Genetic Parameters for Maternal Performance Traits in Commercially Farmed New Zealand Beef Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset and Animal Management
2.2. Trait Definitions
2.3. Data Editing
2.4. Statistical Analysis
3. Results
3.1. Univariate Analyses
3.2. Bivariate Analyses
4. Discussion
4.1. Effect of Genetics on Reproduction
4.2. Live Weight, Hip Height and Body Condition Score among 15-Month-Old Heifers, 2-Year-Old Cows and Mature Cows
4.3. Association among Reproduction, Live Weight, Hip Height and Body Condition
4.4. Maternal Contribution to Calf Weaning Weight and Its Impact on Reproduction, Live Weight, Hip Height and Body Condition Score
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Archer, J.A.; Arthur, P.F.; Parnell, P.F.; van de Ven, R.J. Effect of divergent selection for yearling growth rate on female reproductive performance in Angus cattle. Livest. Prod. Sci. 1998, 57, 33–40. [Google Scholar] [CrossRef]
- Owens, F.N.; Gill, D.R.; Secrist, D.S.; Coleman, S.W. Review of some aspects of growth and development of feedlot cattle. J. Anim. Sci. 1995, 73, 3152–3172. [Google Scholar] [CrossRef]
- Morris, S.T.; Kenyon, P.R.; Burnham, D.L. A comparison of two scales of body condition scoring in Hereford × Friesian beef breeding cows. Proc. N. Z. Grassl. Assoc. 2002, 64, 121–123. [Google Scholar] [CrossRef]
- Ochsner, K.P.; MacNeil, M.D.; Lewis, R.M.; Spangler, M.L. Economic selection index development for Beefmaster cattle II: General-purpose breeding objective. J. Anim. Sci. 2017, 95, 1913–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeaton, D.C.; Bown, M.D.; Clayton, J.B. Optimum liveweight, feed intake, reproduction, and calf output in beef cows on North Island hill country, New Zealand. N. Z. J. Agric. Res. 2000, 43, 71–82. [Google Scholar] [CrossRef]
- Wagner, J.J. Carcass Composition in Mature Hereford Cows: Estimation and Influence on Metabolizable Energy Requirements for Maintenance during Winter. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 1984. [Google Scholar]
- Bishop, D.K.; Wettemann, R.P.; Spicer, L.J. Body energy reserves influence the onset of luteal activity after early weaning of beef cows. J. Anim. Sci. 1994, 72, 2703–2708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickson, R.E.; Morris, S.T.; Thomson, B.C. Beef Cow Body Condition Scoring; Beef + Lamb New Zealand: Wellington, New Zealand, 2017. [Google Scholar]
- Osoro, K.; Wright, I.A. The effect of body condition, live weight, breed, age, calf performance, and calving date on reproductive performance of spring-calving beef cows. J. Anim. Sci. 1992, 70, 1661–1666. [Google Scholar] [CrossRef]
- Weik, F.; Archer, J.A.; Morris, S.T.; Garrick, D.J.; Hickson, R.E. Relationship between body condition score and pregnancy rates following artificial insemination and subsequent natural mating in beef cows on commercial farms in New Zealand. N. Z. J. Anim. Sci. Prod. 2020, 80, 14–20. [Google Scholar]
- Morris, S.T.; Morel, P.C.H.; Kenyon, P.R. The effect of individual liveweight and condition of beef cows on their reproductive performance and birth and weaning weights of calves. N. Z. Vet. J. 2006, 54, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Forni, S.; Albuquerque, L.G. Estimates of genetic correlations between days to calving and reproductive and weight traits in Nelore cattle. J. Anim. Sci. 2005, 83, 1511–1515. [Google Scholar] [CrossRef] [Green Version]
- Johnston, D.J.; Bunter, K.L. Days to calving in Angus cattle: Genetic and environmental effects, and covariances with other traits. Livest. Prod. Sci. 1996, 45, 13–22. [Google Scholar] [CrossRef]
- Wolcott, M.L.; Johnston, D.J.; Barwick, S.A. Genetic relationships of female reproduction with growth, body composition, maternal weaning weight and tropical adaptation in two tropical beef genotypes. Anim. Prod. Sci. 2014, 54, 60–73. [Google Scholar] [CrossRef]
