Chromosomal Instability at Fragile Sites in Blue Foxes, Silver Foxes, and Their Interspecific Hybrids
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Obe, G.; Pfeiffer, P.; Savage, J.; Johannes, C.; Goedecke, W.; Jeppesen, P.; Natarajan, A.; Martínez-López, W.; Folle, G.; Drets, M. Chromosomal aberrations: Formation, identification and distribution. Mutat. Res. Mol. Mech. Mutagen. 2002, 504, 17–36. [Google Scholar] [CrossRef]
- Da Silva, P.; Schumacher, B. DNA damage responses in ageing. Open Biol. 2019, 9, 190168. [Google Scholar] [CrossRef]
- Garagna, S.; Marziliano, N.; Zuccotti, M.; Searle, J.; Capanna, E.; Redi, C.A. Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. Proc. Natl. Acad. Sci. USA 2001, 98, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Scriven, P.; Flinter, F.; Braude, P.R.; Ogilvie, C.M. Robertsonian translocations--reproductive risks and indications for preimplantation genetic diagnosis. Hum. Reprod. 2001, 16, 2267–2273. [Google Scholar] [CrossRef] [PubMed]
- Møller, O.M.; Nes, N.N.; Syed, M.; Fougner, J.A.; Norheim, K.; Smith, A.J. Chromosomal polymorphism in the blue fox (Alopex lagopus) and its effects on fertility. Hereditas 2008, 102, 159–164. [Google Scholar] [CrossRef]
- Mäkinen, A. The standard karyotype of the blue fox (Alopex lagopus L.): Committee for the standard karyotype of Alopex lagopus L. Hereditas 2008, 103, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, A. The standard karyotype of the silver fox (Vulpes fulvus Desm.) Committee for the standard karyotype of Vulpes fulvus Desm. Hereditas 2008, 103, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Switonski, M.; Rogalska-Niznik, N.; Szczerbal, I.; Baer, M. Chromosome polymorphism and karyotype evolution of four canids: The dog, red fox, arctic fox and raccoon dog. Caryologia 2003, 56, 375–385. [Google Scholar] [CrossRef]
- Vujošević, M.; Blagojevic, J. B chromosomes in populations of mammals. Cytogenet. Genome Res. 2004, 106, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.P.; Sharbel, T.F.; Beukeboom, L.W. B-chromosome evolution. Philos. Trans. R. Soc. B Biol. Sci. 2000, 355, 163–178. [Google Scholar] [CrossRef]
- Mäkinen, A.; Gustavsson, I. A comparative chromosome-banding study in the silver fox, the blue fox, and their hybrids. Hereditas 2008, 97, 289–297. [Google Scholar] [CrossRef]
- Short, R.V. An Introduction to Mammalian Interspecific Hybrids. J. Hered. 1997, 88, 355–357. [Google Scholar] [CrossRef][Green Version]
- Bugno-Poniewierska, M.; Pawlina, K.; Orszulak-Wolny, N.; Woźniak, B.; Wnuk, M.; Jakubczak, A.; Jeżewska-Witkowska, G. Cytogenetic Characterization of the Genome of Interspecies Hybrids (Alopex-Vulpes). Ann. Anim. Sci. 2015, 15, 81–91. [Google Scholar] [CrossRef]
- Ishidate, M.; Miura, K.; Sofuni, T. Chromosome aberration assays in genetic toxicology testing in vitro. Mutat. Res. Mol. Mech. Mutagen. 1998, 404, 167–172. [Google Scholar] [CrossRef]
- Janssen, A.; Van Der Burg, M.; Szuhai, K.; Kops, G.J.P.L.; Medema, R.H. Chromosome Segregation Errors as a Cause of DNA Damage and Structural Chromosome Aberrations. Science 2011, 333, 1895–1898. [Google Scholar] [CrossRef]
- Wójcik, E.; Szostek, M. Assessment of genome stability in various breeds of cattle. PLoS ONE 2019, 14, e0217799. [Google Scholar] [CrossRef]
