Thermographic Analysis of the Metacarpal and Metatarsal Areas in Jumping Sport Horses and Leisure Horses in Response to Warm-Up Duration
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Horses
2.2. Experiment
2.3. Measurement Times
2.4. Measurements of Inner Body Temperature
2.5. Thermographic Measurements
2.6. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, W.B. The use of static stretching in warm-up for training and competition. Int. J. Sport. Physiol. 2007, 2, 212–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soligard, T.; Myklebust, G.; Steffen, K.; Holme, I.; Silvers, H.; Bizzini, M.; Andersen, T.E. Comprehensive warm-up programme to prevent injuries in young female footballers: Cluster randomised controlled trial. BMJ 2008, 337, a2469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meershoek, L.S.; Schamhardt, H.C.; Roepstorff, L.; Johnston, C. Forelimb tendon loading during jump landings and the influence of fence height. Equine Vet. J. 2001, S33, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, C.T.; Clegg, P.D.; Birch, H.L. A review of tendon injury: Why is the equine superficial digital flexor tendon most at risk? Equine Vet. J. 2010, 42, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.A.; Barrett, J.G.; Byron, C.R.; Yates, A.C.; Durgam, S.S.; Evans, R.B.; Stewart, M.C. Comparison of equine tendon-, muscle-, and bone marrow–derived cells cultured on tendon matrix. Am. J. Vet. Res. 2009, 70, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Hinchcliff, K.W.; Kaneps, A.J.; Geor, R.J. Equine Sports Medicine and Surgery. In E-Book: Basic and Clinical Sciences of the Equine Athlete, 2nd ed.; Elsevier Health Sciences; Saunders Ltd.: Arnold, UK, 2013. [Google Scholar]
- Docheva, D.; Müller, S.A.; Majewski, M.; Evans, C.H. Biologics for tendon repair. Adv. Drug Deliv. Rev. 2015, 84, 222–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polly, S.S.; Nichols, A.E.; Donnini, E.; Inman, D.J.; Scott, T.J.; Apple, S.M.; Were, S.R.; Dahlgren, L.A. Adipose-Derived Stromal Vascular Fraction and Cultured Stromal Cells as Trophic Mediators for Tendon Healing. J. Orthop. Res. 2019, 37, 1429–1439. [Google Scholar] [CrossRef] [PubMed]
- O”Brien, C.; Marr, N.; Thorpe, C. Microdamage in the equine superficial digital flexor tendon. Equine Vet. J. 2021, 53, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Birch, H.L.; Wilson, A.M.; Goodship, A.E. The effect of exercise induced hyperthermia on tendon cell survival. J. Exp. Biol. 1997, 200, 1703–1708. [Google Scholar] [CrossRef]
- Maeda, E.; Shelton, J.C.; Bader, D.L.; Lee, D.A. Differential regulation of gene expression in isolated tendon fascicles exposed to cyclic tensile strain in vitro. J. Appl. Physiol. 2009, 106, 506–512. [Google Scholar] [CrossRef] [Green Version]
- Westermann, S.; Windsteig, V.; Schramel, J.P.; Peham, C. Effect of a bandage or tendon boot on skin temperature of the metacarpus at rest and after exercise in horses. Am. J. Vet. Res. 2014, 75, 375–379. [Google Scholar] [CrossRef]
- Petrofsky, J.S.; Laymon, M.; Lee, H. Effect of heat and cold on tendon flexibility and force to flex the human knee. Med. Sci. Monit. 2013, 19, 661–667. [Google Scholar]
- Stachurska, A.; Janczarek, I.; Wilk, I.; Jaworska, K.; Pluta, M.; Kolstrung, R. Effect of warm-up intensity on horse-rider dyad’s performance in jumping. Cienc. Rural 2018, 48, e20170638. [Google Scholar] [CrossRef] [Green Version]