- Mercadante, M.E.Z.; Packer, I.U.; Razook, A.G.; Cyrillo, J.N.S.G.; Figueiredo, L.A. Direct and correlated responses to selection for yearling weight on reproductive performance of Nelore cows. J. Anim. Sci. 2003, 81, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Cammack, K.M.; Thomas, M.G.; Enns, R.M. Reproductive traits and their heritabilities in beef cattle. Prof. Anim. Sci. 2009, 25, 517–528. [Google Scholar] [CrossRef]
- Johnston, D.J. Genetic improvement of reproduction in beef cattle. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014; pp. 17–22. [Google Scholar]
- Koots, K.R.; Gibson, J.P.; Smith, C.; Wilton, J.W. Analyses of published genetic parameter estimates for beef production traits. 1. Heritability. Anim. Breed. Abstr. 1994, 62, 309–338. [Google Scholar]
- Valente, T.S.; Albito, O.D.; Sant’Anna, A.C.; Carvalheiro, R.; Baldi, F.; Albuquerque, L.G.; Paranhos da Costa, M.J.R. Genetic parameter estimates for temperament, heifer rebreeding, and stayability in Nellore cattle. Livest. Sci. 2017, 206, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Hickson, R.E.; Anderson, W.J.; Kenyon, P.R.; Lopez-Villalobos, N.; Morris, S.T. A survey of beef cattle farmers in New Zealand, examining management practices of primiparous breeding heifers. N. Z. Vet. J. 2008, 56, 176–183. [Google Scholar] [CrossRef]
- Boligon, A.A.; Ayres, D.R.; Pereira, R.J.; Morotti, N.P.; Albuquerque, L.G. Genetic associations of visual scores with subsequent rebreeding and days to first calving in Nellore cattle. J. Anim. Breed. Genet. 2012, 129, 448–456. [Google Scholar] [CrossRef]
- Weik, F.; Archer, J.A.; Morris, S.T.; Garrick, D.J.; Miller, S.P.; Boyd, A.M.; Cullen, N.G.; Hickson, R.E. Live weight and body condition score of mixed-aged beef breeding cows on commercial hill country farms in New Zealand. N. Z. J. Agric. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Burris, M.J.; Blunn, C.T. Some factors affecting gestation length and birth weight of beef cattle. J. Anim. Sci. 1952, 11, 34–41. [Google Scholar] [CrossRef]
- Meyer, K.; Hammond, K.; Parnell, P.F.; MacKinnon, M.J.; Sivarajasingam, S. Estimates of heritability and repeatability for reproductive traits in Australian beef cattle. Livest. Prod. Sci. 1990, 25, 15–30. [Google Scholar] [CrossRef]
- Graser, H.U.; Tier, B.; Johnston, D.J.; Barwick, S.A. Genetic evaluation for the beef industry in Australia. Aust. J. Exp. Agric. 2005, 45, 913–921. [Google Scholar] [CrossRef]
- Reverter, A.; Johnston, D.J.; Graser, H.-U.; Wolcott, M.L.; Upton, W.H. Genetic analyses of live-animal ultrasound and abattoir carcass traits in Australian Angus and Hereford cattle. J. Anim. Sci. 2000, 78, 1786–1795. [Google Scholar] [CrossRef]
- Mwansa, P.B.; Crews Jr, D.H.; Wilton, J.W.; Kemp, R.A. Multiple trait selection for maternal productivity in beef cattle. J. Anim. Breed. Genet. 2002, 119, 391–399. [Google Scholar] [CrossRef]
- Meyer, K.; Carrick, M.J.; Donnelly, B.J.P. Genetic parameters for milk production of Australian beef cows and weaning weight of their calves. J. Anim. Sci. 1994, 72, 1155–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.J.; Atkins, K.; Huisman, A.E. Expression of body weight, fleece weight and fibre diameter in across flock genetic evaluation. Proc. Assoc. Advmt. Anim. Breed. Genet. 2005, 16, 84–87. [Google Scholar]
- Everett, R.W.; Keown, J.F. Mixed model sire evaluation with dairy cattle—Experience and genetic gain. J. Anim. Sci. 1984, 59, 529–541. [Google Scholar] [CrossRef]
- Lopez-Villalobos, N.; Garrick, D.J.; Harris, B.L.; Blair, H.T. Accounting for scale effects in genetic evaluation of dairy cattle. Proc. N. Z. Soc. Anim. Prod. 1994, 54, 275–279. [Google Scholar]
- Pickering, N.K.; Dodds, K.G.; Blair, H.T.; Hickson, R.E.; Johnson, P.L.; McEwan, J.C. Genetic parameters for production traits in New Zealand dual-purpose sheep, with an emphasis on dagginess. J. Anim. Sci. 2012, 90, 1411–1420. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 20 June 2020).
