Effects of Age and Rice Straw Inclusion Levels in the Diet of Yiling Cull Cows on Growth Performance, Meat Quality, and Antioxidant Status of Tissues
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Management, and Sampling
2.2. Chemical Compositions
2.3. Meat Quality
2.4. Fatty Acid Profile
2.5. Antioxidant Status
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Characteristics
3.3. Meat Quality
3.4. Fatty Acid Profile
3.5. Antioxidant Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Dransfield, E.; Martin, J.F.; Bauchart, D.; Abouelkaram, S.; Lepetit, J.; Culioli, J.; Jurie, C.; Picard, B. Meat quality and composition of three muscles from French cull cows and young bulls. Anim. Sci. 2003, 76, 387–399. [Google Scholar] [CrossRef]
- Jurie, C.; Martin, J.F.; Listrat, A.; Jailler, R.; Culioli, J.; Picard, B. Carcass and muscle characteristics of beef cull cows between 4 and 9 years of age. Anim. Sci. 2006, 82, 415–421. [Google Scholar] [CrossRef]
- Shorthose, W.R.; Harris, P.V. Effect of animal age on the tenderness of selected beef muscles. J. Food Sci. 1990, 55, 1–8. [Google Scholar] [CrossRef]
- Stelzleni, A.M.; Patten, L.E.; Johnson, D.D.; Calkins, C.R.; Gwartney, B.L. Benchmarking carcass characteristics and muscles from commercially identified beef and dairy cull cow carcasses for Warner-Bratzler shear force and sensory attributes. J. Anim. Sci. 2007, 85, 2631. [Google Scholar] [CrossRef] [PubMed]
- Hilton, G.G.; Tatum, J.D.; Williams, S.E.; Belk, K.E.; Williams, F.L.; Wise, J.W.; Smith, G.C. An evaluation of current and alternative systems for quality grading carcasses of mature slaughter cows. J. Anim. Sci. 1998, 76, 2094–2103. [Google Scholar] [CrossRef]
- Franco, D.; Bispo, E.; González, L.; Vázquez, J.A.; Moreno, T. Effect of finishing and ageing time on quality attributes of loin from the meat of Holstein–Fresian cull cows. Meat Sci. 2009, 83, 484–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, M.; Saito, W.; Ooi, M.; Oikawa, M. Effects of days on feed, roughage sources and inclusion levels of grain in concentrate on finishing performance and carcass characteristics in cull beef cows. Anim. Sci. J. 2012, 83, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Hales, K.E.; Brown-Brandl, T.M.; Freetly, H.C. Effects of decreased dietary roughage concentration on energy metabolism and nutrient balance in finishing beef cattle. J. Anim. Sci. 2014, 92, 264–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, L.A.; Manteca, X.; Calsamiglia, S.; Schwartzkopf-Genswein, K.S.; Ferret, A. Ruminal acidosis in feedlot cattle: Interplay between feed ingredients, rumen function and feeding behavior (a review). Anim. Feed Sci. Tech. 2012, 172, 66–79. [Google Scholar] [CrossRef]
- Cole, N.A.; Johnson, R.R.; Owens, F.N. Influence of roughage level on the site and extent of digestion of whole shelled corn by beef steers. J. Anim. Sci. 1976, 43, 483–489. [Google Scholar] [CrossRef]