- Murray, R.C.; Mann, S.; Parkin, T.D.H. Warm-up in dressage competitions: Association with level, competition type and final score. Equine Comp. Exerc. Physiol. 2006, 3, 185–189. [Google Scholar] [CrossRef]
- Chatel, M.M.; Williams, J. What’s in A Warm-Up? A Preliminary Investigation of How European Dressage Riders and Show Jumpers Warm-Up Their Horses for Training and at Competition. Comp. Exerc. Physiol. 2020, 17, 99–108. [Google Scholar] [CrossRef]
- Tranquille, C.A.; Clarke, J.; Walker, V.A.; Murray, R.C. A descriptive study quantifying warm-up patterns in elite and non-elite dressage horses in a field environment. Comp. Exerc. Physiol. 2021, 17, 35–41. [Google Scholar] [CrossRef]
- Soroko, M.; Morel, M.C.D. Equine Thermography in Practice; CABI Publishing: Boston, MA, USA; Oxfordshire, UK, 2016. [Google Scholar]
- McCafferty, D.J. The value of infrared thermography for research on mammals: Previous applications and future directions. Mamm. Rev. 2007, 37, 207–223. [Google Scholar] [CrossRef]
- Soroko, M.; Howell, K.; Dudek, K.; Henklewski, R.; Zielińska, P. The influence of breed, age, gender, training level and ambient temperature on forelimb and back temperature in racehorses. Anim. Sci. J. 2017, 88, 347–355. [Google Scholar] [CrossRef]
- Green, A.R.; Gates, R.S.; Lawrence, L.M. Measurement of horse core body temperature. J. Therm. Biol. 2005, 30, 370–377. [Google Scholar] [CrossRef]
- Soroko, M.; Howell, K.; Dudek, K.; Wilk, I.; Zastrzeżyńska, M.; Janczarek, I. A pilot study into the utility of dynamic infrared thermography for measuring body surface temperature changes during treadmill exercise in horses. J. Equine Vet. Sci. 2018, 62, 44–46. [Google Scholar] [CrossRef]
- Jalil, B.; Hartwig, V.; Moroni, D.; Salvetti, O.; Benassi, A.; Jalil, Z.; Pistoia, L.; Tegrimi, T.M.; Quinones-Galvan, A.; Iervasi, G.; et al. A pilot study of infrared thermography based assessment of local skin temperature response in overweight and lean women during oral glucose tolerance test. J. Clin. Med. 2019, 8, 260. [Google Scholar] [CrossRef] [Green Version]
- Westermann, S.; Stanek, C.; Schramel, J.P.; Ion, A.; Buchner, H.H.F. The effect of airflow on thermographically determined temperature of the distal forelimb of the horse. Equine Vet. J. 2013, 45, 637–641. [Google Scholar] [CrossRef]
- Piccione, G.; Caola, G.; Refinetti, R. The circadian rhythm of body temperature of the horse. Biol. Rhythm Res. 2002, 33, 113–119. [Google Scholar] [CrossRef]
- Ramey, D.; Bachmann, K.; Lee, M.L. A comparative study of non-contact infrared and digital rectal thermometer measurements of body temperature in the horse. J. Equine Vet. Sci. 2011, 31, 191–193. [Google Scholar] [CrossRef]
- Art, T.; Lekeux, P. Training-induced modifications in cardiorespiratory and ventilatory measurements in thoroughbred horses. Equine Vet. J. 1993, 25, 532–536. [Google Scholar] [CrossRef]
- Jodkowska, E.; Dudek, K.; Przewoźny, M. The maximum temperatures (Tmax) distribution on the body surface of sport horses. J. Life Sci. 2011, 5, 291–297. [Google Scholar]
- Jørgensen, G.H.M.; Mejdell, C.M.; Bøe, K.E. Effects of hair coat characteristics on radiant surface temperature in horses. J. Therm. Biol. 2020, 87, 102474. [Google Scholar] [CrossRef]
- Head, M.J.; Dyson, S. Talking the temperature of equine thermography. Vet. J. 2001, 3, 166–167. [Google Scholar] [CrossRef]
