Echocardiographic Assessment of Left Ventricular Systolic and Diastolic Functions in Dogs with Severe Sepsis and Septic Shock; Longitudinal Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Control Dogs
2.3. Experimental Dogs
2.4. Criteria for Definition SIRS, Severe Sepsis, and Septic Shock
2.5. Laboratory Analyzes
2.6. Blood Pressure Measurement
2.7. Echocardiographic Evaluation
2.7.1. M-Mode Echocardiography
2.7.2. Doppler Echocardiography
2.7.3. Criteria for Systolic and Diastolic Dysfunction
2.8. Electrocardiography (ECG)
2.9. Pulse Oximetry
2.10. Treatment Protocol
2.11. Statistical Analysis
3. Results
3.1. Animals
3.2. Clinical Examinations
3.3. Hematological Examinations
3.4. Acid-Base Balance, Biochemical Analysis and cTn I
3.5. ECG
3.6. Echocardiography
3.7. Response to Treatment
3.8. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The Epidemiology of Sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003, 348, 1546–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocaturk, M.; Martinez, S.; Eralp, O.; Tvarijonaviciute, A.; Ceron, J.; Yilmaz, Z. Tei index (myocardial performance index) and cardiac biomarkers in dogs with parvoviral enteritis. Res. Vet. Sci. 2012, 92, 24–29. [Google Scholar] [CrossRef]
- de Abreu, C.B.; Muzzi, R.A.; de Oliveira, L.E.; Schulien, T.; Coelho, M.D.R.; Alves, L.A.; Hirsch, C.; Dorneles, E.M.; Pinto, A.M.; Barreto, M.S.; et al. Systolic dysfunction by two-dimensional speckle tracking echocardiography in dogs with parvoviral enteritis. J. Vet. Cardiol. 2021, 34, 93–104. [Google Scholar] [CrossRef]
- Ince, M.E.; Turgut, K.; Akar, A.; Naseri, A.; Sen, I.; Süleymanoglu, H.; Ertan, M.; Sagmanligil, V. Prognostic importance of tissue Doppler imaging of systolic and diastolic functions in dogs with severe sepsis and septic shock. Acta Vet. Hung. 2019, 67, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Rackow, E.C.; Astiz, M.E. Mechanisms and Management of Septic Shock. Crit. Care Clin. 1993, 9, 219–237. [Google Scholar] [CrossRef]
- Parker, M.M.; Shelhamer, J.H.; Bacharach, S.L.; Green, M.V.; Natanson, C.; Frederick, T.M.; Damske, B.A.; Parrillo, J.E. Profound but reversible myocardial depression in patients with septic shock. Ann. Intern. Med. 1984, 100, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Ozier, Y.; Guéret, P.; Jardin, F.; Farcot, J.C.; Bourdarias, J.P.; Margairaz, A. Two-dimensional echocardiographic demonstration of acute myocardial depression in septic shock. Crit. Care Med. 1984, 12, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Landesberg, G.; Gilon, D.; Meroz, Y.; Georgieva, M.; Levin, P.D.; Goodman, S.; Avidan, A.; Beeri, R.; Weissman, C.; Jaffe, A.S.; et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur. Heart J. 2012, 33, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.M.; Klinger, J.R. The Right Ventricle in Sepsis. Clin. Chest Med. 2008, 29, 661–676. [Google Scholar] [CrossRef]