- Ledoux, D.R.; Williams, J.E.; Stroud, T.E.; Garner, G.B.; Paterson, J.A. Influence of forage level on passage rate, digestibility and performance of cattle. J. Anim. Sci. 1985, 61, 1559–1566. [Google Scholar] [CrossRef] [Green Version]
- Jurie, C.; Picard, B.; Hocquette, J.F.; Dransfield, E.; Micol, D.; Listrat, A. Muscle and meat quality characteristics of Holstein and Salers cull cows. Meat Sci. 2007, 77, 459–466. [Google Scholar] [CrossRef]
- Vestergaard, M.; Madsen, N.T.; Bligaard, H.B.; Bredahl, L.; Rasmussen, P.T.; Andersen, H.R. Consequences of two or four months of finishing feeding of culled dry dairy cows on carcass characteristics and technological and sensory meat quality. Meat Sci. 2007, 76, 635–643. [Google Scholar] [CrossRef]
- Minchin, W.; Buckley, F.; Kenny, D.A.; Monahan, F.J.; Shalloo, L.; O’Donovan, M. An evaluation of over-wintering feeding strategies prior to finishing at pasture for cull dairy cows on live animal performance, carcass and meat quality characteristics. Meat Sci. 2010, 85, 385–393. [Google Scholar] [CrossRef]
- Oury, M.P.; Agabriel, J.; Agabriel, C.; Micol, D.; Picard, B.; Blanquet, J.; Labouré, H.; Roux, M.; Dumont, R. Relationship between rearing practices and eating quality traits of the muscle rectus abdominis of Charolais heifers. Livest. Sci. 2007, 111, 242–254. [Google Scholar] [CrossRef]
- Soulat, J.; Léger, S.; Picard, B.; Monteils, V. Improving beef sensory quality through breeding practices management. In Proceedings of the 61st International Congress of Meat Science and Technology, Clermont-Ferrand, France, 23–28 August 2015. [Google Scholar]
- Gagaoua, M.; Monteils, V.; Couvreur, S.; Picard, B. Identification of biomarkers associated with the rearing practices, carcass characteristics, and beef quality: An integrative approach. J. Agric. Food Chem. 2017, 65, 8264–8278. [Google Scholar] [CrossRef]
- Ling, X.; Zhang, W.; Li, J.; Zhu, D.; Xu, X.; Tian, Y.; Xiong, X.; Guo, A.; Cao, B.; Niu, H.; et al. Genetic background analysis and breed evaluation of Yiling yellow cattle. J. Integr. Agr. 2017, 16, 2246–2256. [Google Scholar] [CrossRef] [Green Version]
- Harman, D. The aging process. Proc. Natl. Acad. Sci. USA 1981, 78, 7124–7128. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Kang, G.; Seong, P.; Park, B.; Kang, S.M. Effect of slaughter age on the antioxidant enzyme activity, color, and oxidative stability of Korean Hanwoo (Bos taurus coreanae) cow beef. Meat Sci. 2015, 108, 44–49. [Google Scholar] [CrossRef]
- Guéraud, F.; Taché, S.; Steghens, J.P.; Milkovic, L.; Borovic-Sunjic, S.; Zarkovic, N.; Gaultier, E.; Naud, N.; Héliès-Toussaint, C.; Pierre, F.; et al. Dietary polyunsaturated fatty acids and heme iron induce oxidative stress biomarkers and a cancer promoting environment in the colon of rats. Free Radic. Bio. Med. 2015, 83, 192–200. [Google Scholar] [CrossRef]