- Gilmour, A.; Gogel, B.; Cullis, B.; Welham, S.; Thompson, R. ASReml User Guide Release 4.1 Structural Specification; VSN International Ltd.: Hemel Hempstead, UK, 2015. [Google Scholar]
- Johnston, D.J.; Barwick, S.A.; Fordyce, G.; Holroyd, R.G.; Williams, P.J.; Corbet, N.J.; Grant, T. Genetics of early and lifetime annual reproductive performance in cows of two tropical beef genotypes in northern Australia. Anim. Prod. Sci. 2014, 54, 1–15. [Google Scholar] [CrossRef]
- Burrow, H.M. Variances and covariances between productive and adaptive traits and temperament in a composite breed of tropical beef cattle. Livest. Prod. Sci. 2001, 70, 213–233. [Google Scholar] [CrossRef]
- Morris, C.A.; Wilson, J.A.; Bennett, G.L.; Cullen, N.G.; Hickey, S.M.; Hunter, J.C. Genetic parameters for growth, puberty, and beef cow reproductive traits in a puberty selection experiment. N. Z. J. Agric. Res. 2000, 43, 83–91. [Google Scholar] [CrossRef]
- Cavani, L.; Garcia, D.A.; Carreño, L.O.D.; Ono, R.K.; Pires, M.P.; Farah, M.M.; Ventura, H.T.; Millen, D.D.; Fonseca, R. Estimates of genetic parameters for reproductive traits in Brahman cattle breed. J. Anim. Sci. 2015, 93, 3287–3291. [Google Scholar] [CrossRef] [Green Version]
- McAllister, C.M.; Speidel, S.E.; Crews Jr, D.H.; Enns, R.M. Genetic parameters for intramuscular fat percentage, marbling score, scrotal circumference, and heifer pregnancy in Red Angus cattle. J. Anim. Sci. 2011, 89, 2068–2072. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.A.; Cullen, N.G. A note on genetic correlations between pubertal traits of males or females and lifetime pregnancy rate in beef cattle. Livest. Prod. Sci. 1994, 39, 291–297. [Google Scholar] [CrossRef]
- Goodling, R.C.; Shook, G.E.; Weigel, K.A.; Zwald, N.R. The effect of synchronization on genetic parameters of reproductive traits in dairy cattle. J. Dairy Sci. 2005, 88, 2217–2225. [Google Scholar] [CrossRef]
- Costa, R.B.; Misztal, I.; Elzo, M.A.; Bertrand, J.K.; Silva, L.O.C.; Łukaszewicz, M. Estimation of genetic parameters for mature weight in Angus cattle. J. Anim. Sci. 2011, 89, 2680–2686. [Google Scholar] [CrossRef] [Green Version]
- Arango, J.A.; Cundiff, L.V.; Van Vleck, L.D. Genetic parameters for weight, weight adjusted for body condition score, height, and body condition score in beef cows. J. Anim. Sci. 2002, 80, 3112–3122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaps, M.; Herring, W.O.; Lamberson, W.R. Genetic and environmental parameters for mature weight in Angus cattle. J. Anim. Sci. 1999, 77, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Boligon, A.A.; Albuquerque, L.G.; Mercadante, M.E.Z.; Lobo, R.B. Models for genetic evaluation of Nelore cattle mature body weight. J. Anim. Sci. 2008, 86, 2840–2844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nephawe, K.A.; Cundiff, L.V.; Dikeman, M.E.; Crouse, J.D.; Van Vleck, L.D. Genetic relationships between sex-specific traits in beef cattle: Mature weight, weight adjusted for body condition score, height and body condition score of cows, and carcass traits of their steer relatives. J. Anim. Sci. 2004, 82, 647–653. [Google Scholar] [CrossRef]