- Young, J.D. The heart and circulation in severe sepsis. Br. J. Anaesth. 2004, 93, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.L.; Slutsky, A.S. Clinical Implications of Basic Research: Sepsis and Endothelial Permeability. N. Engl. J. Med. 2010, 3637, 689–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolando, G.; Espinoza, E.D.V.; Avid, E.; Welsh, S.; Pozo, J.D.; Vazquez, A.R.; Arzani, Y.; Masevicius, F.D.; Dubin, A. Prognostic value of ventricular diastolic dysfunction in patients with severe sepsis and septic shock. Rev. Bras. Ter. Intensiva 2015, 27, 333–339. [Google Scholar] [CrossRef]
- Naseri, A.; Sen, I.; Turgut, K.; Guzelbektes, H.; Constable, P.D. Echocardiographic assessment of left ventricular systolic function in neonatal calves with naturally occurring sepsis or septic shock due to diarrhea. Res. Vet. Sci. 2019, 126, 103–112. [Google Scholar] [CrossRef]
- Naseri, A.; Turgut, K.; Sen, I.; Ider, M. Chronological echocardiographic evaluation of left ventricular systolic and diastolic function in term and premature neonatal calves. Theriogenology 2020, 158, 461–469. [Google Scholar] [CrossRef]
- Antonucci, E.; Fiaccadori, E.; Donadello, K.; Taccone, F.S.; Franchi, F.; Scolletta, S. Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. J. Crit. Care 2014, 29, 500–511. [Google Scholar] [CrossRef]
- Bouhemad, B.; Nicolas-Robin, A.; Arbelot, C.; Arthaud, M.; Féger, F.; Rouby, J.J. Isolated and reversible impairment of ventricular relaxation in patients with septic shock. Crit. Care Med. 2008, 36, 766–774. [Google Scholar] [CrossRef]
- Nelson, O.L.; Thompson, P.A. Cardiovascular dysfunction in dogs associated with critical illnesses. J. Am. Anim. Hosp. Assoc. 2006, 42, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Hauptman, J.G.; Walshaw, R.; Olivier, N.B. Evaluation of the sensitivity and specificity of diagnostic criteria for sepsis in dogs. Vet. Surg. 1997, 26, 393–397. [Google Scholar] [CrossRef]
- Acierno, M.J.; Brown, S.; Coleman, A.E.; Jepson, R.E.; Papich, M.; Stepien, R.L.; Syme, H.M. ACVIM consensus statement: Guidelines for the identification, evaluation, and management of systemic hypertension in dogs and cats. J. Vet. Intern. Med. 2018, 32, 1803–1827. [Google Scholar] [CrossRef]
- Davis, H.; Jensen, T.; Johnson, A.; Knowles, P.; Meyer, R.; Rucinsky, R.; Shafford, H. 2013 AAHA/AAFP fluid therapy guidelines for dogs and cats. J. Am. Anim. Hosp. Assoc. 2013, 49, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Thomas, W.P.; Gaber, C.E.; Jacobs, G.J.; Kaplan, P.M.; Lombard, C.W.; Vet, M.; Moise, N.S.; Moses, B.L. Recommendations for Standards in Transthoracic Two-Dimensional Echocardiography in the Dog and Cat. J. Vet. Intern. Med. 1993, 7, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Chteboul, V.; Bussadori, C.; Madron, E. Clinical Echocardiography of the Dog and Cat; Elsevier: St. Louis, MO, USA, 2016. [Google Scholar]
- Turgut, K. Klinik Kedi ve Köpek Kardiyolojisi; Nobel Tıp Kitabevleri: İstanbul, Turkey, 2017. [Google Scholar]
- Boon, J.A. Veterinary Echocardiography; Wiley-Blackwell: Ames, IA, USA, 2011; pp. 101–149. [Google Scholar]
- Rishniw, M.; Corda, A.; Spina, F.; Caivano, D. Two-dimensional echocardiographic measures of left ventricular dimensions agree with M-mode measurements in dogs. J. Vet. Cardiol. 2021, 33, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Gugjoo, M.B.; Hoque, M.; Saxena, A.C.; Shamsuz Zama, M.M.; Dey, S. Reference values of M-mode echocardiographic parameters and indices in conscious Labrador Retriever dogs. Iran. J. Vet. Res. 2014, 15, 341–346. [Google Scholar]