- Wang, Y.M.; Wang, J.H.; Wang, C.; Wang, J.K.; Chen, B.; Liu, J.X.; Cao, H.; Guo, F.C. Effect of dietary antioxidant and energy density on performance and anti-oxidative status of transition cows. Asian Austral. J. Anim. 2010, 23, 1299–1307. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Y.; Wang, X.; He, Y.; Cao, B. Effects of different dietary energy and protein levels and sex on growth performance, carcass characteristics and meat quality of F1 Angus × Chinese Xiangxi yellow cattle. J. Anim. Sci. Biotechnol. 2014, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analytical Chemist: Arlington, VA, USA, 2002. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Niu, W.; He, Y.; Xia, C.; Rahman, M.A.U.; Qiu, Q.; Shao, T.; Liang, Y.; Ji, L.; Wang, H.; Cao, B. Effects of replacing Leymus chinensis with whole-crop wheat hay on Holstein bull apparent digestibility, plasma parameters, rumen fermentation, and microbiota. Sci. Rep. UK 2017, 7, 2112–2114. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Li, H.; Wu, F.; Qiu, Q.; Niu, W.; Gao, Z.; Su, H.; Cao, B. Rumen fermentation, intramuscular fat fatty acid profiles and related rumen bacterial populations of Holstein bulls fed diets with different energy levels. Appl. Microbiol. Biot. 2019, 103, 4931–4942. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, J.E.; Mathis, C.P.; Davis, B. Effects of feeding strategy and age on live animal performance, carcass characteristics, and economics of short-term feeding programs for culled beef cows1. J. Anim. Sci. 2004, 82, 3646–3653. [Google Scholar] [CrossRef] [PubMed]
- Galli, I.; Teira, G.; Perlo, F.; Bonato, P.; Tisocco, O.; Monje, A.; Vittone, S. Animal performance and meat quality in cull cows with early weaned calves in Argentina. Meat Sci. 2008, 79, 521–528. [Google Scholar] [CrossRef]
- Galyean, M.L.; Defoor, P.J. Effects of roughage source and level on intake by feedlot cattle. J. Anim. Sci. 2003, 81, E8–E16. [Google Scholar]
- Hales, K.E.; Freetly, H.C.; Shackelford, S.D.; King, D.A. Effects of roughage concentration in dry-rolled corn-based diets containing wet distillers grains with solubles on performance and carcass characteristics of finishing beef steers1. J. Anim. Sci. 2013, 91, 3315–3321. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.C.; Carlson, Z.E.; Ruch, M.C.; Gilbery, T.C.; Underdahl, S.R.; Keomanivong, F.E.; Bauer, M.L.; Islas, A. Influence of forage source and forage inclusion level on growth performance, feeding behavior, and carcass characteristics in finishing steers1. J. Anim. Sci. 2017, 95, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Chavira, J.; Alvarez, E.; Montaño, M.F.; Zinn, R.A. Influence of forage NDF level, source and pelletizing on growth performance, dietary energetics, and characteristics of digestive function for feedlot cattle. Anim. Feed Sci. Tech. 2013, 183, 106–115. [Google Scholar] [CrossRef]
