Dietary Chitosan Supplementation Improved Egg Production and Antioxidative Function in Laying Breeders
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experiment Design and Treatments
2.2. Egg Production and Sample Collection
2.3. Antioxidative Enzyme Activities
2.4. Total RNA Extraction and Quality Determination
2.5. Quantitative Real-Time Polymerase Chain Reaction
2.6. Statistical Analyses
3. Results
3.1. Egg Production
3.2. Antioxidative Activities in Serum
3.3. Antioxidative Activities and Gene Expressions in Liver
3.4. Antioxidative Activities and Gene Expressions in Duodenum
4. Discussion
4.1. Egg Production
4.2. Antioxidative Activities in Serum
4.3. Antioxidative Activities and Gene Expressions in Liver and Duodenum
4.4. Nrf2 Gene Expressions in Liver and Duodenum
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, L.H.; Liao, R.R.; Wu, N.; Zhu, G.S.; Tu, Y.Y.; Yang, C.S. Integrating miRNA and mRNA expression profiles in plasma of laying hens associated with heat stress. Mol. Biol. Rep. 2019, 46, 2779–2789. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Chakraborty, R.; Sridhar, C.; Reddy, Y.S.R.; De, B. Freeradicals, antioxidants, diseases and phytomedicines: Current status and future prospect. Int. J. Pharm. Sci. Rev. Res. 2010, 3, 91–100. [Google Scholar]
- Singla, A.K.; Chawla, M. Chitosan: Some pharmaceutical and biological aspects: An update. J. Pharm. Pharmacol. 2001, 53, 1047–1067. [Google Scholar] [CrossRef] [PubMed]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Cai, C.; Li, J.; Li, J.; Li, J.; Sun, T.; Wang, L.; Wu, H.; Yu, G. Chitosan-based nanomaterials for drug delivery. Molecules 2018, 23, 2661. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.W.; Thomas, R.L. Antioxidative activity of chitosans with varying molecular weights. Food Chem. 2007, 101, 308–313. [Google Scholar] [CrossRef]
- Yuan, W.P.; Liu, B.; Liu, C.H.; Wang, X.J.; Zhang, M.S.; Meng, X.M.; Xia, X.K. Antioxidant activity of chito-oligosaccharides on pancreatic islet cells in streptozotocin-induced diabetes in rats. World J. Gastroenterol. 2009, 15, 1339–1345. [Google Scholar] [CrossRef]
- Qiao, Y.; Bai, X.F.; Du, Y.G. Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. Int. Immunopharmacol. 2011, 11, 121–127. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Xing, Y.Y.; Wang, Z.Q.; Yan, S.M.; Shi, B.L. Pre-protective effects of dietary chitosan supplementation against oxidative stress induced by diquat in weaned piglets. Cell Stress Chaperon. 2018, 23, 703–710. [Google Scholar] [CrossRef]