- della Torre, P.K.; Kirby, A.C.; Church, D.B.; Malik, R. Echocardiographic measurements in greyhounds; whippets and Italian greyhounds—dogs with a similar conformation but different size. Aust. Vet. J. 2000, 78, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Borgarelli, M.; Tarducci, A.; Zanatta, R.; Haggstrom, J. Decreased systolic function and inadequate hypertrophy in large and small breed dogs with chronic mitral valve insufficiency. J. Vet. Intern. Med. 2007, 21, 61–67. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.C.; Marino, P.N.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; Evangelista, A. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography. J. Am. Soc. Echocardiogr. 2009, 22, 107–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M. Small Animal ECGs: An Introductory Guide; Wiley: Blackwell, UK, 2007. [Google Scholar]
- Huss, B.T.; Anderson, M.A.; Branson, K.R.; Wagner-Mann, C.C.; Mann, F.A. Evaluation of pulse oximeter probes and probe placement in healthy dogs. J. Am. Anim. Hosp. Assoc. 1995, 31, 9–14. [Google Scholar] [CrossRef]
- Mc Micheal, M. Handbook of Canine and Feline Emergency Protocols; Jhon Willey Sons Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit. Care Med. 2017, 45, 486–552. [Google Scholar] [CrossRef]
- Bartges, J. What to Do about Hypokalemia: Recognition & Management; ACVIM: Knoxville, TN, USA, 2008. [Google Scholar]
- Rozanski, E.; Chan, D.L. Small Anim Critical Care Medicine; Elsevier: Alpharetta, GA, USA, 2009; pp. 797–800. [Google Scholar]
- Bulmer, B.J. Cardiovascular Dysfunction in Sepsis and Critical Illness. Vet. Clin. N. Am. Small Anim. Pract. 2011, 41, 717–726. [Google Scholar] [CrossRef]
- Charpentier, J.; Luyt, C.E.; Fulla, Y.; Vinsonneau, C.; Cariou, A.; Grabar, S.; Dhainaut, J.F.; Mira, J.P.; Chiche, J.D. Brain natriuretic peptide: A marker of myocardial dysfunction and prognosis during severe sepsis. Crit. Care Med. 2004, 32, 660–665. [Google Scholar] [CrossRef]
- Vieillard-Baron, A. Septic cardiomyopathy. Ann. Intensive Care 2011, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.S.; Kincaid, E.H.; Russell, H.M.; Meredith, J.W.; Chang, M.C. Selective management of cardiovascular dysfunction in posttraumatic sirs and sepsis. Shock 2005, 23, 202–208. [Google Scholar]
- Subla, M.R.; Khan, S.A.; Behl, D.; Peters, S.G. Sepsis and Myocardial Depression in a Young Woman. Mayo Clin. Proc. 2005, 80, 810–814. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.B.; Rivers, E.P.; Abrahamian, F.M.; Moran, G.J.; Abraham, E.; Trzeciak, S.; Huang, D.T.; Osborn, T.; Stevens, D.; Talan, D.A. Emergency Department Sepsis Education Program and Strategies to Improve Survival (ED-SEPSIS) Working Group. Severe sepsis and septic shock: Review of the literature and emergency department management guidelines. Ann. Emerg. Med. 2006, 48, 28–54. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.R.; Holliday, R.L.; Driedger, A.A.; Lefcoe, M.; Reid, B.; Sibbald, W.J. Documentation of pulmonary capillary permeability in the adult respiratory distress syndrome accompanying human sepsis. Am. Rev. Respir. Dis. 1979, 119, 869–877. [Google Scholar]