- Prochno, H.C.; Barussi, F.M.; Bastos, F.Z.; Weber, S.H.; Bechara, G.H.; Rehan, I.F.; Michelotto, P.V. Infrared thermography applied to monitoring musculoskeletal adaptation to training in Thoroughbred race horses. J. Equine Vet. J. 2020, 87, 102935. [Google Scholar] [CrossRef]
- Kędzierski, W. Changes in plasma leptin concentration during different types of exercises performed by horses. Animal 2014, 8, 1456–1461. [Google Scholar] [CrossRef]
- Weishaupt, M.A.; Hogg, H.P.; Auer, J.A.; Wiestner, T. Velocity-dependent changes of time, force and spatial parameters in Warmblood horses walking and trotting on a treadmill. Equine Vet. J. 2010, 42, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Guyton, A.C.; Hall, J.E. Textbook of Medical Physiology, 9th ed.; W.B. Saunders Company: Philadelphia, PA, USA, 1996; pp. 912–913. [Google Scholar]
- Turner, T.A.; Pansch, J.; Wilson, J.H. Thermographic assessment of racing thoroughbreds. In Proceedings of the American Association of Equine Practitioners, San Diego, CA, USA, 25–28 November 2001; pp. 344–346. [Google Scholar]
- Solheim, T.N.; Tarabová, L.; Faixová, Z. Changes in temperature of the equine skin surface under boots after exercise. Folia Vet. 2017, 61, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Tranquille, C.A.; Walker, V.A.; Hodgins, D.; McEwen, J.; Roberts, C.; Harris, P.; Cnockaert, R.; Guire, R.; Murray, R.C. Quantification of warm-up patterns in elite show jumping horses over three consecutive days: A descriptive study. Comp. Exerc. Physiol. 2017, 13, 53–61. [Google Scholar] [CrossRef]
- Ogoński, T.; Pikula, R.; Kopczyński, P. The influence of the physical effort on the value of chosen haematological and antioxidative indicators in horses being in different phases of the training. Acta Sci. Pol. Zootech. 2010, 9, 173–179. [Google Scholar]
- Janicki, B.; Kochowicz, A.; Cygan-Szczegielnik, D.; Krumrych, W. Strain induction of oxidative stress in horses and anti-oxidative protection of the organism. Med. Weter. 2013, 69, 213–218. [Google Scholar]
- Krumrych, W. Effect of standard physical exercise of horses on the values of selected clinical and haematological indices. Med. Weter. 2009, 65, 399–403. [Google Scholar]
- Webbon, P.M. A post mortem study of equine digital flexor tendons. Equine Vet. J. 1977, 9, 61–67. [Google Scholar] [CrossRef]
- Sinclair, J.; Atkins, S. Does shoe midsole temperature affect patellofemoral and Achilles tendon kinetics during running? FAO J. 2016, 9, 1–6. [Google Scholar]
- Birch, H.L.; Smith, T.J.; Poulton, C.; Peiffer, D.; Goodship, A.E. Do regional variations in flexor tendons predispose to site-specific injuries? Equine Vet. J. Suppl. 2002, S34, 288–292. [Google Scholar] [CrossRef]
- Dyson, S.; Tranquille, C.; Walker, V.; Guire, R.; Fisher, M.; Murray, R. A subjective descriptive study of the warm-up and turn to a fence, approach, take-off, suspension, landing and move-off in 10 showjumpers. Equine Vet. Educ. 2018, 30, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Crevier-Denoix, N.; Munoz-Nates, F.; Camus, M.; Ravary-Plumioen, B.; Hamme, A.V.; Litaise, C.; Emond, A.L.; Beaud, L.; Denoix, J.M.; Chateau, L.; et al. Kinetics and distal limb kinematics of the forelimb of 3 jumping horses at landing after a jump: Effects of the fence’s height. Comput. Method. Biomec. 2019, 22, S126–S128. [Google Scholar] [CrossRef]
- Hood, D.M.; Wagner, I.P.; Taylor, D.D.; Brumbaugh, G.W.; Chaffin, M.K. Voluntary limb-load distribution in horses with acute and chronic laminitis. Am. J. Vet. Res. 2001, 62, 1393–1398. [Google Scholar] [CrossRef]