- Li, X.; Ding, X.; Peng, X.; Chi, X.F.; Cui, H.; Zuo, Z.; Fang, J.; Li, X.C. Effect of chitosan oligosaccharides on antioxidant function, lymphocyte cycle and apoptosis in ileum mucosa of broiler. Kafkas Univ. Vet. Fak. 2017, 23, 571–577. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Y.F.; Chen, Y.P.; Qu, H.; Zhao, Y.; Wen, C.; Zhou, Y. Dietary chitooligosaccharide inclusion as an alternative to antibiotics improves intestinal morphology, barrier function, antioxidant capacity, and immunity of broilers at early age. Animals 2019, 9, 493. [Google Scholar] [CrossRef] [Green Version]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Szczurek, W.; Calik, J.; Krawczyk, J.; Jozefiak, D. The influence of selected feed additives on mineral utilisation and bone characteristics in laying hens. Ann. Anim. Sci. 2018, 18, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ahmad, K.A.; Khan, F.U.; Yan, S.M.; Ihsan, A.U.; Ding, Q.L. Chitosan oligosaccharides prevent doxorubicininduced oxidative stress and cardiac apoptosis through activating p38 and JNK MAPK mediated Nrf2/ARE pathway. Chem. Biol. Interact. 2019, 305, 54–65. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, Y.Z.; Wu, Q.J.; Ma, W.F. Epigallocatechin-3-gallate alleviates vanadium-induced reduction of antioxidant capacity via Keap1-Nrf2-sMaf pathway in the liver, kidney, and ovary of laying hens. Biol. Trace Elem. Res. 2021, 199, 2707–2716. [Google Scholar] [CrossRef]
- Lu, Z.; He, X.F.; Ma, B.B.; Zhang, L.; Li, J.L.; Jiang, Y.; Zhou, G.H.; Gao, F. Dietary taurine supplementation improves breast meat quality in chronic heat-stressed broilers via activating the Nrf2 pathway and protecting mitochondria from oxidative attack. J. Sci. Food Agric. 2019, 99, 1066–1072. [Google Scholar] [CrossRef]
- Chang, Q.Q.; Cai, H.A.; Wei, L.L.; Lan, R.X. Chitosan oligosaccharides alleviate acute heat stress-induced oxidative damage by activating ERK1/2-mediated HO-1 and GSH-Px gene expression in breast muscle of broilers. Poult. Sci. 2022, 101, 101515. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Xie, Y.; Shi, L.L.; Xing, Y.Y.; Guo, S.W.; Gao, Y.B.; Liu, Z.Y.; Yan, S.M.; Shi, B.L. Effects of rare earth-chitosan chelate on growth performance, antioxidative and immune function in broilers. Ital. J. Anim. Sci. 2022, 21, 303–313. [Google Scholar] [CrossRef]
- Shi, B.L.; Li, D.F.; Piao, X.S.; Yan, S.M. Effects of chitosan on growth performance and energy and protein utilisation in broiler chickens. Br. Poult. Sci. 2005, 46, 516–519. [Google Scholar] [CrossRef]
- Khambualai, O.; Yamauchi, K.; Tangtaweewipat, S.; Cheva-Isarakul, B. Growth performance and intestinal histology in broiler chickens fed with dietary chitosan. Br. Poult. Sci. 2009, 50, 592–597. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Arczewska-Wlosek, A.; Krawczyk, J.; Puchała, M.; Józefiak, D. Effects of selected feed additives on the performance of laying hens given a diet rich in maize dried distiller’s grains with solubles. Br. Poult. Sci. 2013, 54, 475–485. [Google Scholar] [CrossRef]