- Lukusa, T.; Fryns, J. Human chromosome fragility. Biochim. Biophys. Acta Bioenerg. 2008, 1779, 3–16. [Google Scholar] [CrossRef]
- Debacker, K.; Kooy, R. Fragile sites and human disease. Hum. Mol. Genet. 2007, 16, R150–R158. [Google Scholar] [CrossRef]
- Durkin, S.G.; Glover, T.W. Chromosome Fragile Sites. Annu. Rev. Genet. 2007, 41, 169–192. [Google Scholar] [CrossRef] [PubMed]
- Franchitto, A.; Pichierri, P. Understanding the molecular basis of common fragile sites instability: Role of the proteins involved in the recovery of stalled replication forks. Cell Cycle 2011, 10, 4039–4046. [Google Scholar] [CrossRef]
- Burrow, A.A.; Wang, Y.-H. DNA Instability at Chromosomal Fragile Sites in Cancer. Curr. Genom. 2010, 11, 326–337. [Google Scholar] [CrossRef]
- Tuduri, S.; Crabbé, L.; Tourrière, H.; Coquelle, A.; Pasero, P. Does interference between replication and transcription contribute to genomic instability in cancer cells? Cell Cycle 2010, 9, 1886–1892. [Google Scholar] [CrossRef] [PubMed]
- Zlotorynski, E.; Rahat, A.; Skaug, J.; Ben-Porat, N.; Ozeri, E.; Hershberg, R.; Levi, A.; Scherer, S.W.; Margalit, H.; Kerem, B. Molecular Basis for Expression of Common and Rare Fragile Sites. Mol. Cell. Biol. 2003, 23, 7143–7151. [Google Scholar] [CrossRef] [PubMed]
- Glover, T.W. Common fragile sites. Cancer Lett. 2006, 232, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.; Yang, S.; Tran-Gyamfi, M.; Baggott, D.; Christensen, M.; Hamilton, A.; Crooijmans, R.; Groenen, M.; Lucas, S.; Ovcharenko, I.; et al. Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions. Genome Res. 2007, 17, 1603–1613. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ali, A.; Abdullah, M.; Babar, M.E.; Javed, K.; Nadeem, A. Expression and identification of folate-sensitive fragile sites in British Suffolk sheep (Ovis aries). J. Genet. 2008, 87, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, E.; Szostek, M.; Horoszewicz, E.; Kot, E.; Sebastian, S.; Smalec, E. Analysis of chromatin instability of somatic cells in sheep. Can. J. Anim. Sci. 2018, 98, 818–825. [Google Scholar] [CrossRef]
- Kuchta-Gładysz, M.; Wójcik, E.; Słonina, D.; Grzesiakowska, A.; Otwinowska-Mindur, A.; Szeleszczuk, O.; Niedbała, P. Determination of cytogenetic markers for biological monitoring in coypu (Myocastor coypu). Anim. Sci. J. 2020, 91, 13440. [Google Scholar] [CrossRef]
- Wójcik, E.; Sokół, A. Assessment of chromosome stability in boars. PLoS ONE 2020, 15, e0231928. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Perucatti, A.; Di Meo, G.; Polimeno, F.; Ciotola, F.; Incarnato, D.; Peretti, V.; Jambrenghi, A.C.; Pecoraro, A.; Manniti, F.; et al. Chromosome fragility in two sheep flocks exposed to dioxins during pasturage. Mutagenesis 2004, 19, 355–359. [Google Scholar] [CrossRef]
- Wójcik, E.; Andraszek, K.; Smalec, E.; Knaga, S.; Witkowski, A. Identification of chromosome instability in Japanese quail (Coturnix japonica). Br. Poult. Sci. 2014, 55, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Schoket, B. DNA damage in humans exposed to environmental and dietary polycyclic aromatic hydrocarbons. Mutat. Res. Mol. Mech. Mutagen. 1999, 424, 143–153. [Google Scholar] [CrossRef]
- Šrám, R.J.; Binková, B.; Rössner, P.; Rubeš, J.; Topinka, J.; Dejmek, J. Adverse reproductive outcomes from exposure to environmental mutagens. Mutat. Res. Mol. Mech. Mutagen. 1999, 428, 203–215. [Google Scholar] [CrossRef]