- Ustuner, H.; Yalcintan, H.; Orman, A.; Ardicli, S.; Ekiz, B.; Gencoglu, H.; Kandazoglu, O. Effects of initial fattening age on carcass characteristics and meat quality in Simmental bulls imported from Austria to Turkey. S. Afr. J. Anim. Sci. 2016, 47, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Simões, J.A.; Mira, J.F.F.; Lemos, J.P.C.; Mendes, I.A. Dressing percentage and its relationship with some components of the fifth quarter in Portuguese cattle breeds. Livest. Prod. Sci. 2005, 96, 157–163. [Google Scholar] [CrossRef]
- Fontes, M.M.D.S.; Costa, T.C.; Lopes, M.M.; Souza, R.O.; Carneiro, L.S.; Paulino, P.V.R.; Chizzotti, M.L.; Silva, F.F.; Serão, N.V.L.; Duarte, M.D.S. Intramuscular collagen characteristics and expression of related genes in skeletal muscle of cull cows receiving a high-energy diet. Meat Sci. 2021, 177, 108495. [Google Scholar] [CrossRef]
- Roy, B.C.; Das, C.; Aalhus, J.L.; Bruce, H.L. Relationship between meat quality and intramuscular collagen characteristics of muscles from calf-fed, yearling-fed and mature crossbred beef cattle. Meat Sci. 2021, 173, 108375. [Google Scholar] [CrossRef]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Fruet, A.P.B.; Trombetta, F.; Stefanello, F.S.; Speroni, C.S.; Donadel, J.Z.; De Souza, A.N.M.; Rosado Júnior, A.; Tonetto, C.J.; Wagner, R.; De Mello, A.; et al. Effects of feeding legume-grass pasture and different concentrate levels on fatty acid profile, volatile compounds, and off-flavor of the M. longissimus thoracis. Meat Sci. 2018, 140, 112–118. [Google Scholar] [CrossRef]
- Brugiapaglia, A.; Lussiana, C.; Destefanis, G. Fatty acid profile and cholesterol content of beef at retail of Piemontese, Limousin and Friesian breeds. Meat Sci. 2014, 96, 568–573. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Cho, S.; Kang, S.; Kang, G.; Seong, P.; Park, K.; Chang, S.; Lee, S.; Cho, Y.; Park, B. Physicochemical meat quality, fatty acid and free amino acid composition of strip loin, chuck tender, and eye of round produced by different age groups of Hanwoo cow. Korean J. Food Sci. Anim. Res. 2013, 33, 708–714. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, M.; Browne, R.; Ram, M.; Muti, P.; Freudenheim, J.; Carosella, A.M.; Armstrong, D. Correlates of markers of oxidative status in the general population. Am. J. Epidemiol. 2001, 154, 348–356. [Google Scholar] [CrossRef]
- Miller, J.K.; Brzezinska-Slebodzinska, E.; Madsen, F.C. Oxidative stress, antioxidants, and animal function. J. Dairy Sci. 1993, 76, 2812–2823. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Gray, J.I.; Gomaa, E.A.; Buckley, D.J. Oxidative quality and shelf life of meats. Meat Sci. 1996, 43 (Suppl. 1), 111–123. [Google Scholar] [CrossRef]
- He, L.; Wu, H.; Wang, G.; Meng, Q.; Zhou, Z. The effects of including corn silage, corn stalk silage, and corn grain in finishing ration of beef steers on meat quality and oxidative stability. Meat Sci. 2018, 139, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Free radicals and antioxidants: Updating a personal view. Nutr. Rev. 2012, 70, 257–265. [Google Scholar] [CrossRef]
