Loss of WTAP Impairs Early Parthenogenetic Embryo Development
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Oocyte Collection and In Vitro Maturation
2.2. Parthenogenetic Activation (PA) of Oocyte and In Vitro Culture
2.3. Microinjection of siRNA into Oocytes
2.4. Betaine Treatment
2.5. Gene Expression Analysis
2.6. Immunofluorescence Staining
2.7. TUNEL Assay
2.8. Statistical Analysis
3. Results
3.1. WTAP Knockdown Impairs Embryo Development
3.2. No Effect of Betaine on WTAP-Knockdown Embryo Development
3.3. WTAP Knockdown Promoted Embryonic Apoptosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, J.M.; Cory, S. Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA. Nature 1975, 255, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Desrosiers, R.C.; Friderici, K.H.; Rottman, F.M. Characterization of Novikoff hepatoma mRNA methylation and heterogeneity in the methylated 5′ terminus. Biochemistry 1975, 14, 4367–4374. [Google Scholar] [CrossRef]
- Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M.; et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012, 485, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Bokar, J.A.; Shambaugh, M.E.; Polayes, D.; Matera, A.G.; Rottman, F.M. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 1997, 3, 1233–1247. [Google Scholar] [PubMed]
- Feng, C.; Liu, Y.; Wang, G.; Deng, Z.; Zhang, Q.; Wu, W.; Tong, Y.; Cheng, C.; Chen, Z. Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J. Biol. Chem. 2014, 289, 11571–11583. [Google Scholar] [CrossRef] [Green Version]
- Jia, G.; Fu, Y.; Zhao, X.; Dai, Q.; Zheng, G.; Yang, Y.; Yi, C.; Lindahl, T.; Pan, T.; Yang, Y.G.; et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 2011, 7, 885–887. [Google Scholar] [CrossRef]
- Zheng, G.; Dahl, J.A.; Niu, Y.; Fedorcsak, P.; Huang, C.; Li, C.; Vågbø, C.B.; Shi, Y.; Wang, W.; Song, S.; et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 2013, 49, 18–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Lu, Z.; Gomez, A.; Hon, G.C.; Yue, Y.; Han, D.; Fu, Y.; Parisien, M.; Dai, Q.; Jia, G.; et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014, 505, 117–120. [Google Scholar] [CrossRef]
- Xu, C.; Wang, X.; Liu, K.; Roundtree, I.A.; Tempel, W.; Li, Y.; Lu, Z.; He, C.; Min, J. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. Biol. 2014, 10, 927–929. [Google Scholar] [CrossRef]
- Little, N.A.; Hastie, N.D.; Davies, R.C. Identification of WTAP, a novel Wilms’ tumour 1-associating protein. Hum. Mol. Genet. 2000, 9, 2231–2239. [Google Scholar] [CrossRef] [Green Version]
- Horiuchi, K.; Kawamura, T.; Iwanari, H.; Ohashi, R.; Naito, M.; Kodama, T.; Hamakubo, T. Identification of Wilms’ tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J. Biol. Chem. 2013, 288, 33292–33302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwala, S.D.; Blitzblau, H.G.; Hochwagen, A.; Fink, G.R. RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet. 2012, 8, e1002732. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Li, H.; Bodi, Z.; Button, J.; Vespa, L.; Herzog, M.; Fray, R.G. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant. Cell 2008, 20, 1278–1288. [Google Scholar] [CrossRef] [Green Version]
- Ping, X.L.; Sun, B.F.; Wang, L.; Xiao, W.; Yang, X.; Wang, W.; Adhikari, S.; Shi, Y.; Lv, Y.; Chen, Y.; et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014, 24, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, S.; Mumbach, M.R.; Jovanovic, M.; Wang, T.; Maciag, K.; Bushkin, G.G.; Mertins, P.; Ter-Ovanesyan, D.; Habib, N.; Cacchiarelli, D.; et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 2014, 8, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.S.; Wang, X.; Beadell, A.V.; Lu, Z.; Shi, H.; Kuuspalu, A.; Ho, R.K.; He, C. m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 2017, 542, 475–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geula, S.; Moshitch-Moshkovitz, S.; Dominissini, D.; Mansour, A.A.; Kol, N.; Salmon-Divon, M.; Hershkovitz, V.; Peer, E.; Mor, N.; Manor, Y.S.; et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 2015, 347, 1002–1006. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Guo, J.; Jin, Y.X.; Yuan, B.; Zhang, J.; Kim, N. C-Phycocyanin supplementation during in vitro maturation enhances pre-implantation developmental competence of parthenogenetic and cloned embryos in pigs. Theriogenology 2018, 106, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.K.; Yu, X.X.; Liu, Y.H.; Li, X.; Liu, X.M.; Wang, P.C.; Liu, S.; Miao, J.K.; Du, Z.Q.; Yang, C.X. Reduced nucleic acid methylation impairs meiotic maturation and developmental potency of pig oocytes. Theriogenology 2018, 121, 160–167. [Google Scholar] [CrossRef]