- Ellman, H. Capillary permeability in septic patients. Crit. Care Med. 1984, 12, 629–633. [Google Scholar] [CrossRef]
- Conti-Patara, A.; de Araújo Caldeira, J.; de Mattos-Junior, E.; de Carvalho, H.S.; Reinoldes, A.; Pedron, B.G.; Patara, M.; Francisco Talib, M.S.; Faustino, M.; de Oliveira, C.M.; et al. Changes in tissue perfusion parameters in dogs with severe sepsis/septic shock in response to goal-directed hemodynamic optimization at admission to ICU and the relation to outcome. J. Vet. Emerg. Crit. Care 2012, 22, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Porter, A.E.; Rozanski, E.A.; Sharp, C.R.; Dixon, K.L.; Price, L.L.; Shaw, S.P. Evaluation of the shock index in dogs presenting as emergencies. J. Vet. Emerg. Crit. Care 2013, 23, 538–544. [Google Scholar] [CrossRef] [Green Version]
- Lucina, S.B.; Sarraff-Lopes, A.P.; Sousa, M.G. Use of focus assessed transthoracic echocardiography (FATE) in the veterinary emergency room. Ciênc. Rural 2017, 47. [Google Scholar] [CrossRef] [Green Version]
- Rudiger, A.; Singer, M. The Heart in Sepsis: From Basic Mechanisms to Clinical Management. Curr. Vasc. Pharmacol. 2013, 11, 187–195. [Google Scholar]
- Abdel-Hady, H.E.; Matter, M.K.; El-Arman, M.M. Myocardial dysfunction in neonatal sepsis. Pediatr. Crit. Care Med. 2012, 13, 318–323. [Google Scholar] [CrossRef]
- Vieillard-Baron, A.; Caille, V.; Charron, C.; Belliard, G.; Page, B.; Jardin, F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit. Care Med. 2008, 36, 1701–1706. [Google Scholar] [CrossRef]
- Jardin, F.; Fourme, T.; Page, B.; Loubières, Y.; Vieillard-Baron, A.; Beauchet, A.; Bourdarias, J.P. Persistent preload defect in severe sepsis despite fluid loading: A longitudinal echocardiographic study in patients with septic shock. Chest 1999, 116, 1354–1359. [Google Scholar] [CrossRef]
- Hunter, J.D.; Doddi, M. Sepsis and the heart. Br. J. Anaesth. 2010, 104, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Weng, L.; Liu, Y.; Du, B.; Zhou, J.; Guo, X.; Peng, J.; Hu, X.; Zhang, S.; Fang, Q.; Zhu, W. The prognostic value of left ventricular systolic function measured by tissue Doppler imaging in septic shock. Crit. Care 2012, 16, R71. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.J.; Piel, D.A.; Acton, P.D.; Zhou, R.; Ferrari, V.A.; Karp, J.S.; Deutschman, C.S. Evidence of myocardial hibernation in the septic heart. Crit. Care Med. 2005, 33, 2752–2756. [Google Scholar] [CrossRef]
- Jones, A.E.; Craddock, P.A.; Tayal, V.S.; Kline, J.A. Diagnostic accuracy of left ventricular function for identifying sepsis among emergency department patients with nontraumatic symptomatic undifferentiated hypotension. Shock 2005, 24, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Rivers, E.; Nguyen, B.; Havstad, S.; Ressler, J.; Muzzin, A.; Knoblich, B.; Peterson, E.; Tomlanovich, M. Early Goal-Directed Therapy in the Treatment of Severe Sepsis and Septic Shock. N. Engl. J. Med. 2001, 345, 1368–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corda, A.; Pinna Parpaglia, M.L.; Sotgiu, G.; Zobba, R.; Gomez Ochoa, P.; Prieto Ramos, J.; French, A. Use of 2-dimensional speckle-tracking echocardiography to assess left ventricular systolic function in dogs with systemic inflammatory response syndrome. J. Vet. Intern. Med. 2019, 33, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef]