- Wójcik, E.; Smalec, E. Assessment of chromosome instability in geese (Anser anser). Can. J. Anim. Sci. 2012, 92, 49–57. [Google Scholar] [CrossRef]
- Nicodemo, D.; Coppola, G.; Pauciullo, A.; Cosenza, G.; Ramunno, L.; Ciotola, F.; Peretti, V.; Di Meo, G.; Iannuzzi, L.; Rubes, J.; et al. Chromosomal expression and localization of aphidicolin-induced fragile sites in the standard karyotype of river buffalo (Bubalus bubalis). Cytogenet. Genome Res. 2008, 120, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Graphodatsky, A.; Yang, F.; O’Brien, P.C.M.; Serdukova, N.; Milne, B.S.; Trifonov, V.; Ferguson-Smith, M.A. A Comparative Chromosome Map of the Arctic Fox, Red Fox and Dog Defined by Chromosome Painting and High Resolution G-Banding. Chromosom. Res. 2000, 8, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Grzesiakowska, A.; Klott, A.; Kuchta-Gładysz, M.; Niedbała, P.; Otwinowska-Mindur, A.; Szeleszczuk, O. Evaluation of BrdU Influence on Sister Chromatid Exchange in Arctic and Silver Fox. Folia Biol. 2017, 65, 117–126. [Google Scholar] [CrossRef]
- Szczerbal, I.; Switonski, M. B chromosomes of the Chinese raccoon dog (Nyctereutes procyonoides procyonoides Gray) contain inactive NOR-like sequences. Caryologia 2003, 56, 213–216. [Google Scholar] [CrossRef]
- Szczerbal, I.; Kaczmarek, M.; Switonski, M. Compound Mosaicism, Caused by B Chromosome Variability, in the Chinese Raccoon Dog (Nyctereutes procyonoides procyonoides). Folia Biol. 2005, 53, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Basheva, E.A.; Torgasheva, A.A.; Sakaeva, G.R.; Bidau, C.; Borodin, P.M. A- and B-chromosome pairing and recombination in male meiosis of the silver fox (Vulpes vulpes L., 1758, Carnivora, Canidae). Chromosom. Res. 2010, 18, 689–696. [Google Scholar] [CrossRef]
- Vanneste, E.; Voet, T.; Le Caignec, C.; Ampe, M.; Konings, P.; Melotte, C.; Debrock, S.; Amyere, M.; Vikkula, M.; Schuit, F.; et al. Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 2009, 15, 577–583. [Google Scholar] [CrossRef]
- Alfarawati, S.; Fragouli, E.; Colls, P.; Wells, D. Embryos of Robertsonian Translocation Carriers Exhibit a Mitotic Interchromosomal Effect That Enhances Genetic Instability during Early Development. PLoS Genet. 2012, 8, e1003025. [Google Scholar] [CrossRef] [PubMed]
- Kozubska-Sobocińska, A.; Danielak-Czech, B. Legitimacy of systematic karyotype evaluation of cattle qualified for reproduction. Med. Weter. 2017, 73, 451–455. [Google Scholar] [CrossRef][Green Version]
- Christensen, K.; Pedersen, H. Variation in chromosome number in the blue fox (Alopex lagopus) and its effect on fertility. Hered. 2008, 97, 211–215. [Google Scholar] [CrossRef]
- Danielak-Czech, B.; Słota, E. Mutagen-induced chromosome instability in farm animals. J. Anim. Feed. Sci. 2004, 13, 257–267. [Google Scholar] [CrossRef]
- Iannuzzi, L. Cytogenetics in animal production. Ital. J. Anim. Sci. 2007, 6, 713–715. [Google Scholar] [CrossRef]
- Riggs, P.; Rønne, M. Fragile Sites in Domestic Animal Chromosomes: Molecular Insights and Challenges. Cytogenet. Genome Res. 2009, 126, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Danielak-Czech, B.; Babicz, M.; Rejduch, B.; Kozubska-Sobocińska, A. Cytogenetic and molecular analysis of chromosome instability in cattle with reproductive problems/Cytogenetyczna i molekularna analiza niestabilności chromosomów u bydła z problemam w rozrodzie. Ann. UMCS Sectio EE Zootech. 2013, 30, 18–25. [Google Scholar] [CrossRef][Green Version]