- Meng, Q.W.; Yan, L.; Ao, X.; Jang, H.D.; Kim, I.H. Effects of chito-oligosaccharide supplementation on egg production, nutrient digestibility, egg quality and blood profiles in laying hens. Asian Australas. J. Anim. 2010, 23, 1476–1481. [Google Scholar] [CrossRef]
- Yan, L.; Lee, J.H.; Meng, Q.W.; Ao, X.; Kim, I.H. Evaluation of dietary supplementation of delta-amino levulinic acid and chito-oligosaccharide on production performance, egg quality and hematological characteristics in laying hens. Asian Australas. J. Anim. 2010, 23, 1028–1033. [Google Scholar] [CrossRef]
- Tufarelli, V.; Laudadio, V.; Casalino, E. An extra-virgin olive oil rich in polyphenolic compounds has antioxidant effects in meat-type broiler chickens. Environ. Sci. Pollut. R. 2016, 23, 6197–6204. [Google Scholar] [CrossRef] [PubMed]
- Mueller, K.; Blum, N.M.; Kluge, H.; Mueller, A.S. Influence of broccoli extract and various essential oils on performance and expression of xenobiotic- and antioxidant enzymes in broiler chickens. Br. J. Nutr. 2012, 108, 588–602. [Google Scholar] [CrossRef] [Green Version]
- Hirano, S.; Itakura, C.; Seino, H.; Akiyama, Y.; Nonaka, I.; Kanbara, N.; Kawakami, T. Chitosan as an ingredient for domestic animal feeds. J. Agric. Food Chem. 1990, 38, 1214–1217. [Google Scholar] [CrossRef]
- Farivar, A.; Saber, N.; Ahan, Z.; Serbester, U.; Celik, L. Effects of high degree deacetylated chitosan supplementation on yolk and blood immune status of laying hens. J. Anim. Sci. 2018, 96, 296–297. [Google Scholar] [CrossRef]
- Kosaka, T.; Kaneko, Y.; Nakada, Y.; Matsuura, M.; Tanaka, S. Effect of chitosan implantation on activation of canine macrophages and polymorphonuclear cells after surgical stress. J. Vet. Med. Sci. 1996, 58, 963–967. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Ren, W.; Wu, X.; Yang, G.; Su, D. Oxidative stress-mediated signaling pathways: A review. J. Food Agric. Environ. 2013, 11, 132–139. [Google Scholar]
- Zelko, I.N.; Mariani, T.J.; Folz, R.J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 2002, 33, 337–349. [Google Scholar] [CrossRef]
- Sun, T.; Zhou, D.; Xie, J.; Mao, F. Preparation of chitosan oligomers and their antioxidant activity. Eur. Food Res. Technol. 2007, 225, 451–456. [Google Scholar] [CrossRef]
- Lan, R.X.; Chang, Q.Q.; An, L.L.; Zhao, Z.H. Dietary supplementation with chitosan oligosaccharides alleviates oxidative stress in rats challenged with hydrogen peroxide. Animal 2019, 10, 55. [Google Scholar] [CrossRef]