- Jardin, F.; Brun-Ney, D.; Auvert, B.; Beauchet, A.; Bourdarias, J.P. Sepsis-related cardiogenic shock. Crit. Care Med. 1990, 18, 1055–1060. [Google Scholar] [CrossRef]
- Vieillard-Baron, A.; Prin, S.; Chergui, K.; Dubourg, O.; Jardin, F. Hemodynamic Instability in Sepsis. Am. J. Respir. Crit. Care Med. 2003, 168, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Chetboul, V. Tissue Doppler imaging: A promising technique for quantifying regional myocardial function. J. Vet. Cardiol. 2002, 4, 7–12. [Google Scholar] [CrossRef]
- Choong, C.Y.; Herrmann, H.C.; Weyman, A.E.; Fifer, M.A. Preload dependence of doppler-derived indexes of left ventricular diastolic function in humans. J. Am. Coll. Cardiol. 1987, 10, 800–808. [Google Scholar] [CrossRef] [Green Version]
- Nagueh, S.F.; Middleton, K.J.; Kopelen, H.A.; Zoghbi, W.A.; Quiñones, M.A. Doppler tissue imaging: A noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J. Am. Coll. Cardiol. 1997, 30, 1527–1533. [Google Scholar] [CrossRef]
- Oki, T.; Tabata, T.; Yamada, H.; Wakatsuki, T.; Shinohara, H.; Nishikado, A.; Iuchi, A.; Fukuda, N.; Ito, S. Clinical Application of Pulsed Doppler Tissue Imaging for Assessing Abnormal Left Ventricular Relaxation. Am. J. Cardiol. 1997, 79, 921–928. [Google Scholar] [CrossRef]
- Aranda, J.M.; Weston, M.W.; Puleo, J.A.; Fontanet, H.L. Effect of loading conditions on myocardial relaxation velocities determined by Doppler tissue imaging in heart transplant recipients. J. Heart Lung Transplant. 1998, 17, 693–697. [Google Scholar] [PubMed]
- Vignon, P.; Allot, V.; Lesage, J.; Martaillé, J.F.; Aldigier, J.C.; François, B.; Gastinne, H. Diagnosis of left ventricular diastolic dysfunction in the setting of acute changes in loading conditions. Crit. Care 2007, 11, R43. [Google Scholar] [CrossRef] [Green Version]
- Disatian, S.; Bright, J.M.; Boon, J. The effects of age and heart rate on tricuspid annular motion velocities in healthy nonsedated cats. J. Vet. Intern. Med. 2007, 21, 731–736. [Google Scholar] [CrossRef]
- Flachskampf, F.A.; Biering-Sørensen, T.; Solomon, S.D.; Duvernoy, O.; Bjerner, T.; Smiseth, O.A. Cardiac Imaging to Evaluate Left Ventricular Diastolic Function. JACC. Cardiovasc. Imaging 2015, 8, 1071–1093. [Google Scholar] [CrossRef] [Green Version]
- McLean, A.S. Echocardiography in shock management. Crit. Care 2016, 20, 275. [Google Scholar] [CrossRef] [Green Version]
- Poelaert, J.; Declerck, C.; Vogelaers, D.; Colardyn, F.; Visser, C.A. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med. 1997, 23, 553–560. [Google Scholar] [CrossRef]
- Munt, B.; Jue, J.; Gin, K.; Fenwick, J.; Tweeddale, M. Diastolic filling in human severe sepsis. Crit. Care Med. 1998, 26, 1829–1833. [Google Scholar] [CrossRef]
