Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis)
Abstract
Simple Summary
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mukerji, S.; O’Dea, M.; Barton, M.; Kirkwood, R.; Lee, T.; Abraham, S. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Essays Biochem. 2017, 61, 23–35. [Google Scholar]
- WHO. Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early implementation 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Agnew, A.; Wang, J.; Fanning, S.; Bearhop, S.; McMahon, B.J. Insights into antimicrobial resistance among long distance migratory East Canadian High Arctic light-bellied Brent geese (Branta bernicla hrota). Ir. Vet. J. 2016, 69, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ahlstrom, C.A.; Bonnedahl, J.; Woksepp, H.; Hernandez, J.; Olsen, B.; Ramey, A.M. Acquisition and dissemination of cephalosporin-resistant E. coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cerdà-Cuéllar, M.; Moré, E.; Ayats, T.; Aguilera, M.; Muñoz-González, S.; Antilles, N.; Ryan, P.G.; González-Solís, J. Do humans spread zoonotic enteric bacteria in Antarctica? Sci. Total Environ. 2019, 654, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Cristóvão, F.; Alonso, C.A.; Igrejas, G.; Sousa, M.; Silva, V.; Pereira, J.E.; Lozano, C.; Cortés-Cortés, G.; Torres, C.; Poeta, P. Clonal diversity of extended-spectrum beta-lactamase producing Escherichia coli isolates in fecal samples of wild animals. FEMS Microbiol. Lett. 2017, 364, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Dolejska, M.; Papagiannitsis, C.C. Plasmid-mediated resistance is going wild. Plasmid 2018, 99, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.; Silva, N.; Igrejas, G.; Rodrigues, P.; Micael, J.; Rodrigues, T.; Resendes, R.; Gonçalves, A.; Marinho, C.; Gonçalves, D.; et al. Dissemination of antibiotic resistant Enterococcus spp. and Escherichia coli from wild birds of Azores Archipelago. Anaerobe 2013, 24, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Sjölund, M.; Bonnedahl, J.; Hernandez, J.; Bengtsson, S.; Cederbrant, G.; Pinhassi, J.; Kahlmeter, G.; Olsen, B. Dissemination of multidrug-resistant bacteria into the arctic. Emerg. Infect. Dis. 2008, 14, 70–72. [Google Scholar] [CrossRef]
- Chandler, J.C.; Anders, J.E.; Blouin, N.A.; Carlson, J.C.; LeJeune, J.T.; Goodridge, L.D.; Wang, B.; Day, L.A.; Mangan, A.M.; Reid, D.A.; et al. The Role of European Starlings (Sturnus vulgaris) in the Dissemination of Multidrug-Resistant Escherichia coli among Concentrated Animal Feeding Operations. Sci. Rep. 2020, 10, 1–11. [Google Scholar]
- Cole, D.; Drum, D.J.V.; Stallknecht, D.E.; White, D.G.; Lee, M.D.; Ayers, S.; Sobsey, M.; Maurer, J.J. Free-living Canada Geese and antimicrobial resistance. Emerg. Infect. Dis. 2005, 11, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Radhouani, H.; Silva, N.; Poeta, P.; Torres, C.; Correia, S.; Igrejas, G. Potential impact of antimicrobial resistance in wildlife, environment, and human health. Front. Microbiol. 2014, 5, 1–12. [Google Scholar] [CrossRef]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic resistance is the quintessential One Health issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, Z.B.; Zeng, Z.L.; Yang, X.W.; Huang, Y.; Liu, J.H. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool. Res. 2017, 38, 55–80. [Google Scholar] [CrossRef] [PubMed]