- Morris, C.A.; Baker, R.L.; Johnson, D.L.; Carter, A.H.; Hunter, J.C. Reciprocal crossbreeding of Angus and Hereford cattle 3. Cow weight, reproduction, maternal performance, and lifetime production. N. Z. J. Agric. Res. 1987, 30, 453–467. [Google Scholar] [CrossRef]
- Meyer, K. Estimates of genetic parameters for mature weight of Australian beef cows and its relationship to early growth and skeletal measures. Livest. Prod. Sci. 1995, 44, 125–137. [Google Scholar] [CrossRef]
- Johnston, D.J.; Chandler, H.; Graser, H.U. Genetic parameters for cow weight and condition score in Angus, Hereford, and Poll Hereford cattle. Aust. J. Agric. Res. 1996, 47, 1251–1260. [Google Scholar] [CrossRef]
- Northcutt, S.L.; Wilson, D.E. Genetic parameter estimates and expected progeny differences for mature size in Angus cattle. J. Anim. Sci. 1993, 71, 1148–1153. [Google Scholar] [CrossRef] [PubMed]
- Hickson, R.E.; Pitchford, W.S. Selection strategies for beef cow size and condition. Proc. Assoc. Advmt. Anim. Breed. Genet. 2021, accepted. [Google Scholar]
- Splan, R.K.; Cundiff, L.V.; Dikeman, M.E.; Van Vleck, L.D. Estimates of parameters between direct and maternal genetic effects for weaning weight and direct genetic effects for carcass traits in crossbred cattle. J. Anim. Sci. 2002, 80, 3107–3111. [Google Scholar] [CrossRef] [Green Version]
- Meyer, K.; Carrick, M.J.; Donnelly, B.J.P. Genetic parameters for growth traits of Australian beef cattle from a multibreed selection experiment. J. Anim. Sci. 1993, 71, 2614–2622. [Google Scholar] [CrossRef] [Green Version]
- Kaps, M.; Herring, W.O.; Lamberson, W.R. Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle. J. Anim. Sci. 2000, 78, 1436–1442. [Google Scholar] [CrossRef]
- Cortés-Lacruz, X.; Casasús, I.; Revilla, R.; Sanz, A.; Blanco, M.; Villalba, D. The milk yield of dams and its relation to direct and maternal genetic components of weaning weight in beef cattle. Livest. Sci. 2017, 202, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Koots, K.R.; Gibson, J.P.; Wilton, J.W. Analyses of published genetic parameter estimates for beef production traits. 2. Phenotypic and genetic correlations. Anim. Breed. Abstr. 1994, 62, 825–853. [Google Scholar]
- Wolcott, M.L.; Johnston, D.J.; Barwick, S.A.; Corbet, N.J.; Williams, P.J. The genetics of cow growth and body composition at first calving in two tropical beef genotypes. Anim. Prod. Sci. 2014, 54, 37–49. [Google Scholar] [CrossRef]
- Morris, C.A.; Wilton, J.W. Influence of body size on the biological efficiency of cows: A review. Can. J. Anim. Sci. 1976, 56, 613–647. [Google Scholar] [CrossRef]
Abb. | Unit | n of Records | n of Individual Records | n of Dams | n of Sires | Range | Mean (SD) | |
---|---|---|---|---|---|---|---|---|
Females | Males | |||||||
Reproduction | ||||||||
HP | % | 1660 | - | 1660 | 1349 | 232 | 0/1 | 88.1 1 |