- Dantas, V.C.S.; Costa, E.L.V. A look at the diastolic function in severe sepsis and septic shock. Rev. Bras. Ter. Intensive 2015, 27, 307–308. [Google Scholar] [CrossRef]
- Yu, C.M.; Sanderson, J.E.; Marwick, T.H.; Oh, J.K. Tissue Doppler Imaging. A New Prognosticator for Cardiovascular Diseases. J. Am. Coll. Cardiol. 2007, 49, 1903–1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturgess, D.J.; Marwick, T.H.; Joyce, C.; Jenkins, C.; Jones, M.; Masci, P.; Stewart, D.; Venkatesh, B. Prediction of hospital outcome in septic shock: A prospective comparison of tissue Doppler and cardiac biomarkers. Crit. Care 2010, 14, R44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecconi, M.; De Backer, D.; Antonelli, M.; Beale, R.; Bakker, J.; Hofer, C.; Jaeschke, R.; Mebazaa, A.; Pinsky, M.R.; Teboul, J.L.; et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014, 40, 1795–1815. [Google Scholar] [CrossRef] [PubMed]
- Boissier, F.; Razazi, K.; Seemann, A.; Bedet, A.; Thille, A.W.; de Prost, N.; Lim, P.; Brun-Buisson, C.; Mekontso Dessap, A. Left ventricular systolic dysfunction during septic shock: The role of loading conditions. Intensive Care Med. 2017, 43, 633–642. [Google Scholar] [CrossRef]
- Sakr, Y.; Dubois, M.J.; De Backer, D.; Creteur, J.; Vincent, J.L. Persistent-microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit. Care Med. 2004, 32, 1825–1831. [Google Scholar] [CrossRef]
- Borde, L.; Amory, H.; Grulke, S.; Leroux, A.A.; Houben, R.M.; Detilleux, J.; Sandersen, C.C. Prognostic value of echocardiographic and Doppler parameters in horses admitted for colic complicated by systemic inflammatory response syndrome. J. Vet. Emerg. Crit. Care 2014, 24, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Mahjoub, Y.; Benoit-Fallet, H.; Airapetian, N.; Lorne, E.; Levrard, M.; Seydi, A.A.; Amennouche, N.; Slama, M.; Dupont, H. Improvement of left ventricular relaxation as assessed by tissue Doppler imaging in fluid-responsive critically ill septic patients. Intensive Care Med. 2012, 38, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.M.L.; Periasamy, M. Determinants of frequency-dependent contraction and relaxation of mammalian myocardium. J. Mol. Cell. Cardiol. 2007, 43, 523–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joulin, O.; Marechaux, S.; Hassoun, S.; Montaigne, D.; Lancel, S.; Neviere, R. Cardiac force-frequency relationship and frequency-dependent acceleration of relaxation are impaired in LPS-treated rats. Crit. Care 2009, 13, R14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudiger, A.; Singer, M. Mechanisms of sepsis-induced cardiac dysfunction. Crit. Care Med. 2007, 35, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, P.W.; Stopps, T.P.; Ford, S.E.; De Bold, A.J. Rapid ventricular pacing in the dog: Pathophysiologic studies of heart failure. Circulation 1986, 74, 1075–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, J.R.; Douglas, P.; Hickey, W.F.; Lanoce, V.; Ferraro, N.; Muhammad, A.; Reichek, N. Experimental congestive heart failure produced by rapid ventricular pacing in the dog: Cardiac effects. Circulation 1987, 75, 857–867. [Google Scholar] [CrossRef]