- Dolejska, M.; Literak, I. Wildlife is overlooked in the epidemiology of medically important antibiotic-resistant bacteria. Antimicrob. Agents Chemother. 2019, 63, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High prevalence and diversity of extended-spectrum β-lactamase and emergence of OXA-48 producing Enterobacterales in wildlife in Catalonia. PLoS ONE 2019, 14, e0210686. [Google Scholar] [CrossRef]
- Guenther, S.; Ewers, C.; Wieler, L.H. Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front. Microbiol. 2011, 2, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Szmolka, A.; Nagy, B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front. Microbiol. 2013, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.; Baldomà, L.; Molina-López, R.A.; Martin, M.; Darwich, L. Microbiological diagnosis and antimicrobial sensitivity profiles in diseased free-living raptors. Avian Pathol. 2017, 46, 442–450. [Google Scholar] [CrossRef]
- Blanco, G.; López-Hernández, I.; Morinha, F.; López-Cerero, L. Intensive farming as a source of bacterial resistance to antimicrobial agents in sedentary and migratory vultures: Implications for local and transboundary spread. Sci. Total Environ. 2020, 739, 140356. [Google Scholar] [CrossRef] [PubMed]
- Alcalá, L.; Alonso, C.A.; Simón, C.; González-Esteban, C.; Orós, J.; Rezusta, A.; Ortega, C.; Torres, C. Wild Birds, Frequent Carriers of Extended-Spectrum β-Lactamase (ESBL) Producing Escherichia coli of CTX-M and SHV-12 Types. Microb. Ecol. 2016, 72, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Oteo, J.; Menciá, A.; Bautista, V.; Pastor, N.; Lara, N.; González-González, F.; Garciá-Penã, F.J.; Campos, J. Colonization with enterobacteriaceae-producing ESBLs, AmpCs, and OXA-48 in wild avian species, Spain 2015-2016. Microb. Drug Resist. 2018, 24, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Medio Ambiente y Medio Rural y Marino Real Decreto 139/2011, de 4 de febrero, para el desarrollo del Listado de Especies Silvestres en Régimen de Protección Especial y del Catálogo Español de Especies Amenazadas. Available online: http://www.boe.es/boe/dias/2011/02/23/pdfs/BOE-A-2011-3582.pdf (accessed on 5 June 2021).
- Atterby, C.; Börjesson, S.; Ny, S.; Järhult, J.D.; Byfors, S.; Bonnedahl, J. ESBL-producing Escherichia coli in Swedish gulls—A case of environmental pollution from humans? PLoS ONE 2017, 12, e0190380. [Google Scholar] [CrossRef] [PubMed]
- Grzywaczewski, G.; Kowalczyk-Pecka, D.; Cios, S.; Bojar, W.; Junkuszew, A.; Bojar, H.; Kolejko, M. Tawny owl Strix aluco as a potential transmitter of Enterobacteriaceae epidemiologically relevant for forest service workers, nature protection service and ornithologists. Ann. Agric. Environ. Med. 2017, 24, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Badia-Boher, J.A.; Sanz-Aguilar, A.; de la Riva, M.; Gangoso, L.; van Overveld, T.; García-Alfonso, M.; Luzardo, O.P.; Suarez-Pérez, A.; Donázar, J.A. Evaluating European LIFE conservation projects: Improvements in survival of an endangered vulture. J. Appl. Ecol. 2019, 56, 1210–1219. [Google Scholar] [CrossRef]