DtCH | Days | 1904 | - | 1904 | 1532 | 242 | 0–82 | 24.4 (21.3) |
RB | % | 1189 | - | 1189 | 1041 | 203 | 0/1 | 92.0 1 |
DtC2 | Days | 1220 | - | 1220 | 1072 | 206 | 0–91 | 25.4 (21.0) |
PR | % | 11,730 | - | 4240 | 596 | 148 | 0/1 | 93.3 1 |
Live weight, hip height and body condition | ||||||||
HWT | kg | 2347 | - | 2347 | 1822 | 328 | 282–444 | 357.0 (27.1) |
HBCS | Score | 2340 | - | 2340 | 1822 | 328 | 6–9 | 7.9 (0.6) |
HH | cm | 2948 | - | 2948 | 2185 | 358 | 99–133 | 115.3 (4.7) |
WT2 | kg | 1488 | - | 1488 | 1265 | 243 | 299–656 | 470.0 (52.4) |
BCS2 | Score | 1484 | - | 1484 | 1263 | 242 | 4–9 | 7.1 (0.8) |
HH2 | cm | 1535 | - | 1535 | 1295 | 257 | 116–139 | 127.1 (3.9) |
MWT | kg | 35,375 | - | 4658 | 897 | 195 | 408–728 | 562.4 (47.2) |
BCS | Score | 35,393 | - | 4660 | 897 | 195 | 3–10 | 6.9 (1.0) |
MHH | cm | 5172 | - | 3552 | 858 | 186 | 118–143 | 130.3 (4.0) |
WWT | kg | 3454 | 3524 | 6978 | 3861 | 381 | 110–338 | 226.5 (32.1) |
Traits | CG Definition | n of CGs |
---|---|---|
Reproduction | ||
HP; DtCH | Herd × recording date × birth year × birth group × weaning group × yearling group × management group at recording | 59; 85 |
RB; DtC2 | Herd × recording date × birth year × management group at recording | 11; 12 |
PR | Herd × recording date × management group | 71 |
Live weight, hip height and body condition | ||
HWT; HBCS; HH | Herd × recording date × birth group × weaning group × yearling group × management group at recording | 128–137 |
WT2; BCS2; HH2 | Herd × recording date × management group at recording | 19–33 |
MWT; MBCS | Herd × recording date × management group | 247 |
MHH | Herd × recording date | 18 |
WWT | Herd × sex × recording date × birth management group × weaning management group | 189 |
Fixed Effects | Random Effects | ||||||||
---|---|---|---|---|---|---|---|---|---|
Age 1 | Age of Dam | Breed of Animal | Heterosis | CG | Direct Genetic | Maternal Genetic | Permanent Environment | Maternal Environment | |
Reproduction | |||||||||
HP | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
DtCH | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
RB | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
DtC2 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
PR | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
Live weight, hip height and body condition | |||||||||
HWT | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
HBCS | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
HH | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
WT2 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
BCS2 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
HH2 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
MWT | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
MWTBCS | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
MWTHH | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
BCS | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
MHH | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
