Feeding Malic Acid to Chickens at Slaughter Age Improves Microbial Safety with Regard to Campylobacter
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Experimental Design
2.3. Enumeration of Campylobacter and Microbiota
2.4. Analysis of the Chicken Performance
2.5. Analysis of the Proximate Composition of Chicken Meat
2.6. Statistical Analysis
3. Results
3.1. The Reduction Effect of Malic Acid-Supplemented Drinking Water on Campylobacter Was Significant in the First Week of Use and Decreased with Extended of Time Supplementary
3.2. The Use of Malic Acid-Supplemented Drinking Water for Five Days before Slaughter Is a Feasible Method to Reduce the Contamination of Campylobacter in Flocks
3.3. The Treatment of Malic Acid-Supplemented Water Does Not Influence the Chicken Performance, Intestinal Indices, and Microbiota
3.4. Drinking Malic Acid-Supplemented Water Changes the Composition of Chicken Meat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Windhorst, H.W. Changes in poultry production and trade worldwide. World Poult. Sci. J. 2006, 62, 585–602. [Google Scholar] [CrossRef]
- Silva, J.; Leite, D.; Fernandes, M.; Mena, C.; Gibbs, P.A.; Teixeira, P. Campylobacter spp. as a foodborne pathogen: A review. Front. Microbiol. 2011, 2, 200. [Google Scholar] [CrossRef] [Green Version]
- Soro, A.B.; Whyte, P.; Bolton, D.J.; Tiwari, B.K. Strategies and novel technologies to control Campylobacter in the poultry chain: A review. Compr. Rev. Food Sci. F 2020. [Google Scholar] [CrossRef]
- Hansson, I.; Sandberg, M.; Habib, I.; Lowman, R.; Engvall, E.O. Knowledge gaps in control of Campylobacter for prevention of campylobacteriosis. Transbound. Emerg. Dis. 2018, 65 (Suppl. 1), 30–48. [Google Scholar] [CrossRef] [Green Version]
- Hermans, D.; Pasmans, F.; Heyndrickx, M.; Van Immerseel, F.; Martel, A.; Van Deun, K.; Haesebrouck, F. A tolerogenic mucosal immune response leads to persistent Campylobacter jejuni colonization in the chicken gut. Crit. Rev. Microbiol. 2012, 38, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Scientific opinion on campylobacter in broiler meat production: Control options and performance objectives and/or targets at different stages of the food chain. EFSA J. 2011, 9, 2105. [Google Scholar] [CrossRef]
- Mehdi, Y.; Letourneau-Montminy, M.P.; Gaucher, M.L.; Chorfi, Y.; Suresh, G.; Rouissi, T.; Brar, S.K.; Cote, C.; Ramirez, A.A.; Godbout, S. Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr. 2018, 4, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Hoelzer, K.; Wong, N.; Thomas, J.; Talkington, K.; Jungman, E.; Coukell, A. Antimicrobial drug use in food-producing animals and associated human health risks: What, and how strong, is the evidence? BMC Vet. Res. 2017, 13, 211. [Google Scholar] [CrossRef]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Martin-Belloso, O. Antimicrobial activity of malic acid against Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 in apple, pear and melon juices. Food Control 2009, 20, 105–112. [Google Scholar] [CrossRef]
- Chen, Y.J.; Luo, L.; Zhang, G.Z.; Li, Z.; Bai, F.J.; Shi, Y.Q.; Yang, H.S. Effect of dietary L-malic acid supplementation on growth, feed utilization and digestive function of juvenile GIFT tilapia Oreochromis niloticus (Linnaeus, 1758). J. Appl. Ichthyol. 2016, 32, 1118–1123. [Google Scholar] [CrossRef]
- Ocak, N.; Erener, G.; Altop, A.; Kop, C. The effect of malic acid on performance and some digestive tract traits of Japanese quails. J. Poult Sci. 2009, 46, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, Q.; Yang, W.Z.; Dong, Q.; Yang, X.M.; He, D.C.; Dong, K.H.; Huang, Y.X. Effects of malic acid on feed intake, milk yield, milk components and metabolites in early lactation Holstein dairy cows. Livest. Sci. 2009, 124, 182–188. [Google Scholar] [CrossRef]