- Greve, L.; Dyson, S. The horse–saddle–rider interaction. Vet. J. 2013, 195, 275–281. [Google Scholar] [CrossRef]
- Soni, A.; Mishra, S.; Santra, A.K.; Khune, V.N.; Pathak, R.; Bobade, M.D.; Dubey, A.; Bhagat, S.; Das, S. Position of centre of gravity in different species: A review. J. Entomol. Zool. Stud. 2020, 8, 496–499. [Google Scholar]
- Van Eps, A.W.; Orsini, J.A. A comparison of seven methods for continuous therapeutic cooling of the equine digit. Equine Vet. J. 2016, 48, 120–124. [Google Scholar] [CrossRef]
- Walters, J.M.; Parkin, T.; Snart, H.A.; Murray, R.C. Current management and training practices for UK dressage horses. Comp. Exerc. Physiol. 2008, 5, 73–83. [Google Scholar] [CrossRef] [Green Version]
- McCutcheon, L.J.; Geor, R.J.; Hinchcliff, K.W. Effects of prior exercise on muscle metabolism during sprint exercise in horses. J. Appl. Physiol. 1999, 87, 1914–1922. [Google Scholar] [CrossRef]
- Geor, R.J.; McCutcheon, L.J.; Hinchcliff, K.W. Effects of warm-up intensity on kinetics of oxygen consumption and carbon dioxide production during high-intensity exercise in horses. Am. J. Vet. Res. 2000, 61, 638–645. [Google Scholar] [CrossRef]
Day of the Week | Leisure Horses | Jumping Sport Horses | |
---|---|---|---|
Week of Routine Training | Week with Competition | ||
Monday | Paddock | Dressage 3 | Walk 5 |
Tuesday | Walk, trot, canter 1 | Jumping 4 | Jumping 4 |
Wednesday | Walk, trot, canter 1 | Dressage 3 | Dressage 3 |
Thursday | Walk, trot, canter 1 | Jumping 4 | Jumping 4 |
Friday | Walk, lunging 2 | Dressage 3 | Walk 5 |
Saturday | Walk, trot, canter 1 | Jumping 4 or cross-country riding 1 | Showjumping competition |
Sunday | Cross-country riding 1 (excluding jumping) | Paddock | Showjumping competition or walk 5 |
Day of Experiment | Walk 1.6 m/s | Trot 3.2 m/s | Walk 1.6 m/s | Total Duration of Warm-Up | Warm-Up Regime (Author’s Nomenclature) |
---|---|---|---|---|---|
1. | 10 | 5 | 5 | 20 | Very short warm-up |
2. | 10 | 10 | 5 | 25 | Short warm-up |
3. | 10 | 15 | 5 | 30 | Extended warm-up |
4. | 10 | 20 | 5 | 35 | Long-lasting warm-up |
Type of Warm-Up | Leisure Horses (n = 6) | Jumping Sport Horses (n = 6) | ||||
---|---|---|---|---|---|---|
A | B | C | A | B | C | |
Very short | 37.64 ± 0.23 x | 38.56 ± 0.34 ya | 37.98 ± 0.36 x | 37.55 ± 0.22 x | 38.78 ± 0.36 ya | 38.12 ± 0.38 za |
Short | 37.59 ± 0.29 x | 38.44 ± 0.41 ya | 37.97 ± 0.41 x | 37.56 ± 0.27 x | 39.45 ± 0.29 yb * | 38.67 ± 0.40 zb * |
Extended | 37.65 ± 0.25 x | 38.49 ± 0.38 ya | 37.92 ± 0.37 x | 37.56 ± 0.25 x | 39.52 ± 0.32 yb * | 38.77 ± 0.41 zb * |
Long-lasting | 37.71 ± 0.25 x | 39.12 ± 0.33 yb | 38.17 ± 0.32 z | 37.62 ± 0.23 x | 39.66 ± 0.37 yb * | 38.69 ± 0.36 zb * |
Analysed Surface Area | Leisure Horses (n= 24) | Jumping Sport Horses (n = 24) | ||||
---|---|---|---|---|---|---|
A | B | C | A | B | C | |
Metacarpus dorsal | 28.51 ± 0.51 a | 31.72 ± 1.21 a | 31.27 ± 0.97 a | 30.42 ± 0.53 a * | 31.82 ± 1.35 ab | 31.44 ± 1.19 ab |
Metatarsus dorsal | 27.71 ± 0.46 b | 29.36 ± 0.79 b | 29.02 ± 0.93 b | 30.07 ± 0.51 a * | 31.44 ± 1.01 a * | 30.44 ± 1.26 a * |
Metacarpus plantar | 28.10 ± 0.49 ab | 33.12 ± 1.42 c | 32.53 ± 1.40 a | 28.72 ± 0.48 b | 33.50 ± 1.33 b | 32.60 ± 1.03 b |
Metatarsus plantar | 28.49 ± 0.50 a | 30.95 ± 1.48 ab | 30.15 ± 1.57 b | 29.17 ± 0.49 b * | 32.55 ± 1.47 ab * | 31.25 ± 1.64 ab |