- Coyne, J.A.; Orr, H.A. Further Evidence against Meiotic-Drive Models of Hybrid Sterility. Evolution 1993, 47, 685. [Google Scholar] [CrossRef]
- Divina, P.; Storchová, R.; Gregorová, S.; Buckiová, D.; Kyselová, V.; Forejt, J. Genetic analysis of X-linked hybrid sterility in the house mouse. Mamm. Genome 2004, 15, 515–524. [Google Scholar] [CrossRef]
- Rieseberg, L.H. Polyploid evolution: Keeping the peace at genomic reunions. Curr. Biol. 2001, 11, R925–R928. [Google Scholar] [CrossRef][Green Version]
- Wójcik, E.; Smalec, E. Constitutive heterochromatin in chromosomes of duck hybrids and goose hybrids. Poult. Sci. 2017, 96, 18–26. [Google Scholar] [CrossRef] [PubMed]
Foxes | |||||
---|---|---|---|---|---|
Blue | Silver | Hybrid | |||
Chromosomes | |||||
A | B | A | B | A | B |
49 | 0 | 34 | 3 | 42 | 2 |
48 | 0 | 34 | 2 | 41 | 2 |
48 | 0 | 34 | 2 | 41 | 2 |
48 | 0 | 34 | 2 | 41 | 2 |
48 | 0 | 34 | 3 | 42 | 1 |
49 | 0 | 34 | 4 | 40 | 1 |
49 | 0 | 34 | 2 | 40 | 3 |
49 | 0 | 34 | 2 | 44 | 1 |
49 | 0 | 34 | 1 | 42 | 1 |
50 | 0 | 34 | 1 | 42 | 2 |
50 | 0 | 34 | 1 | 40 | 3 |
49 | 0 | 34 | 1 | 42 | 1 |
Sex | Foxes | ||
---|---|---|---|
Blue | Silver | Hybrid | |
Male | 4.80 a ± 0.14 | 3.42 a ± 0.28 | 4.28 a ± 0.26 |
Female | 4.41 a ± 0.52 | 3.49 a ± 0.30 | 3.95 a ± 0.19 |
Mean | 4.61 a ± 0.37 | 3.46 b ± 0.28 | 4.12 ab ± 0.22 |
Foxes | Damage (Number per Cell) | ||
---|---|---|---|
Gaps | Breaks | Deletions | |
Blue | 0.51 ab ± 0.17 | 3.9 1 a ± 1.09 | 0.19 b ± 0.13 |
Silver | 0.46 b ± 0.21 | 2.76 b ± 0.81 | 0.23 ab ± 0.13 |
Hybrid | 0.74 a ± 0.40 | 3.03 b ± 0.53 | 0.34 a ± 0.12 |
Foxes | Sex | Damage (Number per Cell) | ||
---|---|---|---|---|
Gaps | Breaks | Deletions | ||
Blue | Male | 0.54 a ± 0.16 | 4.10 a ± 0.45 | 0.16 a ± 0.04 |
Female | 0.47 a ± 0.18 | 3.72 a ± 1.52 | 0.22 a ± 0.18 | |
Silver | Male | 0.32 a ± 0.12 | 2.87 a ± 0.85 | 0.23 a ± 0.11 |
Female | 0.60 a ± 0.18 | 2.65 a ± 0.85 | 0.24 a ± 0.16 | |
Hybrid | Male | 0.89 a ± 0.47 | 3.10 a ± 0.39 | 0.29 a ± 0.07 |
Female | 0.58 a ± 0.27 | 2.97 a ± 0.68 | 0.40 a ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuchta-Gładysz, M.; Wójcik, E.; Grzesiakowska, A.; Rymuza, K.; Szeleszczuk, O. Chromosomal Instability at Fragile Sites in Blue Foxes, Silver Foxes, and Their Interspecific Hybrids. Animals 2021, 11, 1743. https://doi.org/10.3390/ani11061743
Kuchta-Gładysz M, Wójcik E, Grzesiakowska A, Rymuza K, Szeleszczuk O. Chromosomal Instability at Fragile Sites in Blue Foxes, Silver Foxes, and Their Interspecific Hybrids. Animals. 2021; 11(6):1743. https://doi.org/10.3390/ani11061743
Chicago/Turabian StyleKuchta-Gładysz, Marta, Ewa Wójcik, Anna Grzesiakowska, Katarzyna Rymuza, and Olga Szeleszczuk. 2021. "Chromosomal Instability at Fragile Sites in Blue Foxes, Silver Foxes, and Their Interspecific Hybrids" Animals 11, no. 6: 1743. https://doi.org/10.3390/ani11061743
APA StyleKuchta-Gładysz, M., Wójcik, E., Grzesiakowska, A., Rymuza, K., & Szeleszczuk, O. (2021). Chromosomal Instability at Fragile Sites in Blue Foxes, Silver Foxes, and Their Interspecific Hybrids. Animals, 11(6), 1743. https://doi.org/10.3390/ani11061743