Clinical Evaluation of Creatine Kinase and Aspartate Aminotransferase for Monitoring Muscle Effort in Working Dogs in Different Simulated Fieldworks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical and Laboratory Monitoring
2.2. Search Activity and Features of the Search Areas
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rovira, S.; Munoz, A.; Benito, M. Effect of exercise on physiological, blood and endocrine parameters in search and res-cue-trained dogs. Vet. Med. 2008, 53, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Lopedote, M.; Valentini, S.; Musella, V.; Vilar, J.M.; Spinella, G. Changes in pulse rate, respiratory rate and rectal tempera-ture in working dogs before and after three different field trials. Animals 2020, 10, 733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandevia, S.C. Spinal and Supraspinal Factors in Human Muscle Fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.-J.; Qin, Z.; Wang, P.-Y.; Sun, Y.; Liu, X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017, 49, e384. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, J.A.; Restan, W.A.Z.; Fonseca, M.G.; Catananti, L.A.; de Almeida, M.L.M.; Junior, W.H.F.; Pereira, G.T.; Carciofi, A.C.; de Camargo Ferraz, G. Intense exercise and endurance-training program influence serum kinetics of muscle and cardi-ac biomarkers in dogs. Res. Vet. Sci. 2018, 121, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Alves, J.C.; Santos, A. Physiological, haematological and biochemical shifts in police working dogs during a riot control exer-cise. Comp. Exerc. Physiol. 2016, 12, 193–198. [Google Scholar] [CrossRef]
- Spoo, J.W.; Zoran, D.L.; Downey, R.L.; Bischoff, K.; Wakshlag, J.J. Serum biochemical, blood gas and antioxidant status in search and rescue dogs before and after simulated fieldwork. Vet. J. 2015, 206, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Diverio, S.; Barbato, O.; Cavallina, R.; Guelfi, G.; Iaboni, M.; Zasso, R.; Di Mari, W.; Santoro, M.M.; Knowles, T.G. A simulated avalanche search and rescue mission induces temporary physiological and behavioural changes in military dogs. Physiol. Behav. 2016, 163, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGowan, R.T.S.; Rehn, T.; Norling, Y.; Keeling, L.J. Positive affect and learning: Exploring the “Eureka Effect” in dogs. Anim. Cogn. 2014, 17, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Pellegrino, F.J.; Risso, A.; Vaquero, P.G.; Corrada, Y.A. Physiological parameter values in greyhounds before and after high-intensity exercise. Open Vet. J. 2018, 8, 64–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matwichuk, C.L.; Taylor, S.; Shmon, C.L.; Kass, P.H.; Shelton, G.D. Changes in rectal temperature and hematologic, biochemical, blood gas, and acid-base values in healthy Labrador Retrievers before and after strenuous exercise. Am. J. Vet. Res. 1999, 60, 88–92. [Google Scholar]
- Lucas, V.; Barrera, R.; Duque, F.J.; Ruiz, P.; Zaragoza, C. Effect of exercise on serum markers of muscle inflammation in Spanish Greyhounds. Am. J. Vet. Res. 2015, 76, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Tharwat, M.; Al-Sobayil, F.; Buczinski, S. Influence of racing on the serum concentrations of acute-phase proteins and bone metabolism biomarkers in racing greyhounds. Vet. J. 2014, 202, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Vlasakova, K.; Lane, P.; Michna, L.; Muniappa, N.; Sistare, F.D.; Glaab, W.E. Response of Novel Skeletal Muscle Biomarkers in Dogs to Drug-Induced Skeletal Muscle Injury or Sustained Endurance Exercise. Toxicol. Sci. 2017, 156, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Hinchcliff, K. Performance failure in Alaskan sled dogs: Biochemical correlates. Res. Vet. Sci. 1996, 61, 271–272. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spinella, G.; Valentini, S.; Musella, V.; Bortolotti, E.; Lopedote, M. Clinical Evaluation of Creatine Kinase and Aspartate Aminotransferase for Monitoring Muscle Effort in Working Dogs in Different Simulated Fieldworks. Animals 2021, 11, 1879. https://doi.org/10.3390/ani11071879
Spinella G, Valentini S, Musella V, Bortolotti E, Lopedote M. Clinical Evaluation of Creatine Kinase and Aspartate Aminotransferase for Monitoring Muscle Effort in Working Dogs in Different Simulated Fieldworks. Animals. 2021; 11(7):1879. https://doi.org/10.3390/ani11071879
Chicago/Turabian StyleSpinella, Giuseppe, Simona Valentini, Vincenzo Musella, Enrico Bortolotti, and Mirella Lopedote. 2021. "Clinical Evaluation of Creatine Kinase and Aspartate Aminotransferase for Monitoring Muscle Effort in Working Dogs in Different Simulated Fieldworks" Animals 11, no. 7: 1879. https://doi.org/10.3390/ani11071879
APA StyleSpinella, G., Valentini, S., Musella, V., Bortolotti, E., & Lopedote, M. (2021). Clinical Evaluation of Creatine Kinase and Aspartate Aminotransferase for Monitoring Muscle Effort in Working Dogs in Different Simulated Fieldworks. Animals, 11(7), 1879. https://doi.org/10.3390/ani11071879