- Tao, W.J.; Sun, W.J.; Liu, L.J.; Wang, G.; Xiao, Z.P.; Pei, X.; Wang, M.Q. Chitosan oligosaccharide attenuates nonalcoholic fatty liver disease induced by high fat diet through reducing lipid accumulation, Inflammation and Oxidative Stress in C57BL/6 Mice. Mar. Drugs 2019, 17, 645. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Wahhab, M.A.; Aljawish, A.; El-Nekeety, A.A.; Abdel-Aziem, S.H.; Hassan, N.S. Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin A-contaminated diet. Food Chem. Toxicol. 2017, 99, 209–221. [Google Scholar] [CrossRef]
- Mohammed, M.; Syeda, J.; Wasan, K.; Wasan, E.K. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Nagpal, K.; Singh, S.K.; Mishra, D.N. Chitosan nanoparticles: A promising system in novel drug delivery. Chem. Pharm. Bull. 2010, 58, 1423–1430. [Google Scholar] [CrossRef] [Green Version]
- Mengíbar, M.; Mateos-Aparicio, I.; Miralles, B.; Heras, Á. Influence of the physico-chemical characteristics of chito-oligosaccharides (COS) on antioxidant activity. Carbohyd. Polym. 2013, 97, 776–782. [Google Scholar] [CrossRef]
- Mann, G.E.; Jörg, N.S.; Watson, A.; Gao, L.; Siow, R.C. Nrf2/ARE regulated antioxidant gene expression in endothelial and smooth muscle cells in oxidative stress: Implications for atherosclerosis and preeclampsia. Acta Physiol. Sin. Chin. Ed. 2007, 59, 117. [Google Scholar]
- Ahn, C.B.; Je, J.Y.; Kim, Y.S.; Park, S.J.; Kim, B.I. Induction of Nrf2-mediated phase II detoxifying/antioxidantenzymes in vitro by chitosan-caffeic acid against hydrogenperoxide-induced hepatotoxicity through JNK/ERK pathway. Mol. Cell Biochem. 2017, 424, 79–86. [Google Scholar] [CrossRef]
- Gu, Y.F.; Chen, Y.P.; Jin, R.; Wang, C.; Wen, C.; Zhou, Y.M. Dietary chitooligosaccharide supplementation alleviates intestinal barrier damage, and oxidative and immunological stress in lipopolysaccharide challenged laying hens. Poult. Sci. 2022, 101, 101701. [Google Scholar] [CrossRef]
- Chou, T.C.; Fu, E.; Shen, E.C. Chitosan inhibits prostaglandin E-2 formation and cyclooxygenase-2 induction in lipopolysaccharide-treated RAW 264.7 macrophages. Biochem. Bioph. Res. Commun. 2003, 308, 403–407. [Google Scholar] [CrossRef]
- Kim, J.; Cha, Y.N.; Surh, Y.J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. 2010, 690, 12–23. [Google Scholar] [CrossRef]
- Tkachev, V.; Menshchikova, E.; Zenkov, N. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry 2011, 76, 407–422. [Google Scholar] [CrossRef]
- Li, J.H.; Zhuang, S.L. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J. 2020, 138, 109984. [Google Scholar] [CrossRef]
- Lim, S.H.; Hudson, S.M. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohyd. Res. 2004, 339, 313–319. [Google Scholar] [CrossRef]
Composition | Content (%) | Nutritional Level | Content (%) |