- Morelli, A.; D’Egidio, A.; Passariello, M. Tachycardia in septic shock: Pathophysiological implications and pharmacological treatment. In Annual Update in Intensive Care and Emergency Medicine; Springer International Publishing: Cham, Switzerland, 2015; pp. 115–128. [Google Scholar]
Variable | Control Group | Experimental Group | |||
---|---|---|---|---|---|
Admission | 6 h | 24 h | D of D | ||
HR (bpm) | 123.90 ± 23.83 c | 185.26 ± 34.79 a | 166.93 ± 28.46 ab | 143.33 ± 27.26 bc | 132.85 ± 26.13 c |
SpO2 (%) | 86.90 ± 4.29 a | 47.85 ± 18.74 c | 63.64 ± 11.87 b | 58.01 ± 16.47 bc | 87.50 ± 14.98 bc |
SBP (mm Hg) | 125.80 ± 17.02 | 107.86 ± 32.76 | 121.68 ± 21.36 | 122.86 ± 13.66 | 116.46 ± 12.19 |
MAP (mm Hg) | 92.85 ± 16.92 | 78.34 ± 24.67 | 89.12 ± 17.02 | 90 ± 10 | 89.07 ± 7.96 |
CRT (s) | 2 b | 3 a | 2 b | 1 b | 1 b |
PPQ | 2 a | 1 b | 2 ab | 2 a | 2 a |
Variable | Control Group | Experimental Group | |||
---|---|---|---|---|---|
Admission | 6 h | 24 h | D of D | ||
WBC (cells/mL) | 14.57 (7.75–20.34) ab | 4.55 (0.86–25.49) bc | 3.97 (0.98–21.87) c | 7.76 (1.41–21.60) bc | 17.74 (4.23–53.88) a |
Lymphocyte (cells/mL) | 3.84 (1.25–11.43) ab | 3.29 (0.72–14.47) ab | 1.72 (0.59–13.07) a | 2.28 (0.98–3.53) a | 6.77 (3.10–22.30) b |
Monocyte (cells/mL) | 1.17 (0.26–3.67) a | 0.13 (0.03–5.29) b | 0.12 (0.03–2.46) b | 0.29 (0.03–5.23) b | 2.56 (0.35–10.43) a |
Granulocyte (cells/mL) | 8.73 (2.89–24.25) b | 1.27 (0.07–9.05) a | 2.30 (0.27–8.26) a | 4.13 (0.14–13.42) ab | 7.91 (0.78–21.56) b |
RBC (×103 cells/mL) | 5.86 ± 0.97 b | 7.36 ± 1.18 a | 6.59 ± 1.24 ab | 6.36 ± 1.01 ab | 6.17 ± 0.84 b |
MCV (fl) | 56.61 ± 6.45 b | 61.10 ± 3.91 a | 60.45 ± 2.75 ab | 60.35 ± 3.23 ab | 59.21 ± 2.76 ab |
HCT (vol%) | 33.30 ± 7.46 b | 45.04 ± 7.91 a | 39.75 ± 7.53 ab | 38.32 ± 6.13 ab | 36.42 ± 4.68 b |
MCHC (g/dL) | 35.49 ± 16.44 | 29.56 ± 3.49 | 30.30 ± 4.40 | 32.35 ± 2.07 | 32.81 ± 2.36 |
Hgb (g/dL) | 11.67 ± 1.12 | 13.61 ± 3.14 | 12.20 ± 3.26 | 12.42 ± 2.36 | 11.95 ± 1.61 |
Thrombocyte (cells/mL) | 259.00 (84.00–804.00) | 410.00 (57.00–1000) | 318.50 (34.00–775.00) | 361.00 (33.00–1002) | 276.00 (49.00–905.00) |
Variable | Control Group | Experimental Group | |||
---|---|---|---|---|---|
Admission | 6 h | 24 h | D of D | ||
pH | 7.37 ± 0.03 | 7.33 ± 0.09 | 7.37 ± 0.07 | 7.39 ± 0.04 | 7.38 ± 0.04 |
pCO2 (mm Hg) | 36.44 ± 3.66 ab | 41.80 ± 8.19 a | 34.42 ± 5.58 b | 37.77 ± 4.16 ab | 34.85 ± 5.24 b |
pO2 (mm Hg) | 36.97 ± 5.94 a | 28.95 ± 6.89 b | 34.71 ± 4.76 ab | 31.72 ± 7.79 ab | 31.60 ± 8.38 b |
HCO3 (mmol/L) | 22.74 ± 2.01 | 22.12 ± 5.85 | 19.98 ± 2.64 | 23.02 ± 2.84 | 21.14 ± 4.23 |
BE (mmol/L) | −2.35 (−4.20–3.50) a | −6.00 (−14.90–12.80) b | −4.40 (−12.30–1.00) b | −2.00 (−6.30–5.20) ab | −3.80 (−11.10–4.50) ab |
Na (mmol/L) | 146.30 ± 6.22 | 141.69 ± 3.43 | 143.92 ± 4.87 | 144.06 ± 5.56 | 144.07 ± 6.90 |
K (mmol/L) | 3.67 ± 0.49 a | 3.56 ± 0.52 ab | 3.04 ± 0.59 b | 3.18 ± 0.59 b | 3.57 ± 0.53 ab |
Lactate (mmol/L) | 1.30 (0.60–2.00) ab | 1.90 (0.70–7.40) a | 1.05 (0.50–7.10) ab | 0.90 (0.60–3.00) b | 1.10 (0.70–2.80) ab |
Glucose (mg/dL) | 93.80 ± 13.69 | 100 ± 32.96 | 96.35 ± 33.77 | 100.33 ± 24.82 | 85.38 ± 15.31 |