- Haro, A.; de Evan, T.; De La Fuente Vazquez, J.; Diaz, M.T.; Gonzalez Cano, J.; Carro, M.D. Effect of a diet supplemented with Malic Acid-Heat (MAH) treated sunflower on carcass characteristics, meat composition and fatty acids profile in growing lambs. Animals 2020, 10, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birk, T.; Gronlund, A.C.; Christensen, B.B.; Knochel, S.; Lohse, K.; Rosenquist, H. Effect of organic acids and marination ingredients on the survival of Campylobacter jejuni on meat. J. Food Prot. 2010, 73, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Fandos, E.; Maya, N. Efficacy of malic acid against campylobacter jejuni attached to chicken skin during refrigerated storage. J. Food Process. Pres. 2016, 40, 593–600. [Google Scholar] [CrossRef]
- Skanseng, B.; Kaldhusdal, M.; Moen, B.; Gjevre, A.G.; Johannessen, G.S.; Sekelja, M.; Trosvik, P.; Rudi, K. Prevention of intestinal Campylobacter jejuni colonization in broilers by combinations of in-feed organic acids. J. Appl. Microbiol. 2010, 109, 1265–1273. [Google Scholar] [CrossRef]
- Ren, F.; Li, X.; Tang, H.; Jiang, Q.; Yun, X.; Fang, L.; Huang, P.; Tang, Y.; Li, Q.; Huang, J.; et al. Insights into the impact of flhF inactivation on Campylobacter jejuni colonization of chick and mice gut. BMC Microbiol. 2018, 18, 149. [Google Scholar] [CrossRef]
- Solis de los Santos, F.; Donoghue, A.M.; Venkitanarayanan, K.; Metcalf, J.H.; Reyes-Herrera, I.; Dirain, M.L.; Aguiar, V.F.; Blore, P.J.; Donoghue, D.J. The natural feed additive caprylic acid decreases Campylobacter jejuni colonization in market-aged broiler chickens. Poult. Sci. 2009, 88, 61–64. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; AOAC Inter.: Gaithersburg, MD, USA, 2000. [Google Scholar]
- O’Brien, S.J. The consequences of Campylobacter infection. Curr. Opin. Gastroenterol. 2017, 33, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Chi, Z.; Wang, Z.P.; Wang, G.Y.; Khan, I.; Chi, Z.M. Microbial biosynthesis and secretion of l-malic acid and its applications. Crit. Rev. Biotechnol. 2016, 36, 99–107. [Google Scholar] [CrossRef]
- Grilli, E.; Vitari, F.; Domeneghini, C.; Palmonari, A.; Tosi, G.; Fantinati, P.; Massi, P.; Piva, A. Development of a feed additive to reduce caecal Campylobacter jejuni in broilers at slaughter age: From in vitro to in vivo, a proof of concept. J. Appl. Microbiol. 2013, 114, 308–317. [Google Scholar] [CrossRef]
- Mani-Lopez, E.; Garcia, H.S.; Lopez-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Chaveerach, P.; Keuzenkamp, D.A.; Urlings, H.A.; Lipman, L.J.; van Knapen, F. In vitro study on the effect of organic acids on Campylobacter jejuni/coli populations in mixtures of water and feed. Poult. Sci. 2002, 81, 621–628. [Google Scholar] [CrossRef]
- Callicott, K.A.; Friethriksdottir, V.; Reiersen, J.; Lowman, R.; Bisaillon, J.R.; Gunnarsson, E.; Berndtson, E.; Hiett, K.L.; Needleman, D.S.; Stern, N.J. Lack of evidence for vertical transmission of Campylobacter spp. in chickens. Appl. Environ. Microbiol. 2006, 72, 5794–5798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newell, D.G.; Fearnley, C. Sources of Campylobacter colonization in broiler chickens. Appl. Environ. Microbiol. 2003, 69, 4343–4351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaveerach, P.; Keuzenkamp, D.A.; Lipman, L.J.; Van Knapen, F. Effect of organic acids in drinking water for young broilers on Campylobacter infection, volatile fatty acid production, gut microflora and histological cell changes. Poult. Sci. 2004, 83, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Solis de Los Santos, F.; Donoghue, A.M.; Venkitanarayanan, K.; Dirain, M.L.; Reyes-Herrera, I.; Blore, P.J.; Donoghue, D.J. Caprylic acid supplemented in feed reduces enteric Campylobacter jejuni colonization in ten-day-old broiler chickens. Poult. Sci. 2008, 87, 800–804. [Google Scholar] [CrossRef]
- Moharrery, G.; Mahzonieh, M. Effect of malic acid on visceral characteristics and coliform counts in small intestine in the broiler and layer chickens. Int. J. Poult. Sci. 2005, 4, 761–764. [Google Scholar]