---|---|---|---|
Corn | 62.70 | ME (MJ/kg) | 11.09 |
Soybean meal | 26.30 | CP | 16.61 |
Limestone | 8.50 | Ca | 3.50 |
Met | 0.10 | P | 0.35 |
Bone | 1.00 | Met | 0.42 |
Choline chloride | 0.10 | Lys | 0.85 |
Salt | 0.30 | Trp | 0.21 |
Premix a | 1.00 | ||
Total | 100.00 |
Gene | GeneBank No. | Primer Sequence | Length/bp |
---|---|---|---|
β-actin | NM_205518 | F:ATCCGGACCCTCCATTGTC | 120 bp |
R:AGCCATGCCAATCTCGTCTT | |||
GSH-Px | NM_204220 | F:CATCACCAACGTGGCGTCCAA | 92 bp |
R:GCAGCCCCTTCTCAGCGTATC | |||
SOD1 | NM_205064 | F:TTGTCTGATGGAGATCATGGCTTC | 98 bp |
R:TGCTTGCCTTCAGGATTAAAGTGAG | |||
SOD2 | NM_204211 | F:CAGATAGCAGCCTGTGCAAATCA | 86 bp |
R:GCATGTTCCCATACATCGATTCC | |||
CAT | NM_001031215.1 | F:ACCAAGTACTGCAAGGCGAAAGT | 91 bp |
R:ACCCAGATTCTCCAGCAACAGTG | |||
TrxR1 | NM_00103076.2 | F:TACGCCTCTGGGAAATTCGT | 114 bp |
R:CTTGCAAGGCTTGTCCCAGTA | |||
Nrf2 | NM205117.1 | F:GATGTCACCCTGCCCTTAG | 143 bp |
R:CTGCCACCATGTTATTCC |
Items | Levels of Chitosan (mg/kg) | Sign. | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 250 | 500 | 1000 | 2000 | Linear | Quadratic | |||
1–4 week | |||||||||
HDEP/% | 90.52 b | 94.14 ab | 95.19 a | 93.06 ab | 93.3 ab | 0.010 | 0.973 | 0.116 | 0.013 |
ADFI/g | 121.88 | 120.05 | 126.43 | 125.57 | 124.43 | 0.596 | 3.157 | 0.853 | 0.902 |
Egg weight/(g/d) | 55.10 | 55.63 | 54.65 | 54.85 | 55.68 | 0.089 | 0.304 | 0.412 | 0.115 |
FCR | 2.24 | 2.15 | 2.29 | 2.28 | 2.26 | 0.470 | 0.062 | 0.632 | 0.508 |
5–8 week | |||||||||
HDEP/% | 90.87 ab | 94.76 a | 94.35 a | 92.98 ab | 90.13 b | 0.009 | 0.997 | 0.121 | 0.020 |
ADFI/g | 123.40 | 123.30 | 127.50 | 129.00 | 130.00 | 0.158 | 2.216 | 0.902 | 0.495 |
Egg weight/(g/d) | 56.57 | 56.77 | 56.10 | 56.34 | 55.68 | 0.138 | 0.305 | 0.250 | 0.053 |
FCR | 2.19 | 2.17 | 2.27 | 2.28 | 2.32 | 0.103 | 0.065 | 0.576 | 0.274 |
The whole period | |||||||||
HDEP/% | 90.70 b | 94.45 a | 94.77 a | 93.02 ab | 91.72 b | 0.003 | 0.701 | 0.424 | 0.010 |
ADFI/g | 122.64 | 121.67 | 126.96 | 127.28 | 127.22 | 0.112 | 1.908 | 0.043 | 0.052 |
Egg weight/(g/d) | 55.84 | 56.20 | 55.37 | 55.59 | 55.68 | 0.123 | 0.279 | 0.480 | 0.507 |
FCR | 2.22 ab | 2.17 b | 2.28 ab | 2.29 ab | 2.30 a | 0.028 | 0.034 | 0.039 | 0.077 |
Items | Levels of Chitosan (mg/kg) | Sign. | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 250 | 500 | 1000 | 2000 | Linear | Quadratic | |||
1–4 week | |||||||||
GSH-Px (nmol/mL) | 231.46 b | 251.57 ab | 255.65 a | 235.64 ab | 236.68 ab | 0.035 | 6.289 | 0.538 | 0.501 |
MDA (nmol/mL) | 8.93 a | 7.22 ab | 7.13 ab | 7.11 ab | 7.26 ab | 0.015 | 0.413 | 0.139 | 0.026 |
CAT (U/mL) | 6.44 | 8.75 | 7.02 | 7.01 | 7.16 | 0.345 | 0.570 | 0.938 | 0.899 |