- Suárez-pérez, A.; Corbera, J.A.; González-Martín, M.; Donázar, J.A.; Rosales, R.S.; Morales, M.; Tejedor-Junco, M.T. Microorganisms resistant to antimicrobials in wild canarian egyptian vultures (Neophron percnopterus majorensis). Animals 2020, 10, 970. [Google Scholar] [CrossRef] [PubMed]
- Stedt, J.; Bonnedahl, J.; Hernandez, J.; McMahon, B.J.; Hasan, B.; Olsen, B.; Drobni, M.; Waldenström, J. Antibiotic resistance patterns in Escherichia coli from gulls in nine European countries. Infect. Ecol. Epidemiol. 2014, 4, 21565. [Google Scholar] [CrossRef]
- Sharma, P.; Maherchandani, S.; Shringi, B.N.; Kashyap, S.K.; Sundar, K.S.G. Temporal variations in patterns of Escherichia coli strain diversity and antimicrobial resistance in the migrant Egyptian vulture. Infect. Ecol. Epidemiol. 2018, 8, 145059. [Google Scholar]
- Marinho, C.M.; Santos, T.; Gonçalves, A.; Poeta, P.; Igrejas, G. A decade-long commitment to antimicrobial resistance surveillance in Portugal. Front. Microbiol. 2016, 7, 1–14. [Google Scholar] [CrossRef]
- Gentilini, F.; Turba, M.E.; Pasquali, F.; Mion, D.; Romagnoli, N.; Zambon, E.; Terni, D.; Peirano, G.; Pitout, J.D.D.; Parisi, A.; et al. Hospitalized pets as a source of carbapenem-resistance. Front. Microbiol. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Ahlstrom, C.A.; Ramey, A.M.; Woksepp, H.; Bonnedahl, J. Repeated detection of carbapenemase-producing Escherichia coli in gulls inhabiting Alaska. Antimicrob. Agents Chemother. 2019, 63, 17–20. [Google Scholar] [CrossRef]
- Dolejska, M.; Masarikova, M.; Dobiasova, H.; Jamborova, I.; Karpiskova, R.; Havlicek, M.; Carlile, N.; Priddel, D.; Cizek, A.; Literak, I. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J. Antimicrob. Chemother. 2016, 71, 63–70. [Google Scholar] [CrossRef][Green Version]
- Guenther, S.; Semmler, T.; Stubbe, A.; Stubbe, M.; Wieler, L.H.; Schaufler, K. Chromosomally encoded ESBL genes in Escherichia coli of ST38 from Mongolian wild birds. J. Antimicrob. Chemother. 2017, 72, 1310–1313. [Google Scholar] [CrossRef]
- Guerra, B.; Fischer, J.; Helmuth, R. An emerging public health problem: Acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet. Microbiol. 2014, 171, 290–297. [Google Scholar] [CrossRef]
- Köck, R.; Daniels-Haardt, I.; Becker, K.; Mellmann, A.; Friedrich, A.W.; Mevius, D.; Schwarz, S.; Jurke, A. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: A systematic review. Clin. Microbiol. Infect. 2018, 24, 1241–1250. [Google Scholar] [CrossRef]
- Vittecoq, M.; Laurens, C.; Brazier, L.; Durand, P.; Elguero, E.; Arnal, A.; Thomas, F.; Aberkane, S.; Renaud, N.; Prugnolle, F.; et al. VIM-1 carbapenemase-producing Escherichia coli in gulls from southern France. Ecol. Evol. 2017, 7, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Mukerji, S.; Stegger, M.; Truswell, A.V.; Laird, T.; Jordan, D.; Abraham, R.J.; Harb, A.; Barton, M.; O’Dea, M.; Abraham, S. Resistance to critically important antimicrobials in Australian silver gulls (Chroicocephalus novaehollandiae) and evidence of anthropogenic origins. J. Antimicrob. Chemother. 2019, 74, 2566–2574. [Google Scholar] [CrossRef]
- Smith, O.M.; Snyder, W.E.; Owen, J.P. Are we overestimating risk of enteric pathogen spillover from wild birds to humans? Biol. Rev. 2020, 95, 652–679. [Google Scholar] [CrossRef] [PubMed]