Type of Warm-Up | Leisure Horses | Jumping Sport Horses | ||||
---|---|---|---|---|---|---|
A | B | C | A | B | C | |
Metacarpus dorsal area | ||||||
Very short | 28.54 ± 0.61 x | 31.12 ± 0.66 ya | 30.83 ± 0.54 ya | 30.33 ± 0.55 * | 30.78 ± 0.58 a | 30.55 ± 0.49 a |
Short | 28.42 ± 0.50 x | 31.22 ± 0.48 ya | 31.01 ± 0.51 ya | 30.64 ± 0.69 * | 30.77 ± 0.67 a | 30.63 ± 0.61 a |
Extended | 28.53 ± 0.48 x | 31.45 ± 0.46 ya | 31.07 ± 0.44 ya | 30.71 ± 0.75 x * | 32.76 ± 0.69 yb * | 32.24 ± 0.73 yb * |
Long-lasting | 28.55 ± 0.71 x | 33.08 ± 0.54 yb | 32.17 ± 0.57 zb | 29.98 ± 0.79 x * | 32.98 ± 0.65 yb | 32.33 ± 0.69 zb |
Metatarsus dorsal area | ||||||
Very short | 27.82 ± 0.54 x | 29.07 ± 0.65 ya | 28.77 ± 0.63 ya | 30.17 ± 0.45 x * | 30.59 ± 0.71 xa * | 29.39 ± 0.54 ya * |
Short | 27.67 ± 0.67 x | 29.11 ± 0.57 ya | 28.63 ± 0.52 ya | 29.99 ± 0.56 x * | 31.33 ± 0.67 yb * | 30.12 ± 0.64 xb * |
Extended | 27.88 ± 0.52 x | 29.36 ± 0.74 yab | 28.86 ± 0.64 ya | 29.87 ± 0.34 x * | 31.67 ± 0.63 yb * | 30.50 ± 0.61 zb * |
Long-lasting | 27.45 ± 0.56 x | 29.89 ± 0.66 yb | 29.83 ± 0.55 yb | 30.23 ± 0.61 x * | 32.17 ± 0.70 yb * | 31.73 ± 0.58 yc * |
Metacarpus plantar area | ||||||
Very short | 28.04 ± 0.37 x | 32.02 ± 0.78 ya | 31.41 ± 0.74 ya | 28.47 ± 0.57 x | 32.02 ± 0.60 ya | 31.76 ± 0.61 ya |
Short | 28.22 ± 0.57 x | 32.16 ± 0.72 ya | 31.63 ± 0.55 ya | 29.05 ± 0.47 x * | 33.16 ± 0.63 yb * | 32.36 ± 0.63 zb * |
Extended | 28.24 ± 0.44 x | 34.08 ± 0.62 yb | 33.43 ± 0.67 yb | 28.66 ± 0.70 x | 34.03 ± 0.72 ybc | 33.03 ± 0.52 zc |
Long-lasting | 27.87 ± 0.61 x | 34.22 ± 0.67 yb | 33.63 ± 0.73 yb | 28.69 ± 0.58 x * | 34.77 ± 0.69 yc | 33.23 ± 0.63 zc |
Metatarsus plantar area | ||||||
Very short | 28.63 ± 0.56 x | 30.13 ± 0.54 ya | 29.49 ± 0.57 ya | 29.18 ± 0.45 x | 30.41 ± 0.66 ya | 29.07 ± 0.61 xa |
Short | 28.46 ± 0.49 x | 30.02 ± 0.65 ya | 29.16 ± 0.59 za | 29.18 ± 0.44 x * | 32.55± 0.71 yb * | 31.34 ± 0.65 zb * |
Extended | 28.54 ±0.62 x | 30.17 ± 0.72 ya | 29.41 ± 0.65 za | 29.22 ± 0.34 x * | 33.45 ± 0.77 yc * | 31.67 ± 0.72 zb * |
Long-lasting | 28.31 ± 0.54 x | 33.49 ± 0.69 yb | 32.55 ± 0.64 zb | 29.11 ± 0.58 x * | 33.78 ± 0.68 yc | 32.92 ± 0.61 zc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janczarek, I.; Kędzierski, W.; Tkaczyk, E.; Kaczmarek, B.; Łuszczyński, J.; Mucha, K. Thermographic Analysis of the Metacarpal and Metatarsal Areas in Jumping Sport Horses and Leisure Horses in Response to Warm-Up Duration. Animals 2021, 11, 2022. https://doi.org/10.3390/ani11072022
Janczarek I, Kędzierski W, Tkaczyk E, Kaczmarek B, Łuszczyński J, Mucha K. Thermographic Analysis of the Metacarpal and Metatarsal Areas in Jumping Sport Horses and Leisure Horses in Response to Warm-Up Duration. Animals. 2021; 11(7):2022. https://doi.org/10.3390/ani11072022
Chicago/Turabian StyleJanczarek, Iwona, Witold Kędzierski, Ewelina Tkaczyk, Beata Kaczmarek, Jarosław Łuszczyński, and Karolina Mucha. 2021. "Thermographic Analysis of the Metacarpal and Metatarsal Areas in Jumping Sport Horses and Leisure Horses in Response to Warm-Up Duration" Animals 11, no. 7: 2022. https://doi.org/10.3390/ani11072022
APA StyleJanczarek, I., Kędzierski, W., Tkaczyk, E., Kaczmarek, B., Łuszczyński, J., & Mucha, K. (2021). Thermographic Analysis of the Metacarpal and Metatarsal Areas in Jumping Sport Horses and Leisure Horses in Response to Warm-Up Duration. Animals, 11(7), 2022. https://doi.org/10.3390/ani11072022