BUN (mg/dL) | 10.50 (4.00–18.00) | 11.00 (5.00–57.00) | 9.00 (6.00–61.00) | 14.00 (5.00–33.00) | 13.00 (8.00–34.00) |
Creatinine (mg/dL) | 0.50 (0.30–1.10) | 0.50 (0.30–2.60) | 0.50 (0.40–2.80) | 0.50 (0.30–4.00) | 0.60 (0.40–1.00) |
ALT (U/L) | 27.00 (6.00–80.00) a | 40.00 (3.00–203.00) a | 22.00 (4.00–103.00) ab | 12.50 (7.00–144.00) b | 9.00 (4.00–52.00) b |
ALP (U/L) | 213.00 (2.60–634.00) | 272.00 (94.00–585.00) | 274.00 (94.00–634.00) | 288.00 (3.20–751.00) | 246.50 (75.00–759.00) |
Albumin (g/dL) | 2.62 ± 0.45 | 2.53 ± 0.34 | 2.41 ± 0.21 | 2.35 ± 0.34 | 2.68 ± 0.51 |
Protein (g/dL) | 5.74 ± 0.98 | 5.44 ± 0.71 | 5.18 ± 0.58 | 5.12 ± 0.77 | 5.35 ± 0.91 |
cTnI (pg/mL) | 5.60 (2.40–29.30) | 12.90 (1.80–85.10) | 12.60 (1.70–88.40) | 9.70 (1.90–49.60) | 9.00 (1.10–110.90) |
Variable | Control Group | Experimental Group | |||
---|---|---|---|---|---|
Admission | 6 h | 24 h | D of D | ||
EPSS (cm) | 0.30 ± 0.08 | 0.23 ± 0.10 | 0.28 ± 0.12 | 0.30 ± 0.16 | 0.26 ± 0.07 |
LVEF (%) | 63.34 ± 4.33 | 67.56 ± 13.42 | 63.12 ± 10.93 | 64.89 ± 10.79 | 69 ± 6.92 |
LVEDVI (mL/m2) | 64.31 ± 17.76 a | 28.98 ± 11.34 b | 51.76 ± 12.29 a | 52.55 ± 13.27 a | 60.61 ± 15.02 a |
LVESVI (mL/m2) | 22.07 ± 5.28 a | 12.05 ± 7.84 b | 18.93 ± 5.86 a | 18.62 ± 7.84 ab | 18.54 ± 7.20 ab |
LVCI (mL/min/m2) | 5655 ± 1054 a | 2891 ± 985 d | 4010 ± 838 c | 4487 ± 1710 b c | 5217 ± 1216 ab |
LVSm (cm/s) | 8.60 ± 1.41 | 9.86 ± 2.71 | 8.06 ± 2.66 | 8.59 ± 2.18 | 9.37 ± 2.63 |
LVEm (cm/s) | 10.84 ± 1.39 a | 6.64 ± 1.76 b | 7.71 ± 3.16 b | 7.42 ± 2.61 b | 10.08 ± 2.29 a |
LVAm (cm/s) | 6.43 ± 1.40 | 5.67 ± 1.68 | 6.70 ± 2.80 | 6.65 ± 1.71 | 7.01 ± 1.56 |
E/Em ratio | 7.21 ± 0.89 | 6.96 ± 1.98 | 7.03 ± 0.84 | 7.92 ± 1.80 | 8.26 ± 1.72 |
E (cm/s) | 78.39 ± 12.92 a | 50.53 ± 15.05 b | 71.52 ± 13.14 a | 74.68 ± 16.34 a | 81.19 ± 14.20 a |
A (cm/s) | 53.06 ± 8.37 | 53.21 ± 21.00 | 55.03 ± 19.84 | 52.51 ± 12.32 | 52.73 ± 9.39 |
E/A ratio | 1.46 ± 0.17 a | 1.04 ± 0.39 b | 1.27 ± 0.40 ab | 1.35 ± 0.38 ab | 1.55 ± 0.23 a |
EDT (s) | 0.05 (0.04–0.07) | 0.06 (0.04–0.11) | 0.06 (0.04–0.11) | 0.06 (0.03–0.09) | 0.06 (0.03–0.08) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ince, M.E.; Turgut, K.; Naseri, A. Echocardiographic Assessment of Left Ventricular Systolic and Diastolic Functions in Dogs with Severe Sepsis and Septic Shock; Longitudinal Study. Animals 2021, 11, 2011. https://doi.org/10.3390/ani11072011
Ince ME, Turgut K, Naseri A. Echocardiographic Assessment of Left Ventricular Systolic and Diastolic Functions in Dogs with Severe Sepsis and Septic Shock; Longitudinal Study. Animals. 2021; 11(7):2011. https://doi.org/10.3390/ani11072011
Chicago/Turabian StyleInce, Mehmet Ege, Kursad Turgut, and Amir Naseri. 2021. "Echocardiographic Assessment of Left Ventricular Systolic and Diastolic Functions in Dogs with Severe Sepsis and Septic Shock; Longitudinal Study" Animals 11, no. 7: 2011. https://doi.org/10.3390/ani11072011
APA StyleInce, M. E., Turgut, K., & Naseri, A. (2021). Echocardiographic Assessment of Left Ventricular Systolic and Diastolic Functions in Dogs with Severe Sepsis and Septic Shock; Longitudinal Study. Animals, 11(7), 2011. https://doi.org/10.3390/ani11072011