- Xu, C.L.; Wang, Y.Z.; Guo, J.; Liu, J.X.; Feng, J. Comparison of age-related differences in expression of antioxidant enzyme mRNA and activity in various tissues of pigs. Comp. Biochem. Phys. B. 2007, 147, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Insani, E.M.; Eyherabide, A.; Grigioni, G.; Sancho, A.M.; Pensel, N.A.; Descalzo, A.M. Oxidative stability and its relationship with natural antioxidants during refrigerated retail display of beef produced in Argentina. Meat Sci. 2008, 79, 444–452. [Google Scholar] [CrossRef]
- Pouzo, L.B.; Descalzo, A.M.; Zaritzky, N.E.; Rossetti, L.; Pavan, E. Antioxidant status, lipid and color stability of aged beef from grazing steers supplemented with corn grain and increasing levels of flaxseed. Meat Sci. 2016, 111, 1–8. [Google Scholar] [CrossRef]
Item 1 | Concentrate | Rice Straw |
---|---|---|
Ingredient, % (on DM basis) | ||
Corn grain | 53.2 | − |
Wheat bran | 29.4 | − |
Wheat middling | 15.0 | − |
Rapeseed meal | 0.4 | − |
NaHCO3 | 1.0 | − |
NaCl | 1.0 | − |
Chemical composition, % (on DM basis) | ||
OM | 94.3 | 86.3 |
CP | 12.0 | 5.1 |
EE | 6.1 | 2.5 |
NDF | 23.5 | 74.8 |
ADF | 3.5 | 39.3 |
DM, % (on air-dry basis) | 90.6 | 93.6 |
ME, Mcal/kg (on DM basis) | 2.97 | 1.68 |
Items 2 | YCC | OCC | p-Value | |||||
---|---|---|---|---|---|---|---|---|
LRS | HRS | LRS | HRS | SEM | Age | Diet | Age × Diet | |
Intake (kg/d, on DM basis) | ||||||||
Concentrate | 3.73 | 4.44 | 3.44 | 3.54 | 0.32 | 0.10 | 0.23 | 0.36 |
DM | 4.36 | 5.55 | 4.09 | 4.62 | 0.33 | 0.11 | 0.03 | 0.35 |
TDN | 3.35 | 4.16 | 3.12 | 3.41 | 0.27 | 0.10 | 0.07 | 0.35 |
Apparent digestibility of nutrients (%) | ||||||||
OM | 70.9 | 64.3 | 70.6 | 62.9 | 3.56 | 0.82 | 0.06 | 0.88 |
CP | 60.9 | 58.4 | 59.6 | 53.9 | 4.59 | 0.54 | 0.39 | 0.74 |
EE | 85.1 | 81.2 | 78.5 | 75.9 | 3.43 | 0.11 | 0.36 | 0.85 |
NDF | 62.4 | 54.8 | 64.6 | 52.9 | 3.35 | 0.98 | 0.01 | 0.55 |
Body weight (BW, kg) | ||||||||
Intial BW | 330 | 333 | 331 | 329 | 9.4 | 0.85 | − | − |
Final BW | 390 | 429 | 348 | 362 | 13.8 | 0.002 | 0.08 | 0.36 |
Total BW gain | 55.2 | 90.4 | 22.1 | 33.0 | 13.7 | 0.006 | 0.12 | 0.39 |
ADG (g/d) | 182.0 | 281.8 | 74.4 | 113.8 | 34.7 | 0.002 | 0.07 | 0.41 |
G:F (g/kg) | 42.6 | 49.9 | 14.0 | 23.4 | 7.2 | 0.005 | 0.28 | 0.89 |
Items 2 | YCC | OCC | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
LRS | HRS | LRS | HRS | Age | Diet | Age × Diet | ||
CCW (kg) | 218 | 246 | 187 | 205 | 9.3 | 0.002 | 0.03 | 0.57 |
Dressing percentage (%) | 57.2 | 57.2 | 55.1 | 56.6 | 1.0 | 0.17 | 0.43 | 0.45 |
Carcass composition (%) | ||||||||
Meat | 60.9 | 61.9 | 59.6 | 60.0 | 1.94 | 0.42 | 0.74 | 0.88 |
Fat | 25.5 | 26.4 | 23.6 | 22.9 | 1.90 | 0.35 | 0.42 | 0.71 |
Meat to fat ratio | 2.51 | 2.38 | 2.30 | 2.10 | 0.23 | 0.30 | 0.49 | 0.88 |
LM area (cm2) | ||||||||
Between 6th and 7th ribs | 29.6 | 31.1 | 25.7 | 26.2 | 2.86 | 0.15 | 0.73 | 0.86 |