- Guenther, S.; Grobbel, M.; Lübke-Becker, A.; Goedecke, A.; Friedrich, N.D.; Wieler, L.H.; Ewers, C. Antimicrobial resistance profiles of Escherichia coli from common European wild bird species. Vet. Microbiol. 2010, 144, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Kwan, P.S.L.; Xavier, C.; Santovenia, M.; Pruckler, J.; Stroika, S.; Joyce, K.; Gardner, T.; Fields, P.I.; McLaughlin, J.; Tauxe, R.V.; et al. Multilocus sequence typing confirms wild birds as the source of a Campylobacter outbreak associated with the consumption of raw peas. Appl. Environ. Microbiol. 2014, 80, 4540–4546. [Google Scholar] [CrossRef] [PubMed]
- Tamamura, Y.; Uchida, I.; Tanaka, K.; Nakano, Y.; Izumiya, H.; Takahashi, T.; Kikuchi, N. A case study on Salmonella enterica serovar Typhimurium at a dairy farm associated with massive sparrow death. Acta Vet. Scand. 2016, 58, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.M.; Gjoen, T.; Lunestad, B.T.; Ytrehus, B. Antimicrobial Resistance in Wildlife—Potential for Dissemination; Opinion of the Panel on Microbial Ecology; Norwegian Scientific Committee for Food and Environment: Oslo, Norway, 2018. [Google Scholar]
- Swift, B.M.C.; Bennett, M.; Waller, K.; Dodd, C.; Murray, A.; Gomes, R.L.; Humphreys, B.; Hobman, J.L.; Jones, M.A.; Whitlock, S.E.; et al. Anthropogenic environmental drivers of antimicrobial resistance in wildlife. Sci. Total Environ. 2019, 649, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Blanco, G.; Bautista, L.M. Avian scavengers as bioindicators of antibiotic resistance due to livestock farming intensification. Int. J. Environ. Res. Public Health 2020, 17, 3620. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Categories (Code) | Antimicrobial Agents | Abbreviation and Charge of Disks |
---|---|---|
Aminoglycosides (A) | Amikacin Gentamicin Tobramycin | AK (30 µg) GM (30 µg) NN (10 µg) |
Carbapenems (Ca) | Imipenem | IPM (10 µg) |
Non-extended spectrum cephalosporins: 1st and 2nd generation cephalosporins (1–2 Ce) | Cephalexin | CEP (30 µg) |
Extended-spectrum cephalosporins: 3rd and 4th generation cephalosporins (3–4 Ce) | Cefpodoxime | CPD (10 µg) |
Fluoroquinolones (Fl) | Enrofloxacin Marbofloxacin | ENO (5 µg) MAR (5 µg) |
Folate pathway inhibitors (Fo) | Trimethoprim/ Sulfamethoxazole | SXT (1.25 µg + 23.75 µg) |
Penicillins (Pe) | Ampicillin Piperacillin | AM (10 µg) PIP (100 µg) |
Penicillins + β-lactamase inhibitors (Pβ) | Amoxicillin/ Clavulanic Acid | AMC (20 µg + 10 µg), |
Phenicols (Ph) | Chloramphenicol | C (30 µg) |
Polymyxins (Po) | Polymyxin B | PB (300 U) |
Tetracyclines (T) | Tetracycline | TE (30 µg) |
Nitrofuranes (N) | Nitrofurantoin | F/M (300 µg) |
CAT. | Fo | Pe | T | Pe | Fl | Fl | Ph | 1–2 Ce | Pβ | A | N | A | Ca | 3–4 Ce | Po | A | No. of CAT. | No. of Isolates | C * | A * | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ATB. | SXT | AM | TE | PIP | ENO | MAR | C | CEP | AMC | GM | F/M | NN | IPM | CPD | PB | AK | |||||
non-MDR | AM | 1 | 3 | 2 | 1 | ||||||||||||||||
AM | PIP | 1 | 1 | 1 | |||||||||||||||||
C | 1 | 7 | 5 | 2 | |||||||||||||||||
ENO | MAR | 1 | 1 | 1 | |||||||||||||||||
SXT | 1 | 1 | 1 | ||||||||||||||||||
TE | 1 | 3 | 3 | ||||||||||||||||||