WWT | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Model 1 | h2 | t | |||||||
---|---|---|---|---|---|---|---|---|---|
Reproduction | |||||||||
HP | LM | 0.00 | 0.11 | 0.00 | |||||
THM | 0.20 | 3.29 | 0.06 ± 0.08 | ||||||
DtCH | LM | 2.61 | 430.71 | 0.01 ± 0.05 | |||||
RB | LM | 0.01 | 0.06 | 0.14 ± 0.09 | |||||
THM | 0.46 | 3.29 | 0.12 ± 0.11 | ||||||
DtC2 | LM | 80.85 | 305.60 | 0.21 ± 0.09 | |||||
PR | LM | 0.00 | 0.06 | 0.00 | |||||
THM | 0.00 | 3.29 | 0.00 | ||||||
Live weight, hip height and body condition | |||||||||
HWT | LM | 289.19 | 401.08 | 0.42 ± 0.07 | |||||
HBCS | LM | 0.02 | 0.14 | 0.15 ± 0.05 | |||||
HH | LM | 5.83 | 5.49 | 0.51 ± 0.06 | |||||
WT2 | LM | 705.23 | 887.29 | 0.44 ± 0.09 | |||||
BCS2 | LM | 0.09 | 0.26 | 0.25 ± 0.08 | |||||
HH2 | LM | 5.57 | 6.16 | 0.47 ± 0.09 | |||||
MWT | LM | 1157.14 | 790.86 | 481.64 | 0.48 ± 0.04 | 0.80 ± 0.004 | |||
MWTBCS | LM | 952.07 | 403.78 | 324.36 | 0.57 ± 0.04 | 0.81 ± 0.004 | |||
MWTHH | LM | 522.81 | 548.30 | 587.32 | 0.32 ± 0.06 | 0.65 ± 0.014 | |||
BCS | LM | 0.15 | 0.10 | 0.34 | 0.26 ± 0.03 | 0.42 ± 0.007 | |||
MHH | LM | 8.21 | 1.25 | 3.08 | 0.65 ± 0.05 | 0.75 ± 0.010 | |||
WWTD 3 | LM | 84.37 | 122.38 | −53.77 | 187.87 | 235.03 | 0.14 ± 0.02 | ||
WWTM 3 | LM | 0.20 ± 0.07 | 0.51 ± 0.03 |
RB | DtC2 | HWT | HBCS | HH | WT2 | BCS2 | HH2 | MWT | MWTBCS | MWTHH | BCS | MHH | WWT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RB | 0.13 | −0.74 | 0.01 | 0.05 | −0.01 | 0.05 | 0.01 | 0.01 | −0.25 | −0.23 | −0.31 | −0.40 | −0.20 | 0.02 |
(0.01) | (0.01) | (0.03) | (0.03) | (0.03) | (0.03) | (0.03) | (0.03) | (0.03) | (0.04) | (0.04) | (0.03) | (0.04) | (0.04) | |
DtC2 | −0.99 | 0.21 | −0.03 | −0.04 | −0.02 | −0.07 | −0.06 | −0.02 | 0.19 | 0.13 | 0.25 | 0.25 | 0.05 | 0.00 |
(0.12) | (0.00) | (0.03) | (0.03) | (0.03) | (0.03) | (0.03) | (0.03) | (0.03) | (0.04) | (0.04) | (0.04) | (0.04) | (0.04) | |
HWT | 0.19 | −0.23 | 0.45 | 0.38 | 0.61 | 0.73 | 0.26 | 0.53 | 0.54 | 0.62 | 0.32 | 0.17 | 0.48 | 0.79 |
(0.25) | (0.20) | (0.01) | (0.02) | (0.01) | (0.01) | (0.03) | (0.02) | (0.02) | (0.02) | (0.03) | (0.03) | (0.03) | (0.02) | |
HBCS | 0.49 | −0.32 | 0.26 | 0.15 | 0.12 | 0.23 | 0.25 | 0.05 | 0.09 | 0.06 | 0.12 | 0.12 | −0.03 | 0.26 |
(0.37) | (0.30) | (0.16) | (0.00) | (0.02) | (0.03) | (0.03) | (0.03) | (0.03) | (0.03) | (0.04) | (0.03) | (0.03) | (0.03) | |
HH | 0.54 | −0.57 | 0.71 | −0.07 | 0.53 | 0.52 | 0.09 | 0.65 | 0.42 | 0.49 | 0.07 | 0.10 | 0.62 | 0.68 |
(0.23) | (0.18) | (0.06) | (0.17) | (0.01) | (0.02) | (0.03) | (0.02) | (0.03) | (0.02) | (0.04) | (0.03) | (0.02) | (0.02) | |
WT2 | −0.05 | −0.11 | 0.84 | 0.00 | 0.66 | 0.52 | 0.57 | 0.54 | 0.74 | 0.79 | 0.47 | 0.35 | 0.59 | 0.57 |
(0.26) | (0.21) | (0.05) | (0.20) | (0.08) | (0.03) | (0.02) | (0.02) | (0.01) | (0.01) | (0.03) | (0.03) | (0.02) | (0.03) | |
BCS2 | −0.17 | 0.04 | 0.34 | 0.55 | −0.13 | 0.57 | 0.27 | 0.09 | 0.33 | 0.24 | 0.33 | 0.40 | 0.18 | 0.17 |