Between 12th and 13th ribs | 64.3 | 71.3 | 56.8 | 63.6 | 3.92 | 0.07 | 0.10 | 0.98 |
Top grade cuts weight (kg) | ||||||||
High rib | 8.85 | 11.34 | 8.64 | 8.17 | 0.72 | 0.04 | 0.19 | 0.06 |
Ribeye | 7.10 | 8.00 | 6.55 | 7.14 | 0.74 | 0.37 | 0.34 | 0.85 |
Striploin | 5.83 | 7.07 | 5.15 | 6.52 | 0.47 | 0.21 | 0.02 | 0.90 |
Tenderloin | 2.68 | 3.10 | 2.44 | 2.45 | 0.18 | 0.02 | 0.25 | 0.27 |
Items 3 | YCC | OCC | p-Value | |||||
---|---|---|---|---|---|---|---|---|
LRS | HRS | LRS | HRS | SEM | Age | Diet | Age × Diet | |
pH, day 0 | 6.22 | 6.26 | 6.11 | 6.37 | 0.14 | 1.00 | 0.33 | 0.47 |
pH, day 7 | 5.66 | 5.62 | 5.77 | 5.74 | 0.11 | 0.32 | 0.74 | 0.99 |
DM (%) | 30.9 | 34.3 | 34.2 | 32.2 | 1.43 | 0.68 | 0.61 | 0.08 |
IMF (%) | 21.9 | 31.0 | 28.5 | 28.8 | 3.96 | 0.60 | 0.25 | 0.28 |
CP (%) | 72.5 | 62.5 | 66.3 | 66.2 | 4.40 | 0.78 | 0.27 | 0.28 |
WBSF (N) | 26.9 | 31.6 | 31.2 | 29.7 | 3.23 | 0.71 | 0.63 | 0.36 |
Drip loss (%) | 6.56 | 5.51 | 6.45 | 5.87 | 1.33 | 0.93 | 0.56 | 0.86 |
Pressing loss (%) | 30.5 | 32.4 | 31.4 | 31.3 | 1.60 | 0.98 | 0.57 | 0.53 |
Cooking loss (%) | 26.9 | 24.5 | 27.5 | 25.2 | 0.86 | 0.48 | 0.02 | 1.00 |
Items 3 | YCC | OCC | p-Value | |||||
---|---|---|---|---|---|---|---|---|
LRS | HRS | LRS | HRS | SEM | Age | Diet | Age × Diet | |
Saturated | ||||||||
C14:0 | 3.04 | 3.28 | 3.28 | 3.66 | 0.29 | 0.31 | 0.30 | 0.81 |
C15:0 | 0.29 a | 0.21 b | 0.21 b | 0.23 b | 0.016 | 0.13 | 0.10 | 0.006 |
C16:0 | 28.95 | 26.48 | 26.77 | 28.64 | 0.94 | 0.99 | 0.75 | 0.04 |
C17:0 | 0.80 a | 0.59 b | 0.59 b | 0.62 b | 0.036 | 0.03 | 0.03 | 0.006 |
C18:0 | 12.25 | 10.08 | 11.22 | 10.80 | 0.79 | 0.85 | 0.12 | 0.29 |
C20:0 | 0.11 | 0.10 | 0.10 | 0.10 | 0.006 | 0.67 | 0.18 | 0.48 |
C21:0 | 0.05 | 0.05 | 0.06 | 0.04 | 0.008 | 0.93 | 0.10 | 0.12 |
C22:0 | 0.06 | 0.03 | 0.04 | 0.04 | 0.010 | 0.70 | 0.16 | 0.32 |
Monounsaturated | ||||||||
C14:1n5c | 1.19 | 1.44 | 1.36 | 1.35 | 0.16 | 0.80 | 0.47 | 0.42 |
C15:1n5c | 0.22 | 0.15 | 0.14 | 0.15 | 0.045 | 0.34 | 0.52 | 0.40 |
C16:1n7c | 4.01 | 4.84 | 4.87 | 4.98 | 0.37 | 0.20 | 0.22 | 0.35 |
C17:1n7c | 0.69 | 0.62 | 0.57 | 0.61 | 0.046 | 0.16 | 0.72 | 0.27 |
C18:1n9t | 0.47 | 0.48 | 0.74 | 0.38 | 0.095 | 0.39 | 0.08 | 0.07 |
C18:1n9c | 43.66 b | 48.19 a | 46.33 ab | 44.19 ab | 1.35 | 0.63 | 0.39 | 0.03 |
C22:1n9c | 0.82 | 0.38 | 0.45 | 0.53 | 0.14 | 0.48 | 0.22 | 0.09 |
C24:1n9c | 0.09 | 0.05 | 0.05 | 0.07 | 0.017 | 0.57 | 0.65 | 0.15 |
Polyunsaturated | ||||||||
C18:2n6c | 2.49 | 2.33 | 2.51 | 2.89 | 0.37 | 0.44 | 0.76 | 0.47 |
C18:3n6c | 0.08 | 0.06 | 0.06 | 0.07 | 0.014 | 0.88 | 0.56 | 0.36 |
C18:3n3c | 0.19 | 0.25 | 0.23 | 0.23 | 0.015 | 0.67 | 0.04 | 0.08 |
C20:2n6c | 0.04 | 0.05 | 0.07 | 0.04 | 0.011 | 0.48 | 0.46 | 0.16 |
C20:3n6c | 0.22 | 0.17 | 0.18 | 0.17 | 0.046 | 0.68 | 0.52 | 0.69 |
C20:3n3c | 0.02 | 0.02 | 0.02 | 0.02 | 0.003 | 0.77 | 0.45 | 0.30 |
C20:4n6c | 0.03 | 0.02 | 0.02 | 0.03 | 0.005 | 0.48 | 0.66 | 0.09 |
C20:5n3c | 0.06a | 0.03b | 0.03b | 0.05ab | 0.008 | 0.36 | 0.51 | 0.02 |