AM | ENO | 2 | 1 | 1 | |||||||||||||||||
AM | ENO | MAR | 2 | 2 | 1 | 1 | |||||||||||||||
SXT | AM | PIP | 2 | 2 | 2 | ||||||||||||||||
SXT | AM | 2 | 8 | 8 | |||||||||||||||||
SXT | ENO | MAR | 2 | 1 | 1 | ||||||||||||||||
TE | ENO | MAR | 2 | 1 | 1 | ||||||||||||||||
SXT | GM | 2 | 1 | 1 | |||||||||||||||||
SXT | PB | 2 | 1 | 1 | |||||||||||||||||
TE | C | 2 | 3 | 1 | 2 | ||||||||||||||||
SXT | TE | 2 | 2 | 1 | 1 | ||||||||||||||||
SXT | AM | TE | PIP | 3 | 6 | 2 | 4 | ||||||||||||||
SXT | AM | TE | 3 | 1 | 1 | ||||||||||||||||
SXT | TE | ENO | MAR | 3 | 1 | 1 | |||||||||||||||
SXT | AM | C | 3 | 1 | 1 | ||||||||||||||||
SXT | AM | C | 3 | 1 | 1 | ||||||||||||||||
MDR | SXT | AM | TE | PIP | ENO | MAR | AMC | 4 | 1 | 1 | |||||||||||
AM | TE | C | CEP | 4 | 1 | 1 | |||||||||||||||
SXT | AM | TE | ENO | MAR | 4 | 1 | 1 | ||||||||||||||
SXT | AM | TE | PIP | CEP | 4 | 1 | 1 | ||||||||||||||
SXT | AM | TE | PIP | ENO | MAR | C | F/M | 4 | 1 | 1 | |||||||||||
SXT | AM | TE | PIP | ENO | MAR | 4 | 1 | 1 | |||||||||||||
SXT | AM | TE | PIP | ENO | MAR | 4 | 2 | 2 | |||||||||||||
SXT | AM | TE | PIP | ENO | 4 | 1 | 1 | ||||||||||||||
SXT | AM | TE | PIP | GM | NN | 4 | 1 | 1 | |||||||||||||
SXT | AM | TE | PIP | C | 4 | 3 | 2 | 1 | |||||||||||||
SXT | AM | TE | PIP | F/M | 4 | 1 | 1 | ||||||||||||||
SXT | AM | TE | C | 4 | 2 | 1 | 1 | ||||||||||||||
SXT | TE | C | GM | 4 | 1 | 1 | |||||||||||||||
SXT | AM | TE | PIP | C | CEP | 5 | 1 | 1 | |||||||||||||
SXT | AM | TE | PIP | ENO | C | 5 | 1 | 1 | |||||||||||||
SXT | AM | TE | PIP | ENO | MAR | NN | 5 | 1 | 1 | ||||||||||||
SXT | AM | TE | PIP | CEP | AMC | IPM | 6 | 1 | 1 | ||||||||||||
SXT | AM | TE | ENO | MAR | C | GM | F/M | 6 | 1 | 1 | |||||||||||
SXT | AM | TE | PIP | ENO | MAR | C | GM | NN | 6 | 1 | 1 | ||||||||||
SXT | AM | TE | ENO | MAR | C | CEP | AMC | 7 | 1 | 1 | |||||||||||
SXT | AM | TE | PIP | CEP | AMC | IPM | CPD | 7 | 1 | 1 | |||||||||||
SXT | AM | TE | PIP | ENO | MAR | C | AMC | F/M | 7 | 1 | 1 | ||||||||||
SXT | AM | TE | PIP | ENO | MAR | C | CEP | AMC | 9 | 1 | 1 | ||||||||||
SXT | AM | TE | PIP | ENO | CEP | AMC | F/M | IPM | CPD | 9 | 1 | 1 | |||||||||
SXT | AM | TE | PIP | ENO | MAR | C | CEP | AMC | GM | F/M | NN | IPM | CPD | PB | AK | 12 | 1 | 1 | |||
SUCEPTIBLE TO ALL ANTIMICROBIALS TESTED | 12 | 26 | 18 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Pérez, A.; Corbera, J.A.; González-Martín, M.; Tejedor-Junco, M.T. Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals 2021, 11, 1692. https://doi.org/10.3390/ani11061692
Suárez-Pérez A, Corbera JA, González-Martín M, Tejedor-Junco MT. Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals. 2021; 11(6):1692. https://doi.org/10.3390/ani11061692
Chicago/Turabian StyleSuárez-Pérez, Alejandro, Juan Alberto Corbera, Margarita González-Martín, and María Teresa Tejedor-Junco. 2021. "Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis)" Animals 11, no. 6: 1692. https://doi.org/10.3390/ani11061692
APA StyleSuárez-Pérez, A., Corbera, J. A., González-Martín, M., & Tejedor-Junco, M. T. (2021). Multidrug-Resistant Phenotypes of Escherichia coli Isolates in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals, 11(6), 1692. https://doi.org/10.3390/ani11061692