T-SOD (U/mL) | 123.33 b | 127.06 ab | 134.45 a | 130.49 ab | 128.78 ab | 0.028 | 2.503 | 0.292 | 0.016 |
T-AOC (U/mL) | 7.47 | 10.65 | 8.68 | 8.67 | 8.17 | 0.117 | 0.692 | 0.595 | 0.631 |
Inhibit hydroxyl radical ability (U/mL) | 61.29 | 65.75 | 69.01 | 62.84 | 62.05 | 0.193 | 2.865 | 0.652 | 0.514 |
Anti-hyperoxide anionic capacity (U/L) | 341.45 | 345.39 | 341.23 | 350.66 | 344.74 | 0.958 | 9.179 | 0.873 | 0.777 |
5–8 week | |||||||||
GSH-Px (nmol/mL) | 211.99 b | 243.76 a | 227.10 ab | 221.24 ab | 220.68 ab | 0.026 | 5.107 | 0.616 | 0.765 |
MDA (nmol/mL) | 9.47 a | 8.51 ab | 7.33 c | 7.21 c | 7.82 c | 0.009 | 0.438 | 0.002 | 0.001 |
CAT (U/mL) | 7.23 | 7.38 | 7.31 | 7.64 | 7.59 | 0.989 | 0.431 | 0.649 | 0.884 |
T-SOD (U/mL) | 121.37 b | 126.41 ab | 132.33 a | 128.02 ab | 123.58 b | 0.005 | 2.446 | 0.986 | 0.039 |
T-AOC (U/mL) | 8.85 | 8.69 | 9.29 | 8.77 | 8.77 | 0.838 | 2.449 | 0.955 | 0.996 |
Inhibit hydroxyl radical ability (U/mL) | 67.49 | 73.99 | 76.94 | 74.00 | 73.91 | 0.189 | 2.472 | 0.020 | 0.119 |
Anti-hyperoxide anionic capacity (U/L) | 327.19 b | 372.37 a | 375.00 a | 375.26 a | 346.84 ab | 0.033 | 9.696 | 0.875 | 0.004 |
Items | Levels of Chitosan (mg/kg) | Sign. | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 250 | 500 | 1000 | 2000 | Linear | Quadratic | |||
1–4 week | |||||||||
GSH-Px (U/mg protein) | 6.56 | 7.97 | 7.97 | 6.81 | 7.33 | 0.277 | 0.552 | 0.715 | 0.332 |
MDA (nmol/mg protein) | 3.88 | 2.58 | 4.04 | 3.62 | 3.47 | 0.759 | 0.259 | 0.112 | 0.126 |
CAT (U/mg protein) | 16.08 | 15.83 | 16.58 | 16.01 | 16.31 | 0.945 | 0.391 | 0.122 | 0.293 |
T-SOD (U/mg protein) | 652.58 bc | 696.96 ab | 728.46 a | 701.52 ab | 635.15 c | 0.008 | 18.826 | 0.021 | 0.001 |
T-AOC (U/mg protein) | 2.12 | 2.40 | 2.17 | 2.12 | 2.13 | 0.953 | 0.237 | 0.125 | 0.16 |
TrxR (U/mg protein) | 49.57 | 61.89 | 61.02 | 59.26 | 56.08 | 0.323 | 4.645 | 0.745 | 0.312 |
Inhibit hydroxyl radical ability (U/mg protein) | 16.15 | 17.82 | 17.62 | 18.14 | 17.7 | 0.848 | 0.651 | 0.254 | 0.555 |
Anti-hyperoxide anionic capacity (U/mg protein) | 58.45 ab | 55.75 b | 72.97 a | 62.59 ab | 56.80 b | 0.040 | 4.176 | 0.432 | 0.002 |
5–8 week | |||||||||
GSH-Px (U/mg protein) | 7.35 b | 9.61 ab | 10.45 a | 7.96 ab | 9.01 ab | 0.045 | 0.685 | 0.861 | 0.675 |
MDA (nmol/mL) | 3.13 ab | 2.38 b | 2.89 ab | 3.12 ab | 3.25 a | 0.024 | 0. 189 | 0.002 | 0.006 |
CAT (U/mg protein) | 15.84 b | 18.78 a | 19.38 a | 18.90 a | 16.79 b | 0.005 | 0.611 | 0.001 | <0.001 |
T-SOD (U/mg protein) | 771.50 abc | 802.59 ab | 846.32 a | 730.85 c | 720.34 c | 0.001 | 23.709 | 0.001 | 0.001 |
T-AOC (U/mg protein) | 1.41 | 1.72 | 1.59 | 1.27 | 1.31 | 0.371 | 0.196 | 0.239 | 0.409 |
TrxR (U/mg protein) | 95.94 | 105.91 | 107.39 | 94.86 | 82.32 | 0.123 | 7.400 | 0.026 | 0.046 |
