 | 1.60 | 0.09 | <0.01 | 0.48 |
Feeding efficiency | ||||||||
g DM/h | 440.3 | 409.2 | 378.1 | 327.7 | 374.4 | 21.13 | <0.01 | 0.09 |
g NDF/h | 126.6 | 124.8 | 133.8 | 134.2 | 143.6 | 6.17 | 0.03 | 0.56 |
Rumination efficiency | ||||||||
g DM/h | 183.8 | 162.7 | 145.3 | 125.0 | 132.1 | 6.12 | <0.01 | 0.02 |
g NDF/h | 52.2 | 49.2 | 50.5 | 48.1 | 50.0 | 1.67 | 0.33 | 0.35 |
Number of periods (n/day) | ||||||||
Feeding | 14 | 15 | 15 | 14 | 13 | 1.03 | 0.34 | 0.26 |
Rumination | 29 | 29 | 27 | 30 | 29 | 0.99 | 0.60 | 0.57 |
Idling | 40 | 40 | 38 | 40 | 39 | 1.40 | 0.64 | 0.83 |
Time expended per period (min) | ||||||||
Feeding | 14.0 | 13.6 | 13.4 | 14.2 | 15.2 | 0.61 | 0.13 | 0.10 |
Rumination | 16.3 | 18.2 | 19.1 | 18.2 | 19.6 | 0.77 | 0.01 | 0.35 |
Idling | 19.1 | 18.6 | 19.0 | 17.5 | 18.4 | 0.87 | 0.35 | 0.80 |
Item | Inclusion Level of WCG (g/kg DM) | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | L | Q | ||
Initial weight (kg) | 26.9 | 28.0 | 26.5 | 25.8 | 25.8 | - | - | - |
Total weight gain (kg) | 16.3 | 16.6 | 15.2 | 14.3 | 15.2 | 0.82 | 0.08 | 0.61 |
Average daily gain (g) | 244 | 248 | 228 | 214 | 226 | 12.27 | 0.08 | 0.61 |
Feed efficiency (g/kg) | 181 | 180 | 182 | 202 | 196 | 0.01 | 0.07 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, C.d.O.; Pina, D.d.S.; Santos, S.A.; de Araújo, M.L.G.M.L.; Cirne, L.G.A.; Alba, H.D.R.; Rodrigues, T.C.G.C.; Silva, W.P.; Rodrigues, C.S.; Tosto, M.S.L.; et al. Whole Corn Germ as an Energy Source in the Feeding of Feedlot Lambs: Metabolic and Productive Performance. Animals 2022, 12, 1261. https://doi.org/10.3390/ani12101261
Nascimento CdO, Pina DdS, Santos SA, de Araújo MLGML, Cirne LGA, Alba HDR, Rodrigues TCGC, Silva WP, Rodrigues CS, Tosto MSL, et al. Whole Corn Germ as an Energy Source in the Feeding of Feedlot Lambs: Metabolic and Productive Performance. Animals. 2022; 12(10):1261. https://doi.org/10.3390/ani12101261
Chicago/Turabian StyleNascimento, Camila de O., Douglas dos S. Pina, Stefanie A. Santos, Maria L. G. M. L. de Araújo, Luis G. A. Cirne, Henry D. R. Alba, Thomaz C. G. C. Rodrigues, Willian P. Silva, Carlindo S. Rodrigues, Manuela S. L. Tosto, and et al. 2022. "Whole Corn Germ as an Energy Source in the Feeding of Feedlot Lambs: Metabolic and Productive Performance" Animals 12, no. 10: 1261. https://doi.org/10.3390/ani12101261
APA StyleNascimento, C. d. O., Pina, D. d. S., Santos, S. A., de Araújo, M. L. G. M. L., Cirne, L. G. A., Alba, H. D. R., Rodrigues, T. C. G. C., Silva, W. P., Rodrigues, C. S., Tosto, M. S. L., & de Carvalho, G. G. P. (2022). Whole Corn Germ as an Energy Source in the Feeding of Feedlot Lambs: Metabolic and Productive Performance. Animals, 12(10), 1261. https://doi.org/10.3390/ani12101261