- Liang, S.; Jin, Y.X.; Yuan, B.; Zhang, J.; Kim, N. Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress. Sci. Rep. 2017, 7, 11114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, R.; Jiang, D.; Wang, Y.; Wang, X. N6-Methyladenosine (m6A) Methylation in mRNA with A Dynamic and Reversible Epigenetic Modification. Mol. Biotechnol. 2016, 58, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Liu, J.; He, C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015, 29, 1343–1355. [Google Scholar] [CrossRef] [Green Version]
- Haussmann, I.U.; Bodi, Z.; Sanchez-Moran, E.; Mongan, N.; Archer, N.; Fray, R.G.; Soller, M. m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 2016, 540, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Penn, J.K.M.; Graham, P.; Deshpande, G.; Calhoun, G.; Chaouki, A.S.; Salz, H.K.; Schedl, P. Functioning of the Drosophila Wilms’-Tumor-1-Associated Protein Homolog, Fl(2)d, in Sex-Lethal-Dependent Alternative Splicing. Genetics 2008, 178, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Ortega, A.; Niksic, M.; Bachi, A.; Wilm, M.; Sánchez, L.; Hastie, N.; Valcárcel, J. Biochemical Function of Female-Lethal (2)D/Wilms’ Tumor Suppressor-1-associated Proteins in Alternative Pre-mRNA Splicing. J. Biol. Chem. 2003, 278, 3040–3047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horiuchi, K.; Umetani, M.; Minami, T.; Okayama, H.; Takada, S.; Yamamoto, M.; Aburatani, H.; Reid, P.C.; Housman, D.E.; Hamakubo, T.; et al. Wilms’ tumor 1-associating protein regulates G2/M transition through stabilization of cyclin A2 Mrna. Proc. Natl. Acad. Sci. USA 2006, 103, 17278–17283. [Google Scholar] [CrossRef] [Green Version]
- Small, T.W.; Bolender, Z.; Bueno, C.; O’Neil, C.; Nong, Z.; Rushlow, W.; Rajakumar, N.; Kandel, C.; Strong, J.; Madrenas, J.; et al. Wilms’ tumor 1-associating protein regulates the proliferation of vascular smooth muscle cells. Circ. Res. 2006, 99, 1338–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukusumi, Y.; Naruse, C.; Asano, M. Wtap is required for differentiation of endoderm and mesoderm in the mouse embryo. Dev. Dyn. 2008, 237, 618–629. [Google Scholar] [CrossRef] [PubMed]
Gene | GenBank Accession No. | Primer Sequences | Annealing Temperature (°C) | Product Size (bp) | Amplification Efficiency |
---|---|---|---|---|---|
WTAP | NM_001244241.1 | F:GCGGGAATAAGGCCTCCAAC R:TGTGAGTGGCGTGTGAGAGA | 60 | 136 | 97.4% |
OCT4 | NM001113060 | F:AGTGAGAGGCAACCTGGAGA R:TCGTTGCGAATAGTCACTGC | 60 | 166 | 98.2% |
SOX2 | NP_001116669.1 | F:TGTCGGAGACGGAGAAGCG R:CGGGGCCGGTATTTATAATCC | 60 | 94 | 97.8% |
NANOG | NP_001123443.1 | F:AGGACAGCCCTGATTCTTCCACAA R:AAAGTTCTTGCATCTGCTGGAGGC | 60 | 198 | 98.4% |
CASPASE3 | NM_214131 | F:GAGGCAGACTTCTTGTATGC R:CATGGACACAATACATGGAA | 55 | 236 | 99.6% |
BAX | XM_003127290 | F:CGCTTTTCTACTTTGCCAGT R:GCAGAAAAGACACAGTCCAA | 60 | 279 | 98.1% |
BCL2 | XM_021099593 | F:CCTCCCATTTAGATGTGACTTT R:ATCCTCGATGCAGAAAAAGC | 60 | 187 | 97.6% |
GAPDH | AF017079 | F:GGGCATGAACCATGAGAAGT R:AAGCAGGGATGATGTTCTGG | 60 | 230 | 99.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.; Huang, S.; Wang, D.; Jin, Y.; Zhang, M.; Zhang, J.; Yu, X. Loss of WTAP Impairs Early Parthenogenetic Embryo Development. Animals 2021, 11, 1675. https://doi.org/10.3390/ani11061675
Hao J, Huang S, Wang D, Jin Y, Zhang M, Zhang J, Yu X. Loss of WTAP Impairs Early Parthenogenetic Embryo Development. Animals. 2021; 11(6):1675. https://doi.org/10.3390/ani11061675
Chicago/Turabian StyleHao, Jindong, Siyi Huang, Dongxu Wang, Yongxun Jin, Mingjun Zhang, Jiabao Zhang, and Xianfeng Yu. 2021. "Loss of WTAP Impairs Early Parthenogenetic Embryo Development" Animals 11, no. 6: 1675. https://doi.org/10.3390/ani11061675
APA StyleHao, J., Huang, S., Wang, D., Jin, Y., Zhang, M., Zhang, J., & Yu, X. (2021). Loss of WTAP Impairs Early Parthenogenetic Embryo Development. Animals, 11(6), 1675. https://doi.org/10.3390/ani11061675