Inhibit hydroxyl radical ability (U/mg protein) | 17.62 | 20.39 | 23.60 | 17.25 | 15.87 | 0.095 | 2.014 | 0.665 | 0.302 |
Anti-hyperoxide anionic capacity (U/mg protein) | 39.83 b | 55.36 a | 56.84 a | 55.68 a | 44.80 b | 0.008 | 3.925 | 0.005 | 0.001 |
Items | Levels of Chitosan (mg/kg) | Sign. | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 250 | 500 | 1000 | 2000 | Linear | Quadratic | |||
1–4 week | |||||||||
GSH-Px | 1.04 | 1.15 | 1.25 | 1.11 | 1.14 | 0.058 | 0.069 | 0.503 | 0.227 |
CAT | 1.02 | 1.36 | 1.46 | 1.38 | 1.27 | 0.239 | 0.160 | 0.576 | 0.194 |
SOD1 | 1.01 | 1.28 | 1.52 | 1.38 | 1.13 | 0.145 | 0.135 | 0.988 | 0.032 |
SOD2 | 1.03 b | 1.52 ab | 1.87 a | 1.55 ab | 1.35 ab | 0.015 | 0.221 | 0.527 | 0.055 |
TrxR1 | 1.04 | 1.35 | 1.23 | 1.16 | 1.09 | 0.081 | 0.095 | 0.676 | 0.482 |
Nrf2 | 1.05 | 1.17 | 1.34 | 1.31 | 1.09 | 0.223 | 0.088 | 0.589 | 0.015 |
5–8 week | |||||||||
GSH-Px | 1.02 b | 1.68 ab | 1.95 a | 1.78 a | 1.20 b | 0.016 | 0.219 | 0.683 | 0.001 |
CAT | 1.02 | 1.15 | 1.83 | 1.63 | 1.01 | 0.098 | 0.265 | 0.920 | 0.027 |
SOD1 | 1.03 | 1.09 | 1.65 | 1.4 | 1.27 | 0.086 | 0.179 | 0.434 | 0.084 |
SOD2 | 1.03 b | 1.45 ab | 2.15 a | 1.36 ab | 1.14 b | 0.013 | 0.245 | 0.869 | 0.088 |
TrxR1 | 1.06 | 1.37 | 1.32 | 1.27 | 1.27 | 0.323 | 0.11 | 0.369 | 0.087 |
Nrf2 | 1.08 | 1.15 | 1.39 | 1.23 | 1.17 | 0.118 | 0.081 | 0.500 | 0.094 |
Items | Levels of Chitosan (mg/kg) | Sign. | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 250 | 500 | 1000 | 2000 | Linear | Quadratic | |||
1–4 week | |||||||||
GSH-Px (U/mg protein) | 12.75 | 18.89 | 19.28 | 20.29 | 17.91 | 0.119 | 1.835 | 0.244 | 0.040 |
MDA (nmol/mg protein) | 5.63 | 4.29 | 3.92 | 4.83 | 4.59 | 0.419 | 0.564 | 0.877 | 0.620 |
CAT (U/mg protein) | 5.24 | 5.74 | 6.99 | 6.92 | 6.20 | 0.601 | 0.728 | 0.493 | 0.357 |
T-SOD (U/mg protein) | 354.87 c | 428.67 ab | 478.32 a | 378.33 bc | 373.27 bc | 0.025 | 20.751 | 0.193 | 0.013 |
T-AOC (U/mg protein) | 2.24 | 2.25 | 2.61 | 2.99 | 2.40 | 0.500 | 0.273 | 0.65 | 0.231 |
TrxR (U/mg protein) | 43.37 | 45.52 | 54.64 | 44.28 | 40.39 | 0.117 | 3.207 | 0.292 | 0.055 |
Inhibit hydroxyl radical ability (U/mg protein) | 41.01 | 48.82 | 59.73 | 47.15 | 45.93 | 0.098 | 4.263 | 0.702 | 0.054 |
Anti-hyperoxide anionic capacity (U/mg protein) | 92.47 b | 129.87 a | 134.60 a | 137.38 a | 84.77 b | 0.018 | 11.31 | 0.681 | 0.004 |
5–8 week | |||||||||
GSH-Px (U/mg protein) | 12.83 | 18.04 | 21.78 | 16.13 | 12.94 | 0.065 | 2.136 | 0.298 | 0.093 |
MDA (nmol/mL) | 4.46 | 4.89 | 4.37 | 4.52 | 4.37 | 0.899 | 0.445 | 0.738 | 0.945 |
CAT (U/mg protein) | 7.28 | 7.05 | 5.81 | 8.38 | 7.45 | 0.224 | 0.631 | 0.693 | 0.627 |
T-SOD (U/mg protein) | 344.81 b | 406.01 a | 419.95 a | 413.47 a | 346.36 b | 0.019 | 16.945 | 0.793 | 0.005 |