- Metcalf, J.H.; Donoghue, A.M.; Venkitanarayanan, K.; Reyes-Herrera, I.; Aguiar, V.F.; Blore, P.J.; Donoghue, D.J. Water administration of the medium-chain fatty acid caprylic acid produced variable efficacy against enteric Campylobacter colonization in broilers. Poult. Sci. 2011, 90, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Hermans, D.; Martel, A.; Van Deun, K.; Verlinden, M.; Van Immerseel, F.; Garmyn, A.; Messens, W.; Heyndrickx, M.; Haesebrouck, F.; Pasmans, F. Intestinal mucus protects Campylobacter jejuni in the ceca of colonized broiler chickens against the bactericidal effects of medium-chain fatty acids. Poult. Sci. 2010, 89, 1144–1155. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Tech. Mys. 2017, 54, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Calkins, C.R.; Hodgen, J.M. A fresh look at meat flavor. Meat Sci. 2007, 77, 63–80. [Google Scholar] [CrossRef]
- Kennedy, O.B.; Stewart-Knox, B.J.; Mitchell, P.C.; Thurnham, D.I. Consumer perceptions of poultry meat: A qualitative analysis. Food Sci. Nutr. 2004, 34, 122–129. [Google Scholar] [CrossRef]
- Saint-Cyr, M.J.; Haddad, N.; Taminiau, B.; Poezevara, T.; Quesne, S.; Amelot, M.; Daube, G.; Chemaly, M.; Dousset, X.; Guyard-Nicodeme, M. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int. J. Food Microbiol. 2017, 247, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.M.A.; Mohamed, M.A.; Youssef, A.W.; Hassan, E.R. Effect of using organic acids to substitute antibiotic growth promoters on performance and intestinal microflora of broilers. Asian Austral. J. Anim. 2010, 23, 1348–1353. [Google Scholar] [CrossRef]
Parameter | Broiler (5 Week Old) | p-Value | Partridge (10 Week Old) | p-Value | ||
---|---|---|---|---|---|---|
Control | Malic Acid | Control | Malic Acid | |||
Body weight 1 | ||||||
application of 0 d | 1163.8 ± 103.8 | 1204.4 ± 97.6 | 0.39 | 675.2 ± 97.3 | 644.8 ± 53.7 | 0.39 |
application of 5 d | 1504.1 ± 112.3 | 1523.8 ± 98.7 | 0.69 | 774.6 ± 80.4 | 813.3 ± 94.2 | 0.30 |
Body weight gain 1 | 76.6 ± 9.2 | 72.6 ± 7.6 | 0.36 | 20.1 ± 4.3 | 25.3 ± 6.6 | 0.39 |
Microbiota 1 | ||||||
application of 0 d | 11.67 ± 0.74 | 11.66 ± 0.71 | 0.97 | 11.88 ± 1.10 | 11.85 ± 0.54 | 0.95 |
application of 5 d | 11.51 ± 0.52 | 11.79 ± 0.49 | 0.22 | 11.72 ± 0.93 | 11.66 ± 0.82 | 0.89 |
Parameter | Broiler | p-Value | |
---|---|---|---|
Control | Malic Acid | ||
Intestine weight (g) 1 | 25.1 ± 2.2 | 26.7 ± 3.0 | 0.16 |
Length (cm) of 1 | |||
Small intestine | 112.6 ± 1.8 | 110.9 ± 1.9 | 0.07 |
Caecum | 11.0 ± 1.1 | 12.1 ± 1.2 | 0.06 |
Intestinal pH 1 | 7.26 ± 0.36 | 7.03 ± 0.40 | 0.17 |
Parameter | Breast Meat | p-Value | Thigh Meat | p-Value | ||
---|---|---|---|---|---|---|
Control | Malic Acid | Control | Malic Acid | |||
Moisture 1 | 63.25 ± 3.94 | 69.17 ± 2.30 * | 0.02 | 65.66 ± 2.50 | 70.78 ± 2.21 * | 0.01 |
Crude protein 1 | 21.69 ± 1.72 | 20.70 ± 4.96 | 0.68 | 22.91 ± 6.34 | 21.15 ± 2.14 | 0.56 |
Crude ash 1 | 1.15 ± 0.47 | 1.01 ± 0.09 | 0.48 | 1.18 ± 0.04 | 1.12 ± 0.20 | 0.48 |
Crude fat 1 | 3.07 ± 2.30 | 3.36 ± 1.76 | 0.85 | 5.59 ± 0.93 | 3.99 ± 0.26 * | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, F.; Yang, W.; Hu, J.; Huang, P.; Jiao, X.-A.; Huang, J. Feeding Malic Acid to Chickens at Slaughter Age Improves Microbial Safety with Regard to Campylobacter. Animals 2021, 11, 1999. https://doi.org/10.3390/ani11071999
Ren F, Yang W, Hu J, Huang P, Jiao X-A, Huang J. Feeding Malic Acid to Chickens at Slaughter Age Improves Microbial Safety with Regard to Campylobacter. Animals. 2021; 11(7):1999. https://doi.org/10.3390/ani11071999
Chicago/Turabian StyleRen, Fangzhe, Wenbin Yang, Juanjuan Hu, Pingyu Huang, Xin-An Jiao, and Jinlin Huang. 2021. "Feeding Malic Acid to Chickens at Slaughter Age Improves Microbial Safety with Regard to Campylobacter" Animals 11, no. 7: 1999. https://doi.org/10.3390/ani11071999
APA StyleRen, F., Yang, W., Hu, J., Huang, P., Jiao, X.-A., & Huang, J. (2021). Feeding Malic Acid to Chickens at Slaughter Age Improves Microbial Safety with Regard to Campylobacter. Animals, 11(7), 1999. https://doi.org/10.3390/ani11071999