(0.32) | (0.27) | (0.16) | (0.23) | (0.16) | (0.12) | (0.01) | (0.03) | (0.03) | (0.03) | (0.03) | (0.03) | (0.03) | (0.03) | |
HH2 | −0.14 | −0.11 | 0.66 | −0.03 | 0.94 | 0.61 | −0.09 | 0.51 | 0.48 | 0.58 | 0.09 | 0.09 | 0.75 | 0.45 |
(0.28) | (0.22) | (0.08) | (0.20) | (0.04) | (0.10) | (0.19) | (0.02) | (0.03) | (0.02) | (0.04) | (0.04) | (0.01) | (0.03) | |
MWT | −0.15 | 0.08 | 0.94 | 0.35 | 0.69 | 0.96 | 0.68 | 0.85 | 0.51 | 0.87 | 0.80 | 0.47 | 0.56 | 0.25 1 |
(0.21) | (0.10) | (0.05) | (0.12) | (0.05) | (0.03) | (0.09) | (0.05) | (0.01) | (0.00) | (0.01) | (0.01) | (0.01) | (0.02) | |
MWTBCS | −0.32 | 0.17 | 0.95 | 0.18 | 0.75 | 0.95 | 0.55 | 0.89 | 0.92 | 0.61 | 0.61 | −0.01 | 0.62 | 0.31 1 |
(0.17) | (0.10) | (0.04) | (0.10) | (0.04) | (0.02) | (0.09) | (0.04) | (0.01) | (0.02) | (0.01) | (0.01) | (0.01) | (0.02) | |
MWTHH | −0.18 | 0.13 | 0.53 | 0.18 | −0.04 | 0.69 | 0.50 | 0.16 | 0.71 | 0.60 | 0.31 | 0.56 | −0.04 | 0.20 |
(0.26) | (0.19) | (0.11) | (0.17) | (0.09) | (0.11) | (0.15) | (0.12) | (0.04) | (0.06) | (0.00) | (0.01) | (0.02) | (0.03) | |
BCS | −0.10 | −0.08 | 0.26 | 0.61 | 0.01 | 0.62 | 0.87 | 0.11 | 0.24 | −0.14 | 0.50 | 0.27 | 0.07 | 0.05 |
(0.19) | (0.14) | (0.08) | (0.14) | (0.06) | (0.08) | (0.09) | (0.08) | (0.07) | (0.07) | (0.08) | (0.00) | (0.01) | (0.03) | |
MHH | −0.27 | −0.04 | 0.61 | −0.16 | 0.88 | 0.64 | −0.03 | 0.97 | 0.77 | 0.80 | 0.16 | 0.15 | 0.65 | 0.31 |
(0.18) | (0.14) | (0.07) | (0.13) | (0.05) | (0.06) | (0.12) | (0.03) | (0.04) | (0.03) | (0.09) | (0.08) | (0.00) | (0.03) | |
WWTD | −0.08 | −0.05 | 0.87 | 0.52 | 0.56 | 0.70 | 0.51 | 0.69 | 1.00 1 | 0.99 1 | 0.64 | 0.89 | 0.53 | 0.16 |
(0.28) | (0.23) | (0.05) | (0.16) | (0.08) | (0.10) | (0.17) | (0.11) | (0.07) | (0.06) | (0.18) | (0.12) | (0.14) | (0.01) | |
WWTM | 0.48 | −0.19 | 0.71 | 0.32 | 0.74 | 0.39 | −0.40 | 0.33 | −0.28 1 | −0.22 1 | −0.36 | −0.55 | 0.15 | −0.53 2 |
(0.28) | (0.20) | (0.14) | (0.18) | (0.12) | (0.14) | (0.19) | (0.14) | (0.09) | (0.08) | (0.12) | (0.12) | (0.09) | (0.17) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weik, F.; Hickson, R.E.; Morris, S.T.; Garrick, D.J.; Archer, J.A. Genetic Parameters for Maternal Performance Traits in Commercially Farmed New Zealand Beef Cattle. Animals 2021, 11, 2509. https://doi.org/10.3390/ani11092509
Weik F, Hickson RE, Morris ST, Garrick DJ, Archer JA. Genetic Parameters for Maternal Performance Traits in Commercially Farmed New Zealand Beef Cattle. Animals. 2021; 11(9):2509. https://doi.org/10.3390/ani11092509
Chicago/Turabian StyleWeik, Franziska, Rebecca E. Hickson, Stephen T. Morris, Dorian J. Garrick, and Jason A. Archer. 2021. "Genetic Parameters for Maternal Performance Traits in Commercially Farmed New Zealand Beef Cattle" Animals 11, no. 9: 2509. https://doi.org/10.3390/ani11092509
APA StyleWeik, F., Hickson, R. E., Morris, S. T., Garrick, D. J., & Archer, J. A. (2021). Genetic Parameters for Maternal Performance Traits in Commercially Farmed New Zealand Beef Cattle. Animals, 11(9), 2509. https://doi.org/10.3390/ani11092509