T-AOC (U/mg protein) | 1.85 | 1.90 | 2.14 | 1.43 | 1.25 | 0.181 | 0.228 | 0.181 | 0.231 |
TrxR (U/mg protein) | 43.43 b | 55.36 a | 55.17 a | 53.12 a | 50.35 ab | 0.030 | 3.174 | 0.497 | 0.075 |
Inhibit hydroxyl radical ability (U/mg protein) | 44.34 | 46.79 | 66.55 | 57.38 | 46.98 | 0.134 | 4.175 | 0.745 | 0.040 |
Anti-hyperoxide anionic capacity (U/mg protein) | 113.24 b | 162.32 ab | 168.45 a | 164.10 a | 158.24 ab | 0.042 | 9.616 | 0.198 | 0.011 |
Items | Levels of Chitosan (mg/kg) | Sign. | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 250 | 500 | 1000 | 2000 | Linear | Quadratic | |||
1–4 week | |||||||||
GSH-Px | 1.05 | 1.28 | 1.98 | 1.34 | 1.21 | 0.058 | 0.210 | 0.928 | 0.091 |
CAT | 1.01 | 1.14 | 1.31 | 1.15 | 1.04 | 0.325 | 0.124 | 0.886 | 0.403 |
SOD1 | 1.03 b | 1.56 a | 1.87 a | 1.51 ab | 1.35 ab | 0.020 | 0.159 | 0.790 | 0.033 |
SOD2 | 1.11 c | 1.35 ab | 1.90 a | 1.23 bc | 1.05 c | 0.005 | 0.182 | 0.346 | 0.036 |
TrxR1 | 1.06 c | 1.40 abc | 1.69 a | 1.60 ab | 0.98 bc | 0.022 | 0.223 | 0.497 | 0.009 |
Nrf2 | 1.10 | 1.24 | 1.45 | 1.33 | 1.25 | 0.270 | 0.118 | 0.371 | 0.054 |
5–8 week | |||||||||
GSH-Px | 1.06 b | 1.55 ab | 2.29 a | 2.39 a | 1.66 ab | 0.012 | 0.343 | 0.297 | 0.001 |
CAT | 1.05 | 1.15 | 1.50 | 1.28 | 1.25 | 0.423 | 0.134 | 0.322 | 0.154 |
SOD1 | 1.00 | 1.41 | 1.64 | 1.41 | 1.29 | 0.078 | 0.163 | 0.620 | 0.087 |
SOD2 | 1.12 c | 2.11 a | 1.61 b | 1.58 b | 1.15 c | 0.007 | 0.224 | 0.297 | 0.046 |
TrxR1 | 1.09 c | 2.27 b | 3.06 a | 1.51 b | 1.08 c | 0.012 | 0.418 | 0.210 | 0.044 |
Nrf2 | 1.02 | 1.29 | 1.41 | 1.30 | 1.24 | 0.186 | 0.123 | 0.507 | 0.057 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, Q.; Feng, Y.; Yan, S.; Shi, B.; Guo, X.; Zhao, Y.; Guo, Y. Dietary Chitosan Supplementation Improved Egg Production and Antioxidative Function in Laying Breeders. Animals 2022, 12, 1225. https://doi.org/10.3390/ani12101225
Li Y, Zhang Q, Feng Y, Yan S, Shi B, Guo X, Zhao Y, Guo Y. Dietary Chitosan Supplementation Improved Egg Production and Antioxidative Function in Laying Breeders. Animals. 2022; 12(10):1225. https://doi.org/10.3390/ani12101225
Chicago/Turabian StyleLi, Yinhao, Qingyue Zhang, Yonghui Feng, Sumei Yan, Binlin Shi, Xiaoyu Guo, Yanli Zhao, and Yongmei Guo. 2022. "Dietary Chitosan Supplementation Improved Egg Production and Antioxidative Function in Laying Breeders" Animals 12, no. 10: 1225. https://doi.org/10.3390/ani12101225
APA StyleLi, Y., Zhang, Q., Feng, Y., Yan, S., Shi, B., Guo, X., Zhao, Y., & Guo, Y. (2022). Dietary Chitosan Supplementation Improved Egg Production and Antioxidative Function in Laying Breeders. Animals, 12(10), 1225. https://doi.org/10.3390/ani12101225