C22:6n3c | 0.16 | 0.10 | 0.09 | 0.11 | 0.027 | 0.23 | 0.48 | 0.11 |
ΣSFA | 45.57 a | 40.82 b | 42.28 ab | 44.14 ab | 1.46 | 0.99 | 0.34 | 0.04 |
ΣMUFA | 51.14 b | 56.15 a | 54.52 ab | 52.25 b | 1.31 | 0.85 | 0.32 | 0.02 |
ΣPUFA | 3.29 | 3.03 | 3.20 | 3.61 | 0.45 | 0.60 | 0.87 | 0.47 |
ΣPUFA/ΣMUFA | 0.06 | 0.05 | 0.06 | 0.07 | 0.009 | 0.54 | 0.92 | 0.24 |
Σn-6 PUFA | 2.85 | 2.63 | 2.83 | 3.20 | 0.41 | 0.52 | 0.87 | 0.49 |
Σn-3 PUFA | 0.44 | 0.40 | 0.36 | 0.41 | 0.042 | 0.44 | 0.89 | 0.32 |
Σn-6/Σn-3 PUFA | 6.50 | 6.50 | 7.87 | 7.57 | 0.63 | 0.07 | 0.81 | 0.81 |
Items 2 | YCC | OCC | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
LRS | HRS | LRS | HRS | Age | Diet | Age × Diet | ||
T-AOC (umol Trolox/Mgprot) | ||||||||
Liver | 0.28 | 0.26 | 0.26 | 0.21 | 0.02 | 0.11 | 0.15 | 0.61 |
Muscle | 1.17 | 1.25 | 1.12 | 1.18 | 0.10 | 0.55 | 0.48 | 0.91 |
CAT (U/mgprot) | ||||||||
Liver | 4.78 | 3.85 | 3.29 | 3.28 | 0.45 | 0.045 | 0.33 | 0.34 |
Muscle | 3.16 | 4.59 | 4.28 | 6.53 | 1.14 | 0.20 | 0.13 | 0.73 |
SOD (U/mgprot) | ||||||||
Liver | 396 | 382 | 370 | 380 | 17.0 | 0.42 | 0.92 | 0.50 |
Muscle | 1365 | 1189 | 1315 | 1178 | 52.5 | 0.57 | 0.01 | 0.71 |
ROS (U/mgprot) | ||||||||
Liver | 13.2 | 12.9 | 13.6 | 13.2 | 0.62 | 0.57 | 0.63 | 0.99 |
Muscle | 122.7 | 116.4 | 124.3 | 119.7 | 5.07 | 0.63 | 0.30 | 0.87 |
MDA (nmol/mgprot) | ||||||||
Liver | 2.50 | 2.27 | 2.36 | 2.43 | 0.13 | 0.93 | 0.53 | 0.25 |
Muscle | 17.2 | 16.7 | 15.9 | 16.5 | 0.99 | 0.43 | 0.97 | 0.59 |
PC (nmol/mgprot) | ||||||||
Liver | 12.2 | 11.4 | 10.2 | 11.4 | 1.23 | 0.43 | 0.87 | 0.43 |
Muscle | 53.4 | 66.9 | 57.2 | 45.3 | 7.37 | 0.25 | 0.92 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Qin, X.; Chen, L.; Qiu, Q.; Wang, H.; Aziz ur Rahmanand, M.; Cao, B.; Su, H. Effects of Age and Rice Straw Inclusion Levels in the Diet of Yiling Cull Cows on Growth Performance, Meat Quality, and Antioxidant Status of Tissues. Animals 2021, 11, 1732. https://doi.org/10.3390/ani11061732
Qiu X, Qin X, Chen L, Qiu Q, Wang H, Aziz ur Rahmanand M, Cao B, Su H. Effects of Age and Rice Straw Inclusion Levels in the Diet of Yiling Cull Cows on Growth Performance, Meat Quality, and Antioxidant Status of Tissues. Animals. 2021; 11(6):1732. https://doi.org/10.3390/ani11061732
Chicago/Turabian StyleQiu, Xinjun, Xiaoli Qin, Liming Chen, Qinghua Qiu, Haibo Wang, Muhammad Aziz ur Rahmanand, Binghai Cao, and Huawei Su. 2021. "Effects of Age and Rice Straw Inclusion Levels in the Diet of Yiling Cull Cows on Growth Performance, Meat Quality, and Antioxidant Status of Tissues" Animals 11, no. 6: 1732. https://doi.org/10.3390/ani11061732
APA StyleQiu, X., Qin, X., Chen, L., Qiu, Q., Wang, H., Aziz ur Rahmanand, M., Cao, B., & Su, H. (2021). Effects of Age and Rice Straw Inclusion Levels in the Diet of Yiling Cull Cows on Growth Performance, Meat Quality, and Antioxidant Status of Tissues. Animals, 11(6), 1732. https://doi.org/10.3390/ani11061732