Investigation of Early Supplementation of Nucleotides on the Intestinal Maturation of Weaned Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling
2.2. Growth Performance and Samplings
Statistical Analysis of Growth Performance and Blood Parameters
2.3. Microbiota Profiling
Statistical Analysis of Microbiota
2.4. Transcriptome
2.4.1. Pig mRNA Extraction and Sequencing
2.4.2. Differential Expression Analyses of RNA-Seq Data
2.4.3. Functional Enrichment Analysis
3. Results
3.1. Growth Performance and Blood Parameters
3.2. Microbiota Profile
3.3. Transcriptome Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Van Buren, C.T.; Rudolph, F. Dietary Nucleotides: A Conditional Requirement. Nutrition 1997, 13, 470–472. [Google Scholar] [CrossRef]
- Uauy, R.; Quan, R.; Gil, A. Role of Nucleotides in Intestinal Development and Repair: Implications for Infant Nutrition. J. Nutr. 1994, 124, 1436S–1441S. [Google Scholar] [CrossRef]
- Grimble, G.K.; Westwood, O.M. Nucleotides as Immunomodulators in Clinical Nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 57–64. [Google Scholar] [CrossRef]
- Sauer, N.; Mosenthin, R.; Bauer, E. The Role of Dietary Nucleotides in Single-Stomached Animals. Nutr. Res. Rev. 2011, 24, 46–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateo, C.D. Aspects of Nucleotide Nutrition in Pigs. Ph.D. Thesis, South Dakota State University, Brookings, SD, USA, 2005. [Google Scholar]
- Mateo, C.D.; Peters, D.N.; Stein, H.H. Nucleotides in Sow Colostrum and Milk at Different Stages of Lactation. J. Anim. Sci. 2004, 82, 1339–1342. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Yang, Z.; Song, C.; Liang, C.; Li, H.; Chen, W.; Lin, W.; Xie, Q. Effects of Dietary Yeast Nucleotides Supplementation on Intestinal Barrier Function, Intestinal Microbiota, and Humoral Immunity in Specific Pathogen-Free Chickens. Poult. Sci. 2018, 97, 3837–3846. [Google Scholar] [CrossRef] [PubMed]
- Fairbrother, J.M.; Nadeau, É.; Bélanger, L.; Tremblay, C.-L.; Tremblay, D.; Brunelle, M.; Wolf, R.; Hellmann, K.; Hidalgo, Á. Immunogenicity and Protective Efficacy of a Single-Dose Live Non-Pathogenic Escherichia Coli Oral Vaccine against F4-Positive Enterotoxigenic Escherichia Coli Challenge in Pigs. Vaccine 2017, 35, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, C.B.; Cirera, S.; Anderson, S.I.; Archibald, A.L.; Raudsepp, T.; Chowdhary, B.; Edfors-Lilja, I.; Andersson, L.; Fredholm, M. Linkage and Comparative Mapping of the Locus Controlling Susceptibility towards E. Coli F4ab/Ac Diarrhoea in Pigs. Cytogenet. Genome Res. 2003, 102, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.E.; Santiago-Mateo, K.; Wertz, N.; Sun, X.; Sinkora, M.; Francis, D.L. Antibody Repertoire Development in Fetal and Neonatal Piglets. XXIV. Hypothesis: The Ileal Peyer Patches (IPP) Are the Major Source of Primary, Undiversified IgA Antibodies in Newborn Piglets. Dev. Comp. Immunol. 2016, 65, 340–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing. PLoS ONE 2014, 9, e105592. [Google Scholar] [CrossRef] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Dixon, P. VEGAN, a Package of R Functions for Community Ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinform. Oxf. Engl. 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Patro, R.; Duggal, G.; Kingsford, C. Salmon: Accurate, Versatile and Ultrafast Quantification from RNA-Seq Data Using Lightweight-Alignment. bioRxiv 2015, 021592. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bild, A.; Febbo, P.G. Application of a Priori Established Gene Sets to Discover Biologically Important Differential Expression in Microarray Data. Proc. Natl. Acad. Sci. USA 2005, 102, 15278–15279. [Google Scholar] [CrossRef] [Green Version]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) Hallmark Gene Set Collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merico, D.; Isserlin, R.; Stueker, O.; Emili, A.; Bader, G.D. Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation. PLoS ONE 2010, 5, e13984. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Domeneghini, C.; Di Giancamillo, A.; Savoini, G.; Paratte, R.; Bontempo, V.; Dell’Orto, V. Structural Patterns of Swine Ileal Mucosa Following L-Glutamine and Nucleotide Administration during the Weaning Period. An Histochemical and Histometrical Study. Histol. Histopathol. 2004, 19, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.N.; Liu, S.R.; Chen, Y.T.; Wang, R.C.; Lin, S.Y.; Weng, C.F. Effects of Diets Supplemented with Organic Acids and Nucleotides on Growth, Immune Responses and Digestive Tract Development in Weaned Pigs. J. Anim. Physiol. Anim. Nutr. 2007, 91, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Puig, D.; Manzanilla, E.G.; Morales, J.; Borda, E.; Pérez, J.F.; Piñeiro, C.; Chetrit, C. Dietary Nucleotide Supplementation Reduces Occurrence of Diarrhoea in Early Weaned Pigs. Livest. Sci. 2007, 108, 276–279. [Google Scholar] [CrossRef]
- Jang, K.B.; Kim, S.W. Supplemental Effects of Dietary Nucleotides on Intestinal Health and Growth Performance of Newly Weaned Pigs. J. Anim. Sci. 2019, 97, 4875–4882. [Google Scholar] [CrossRef] [PubMed]
- Perricone, V.; Comi, M.; Bontempo, V.; Lecchi, C.; Ceciliani, F.; Crestani, M.; Ferrari, A.; Savoini, G.; Agazzi, A. Effects of Nucleotides Administration on Growth Performance and Immune Response of Post-Weaning Piglets. Ital. J. Anim. Sci. 2020, 19, 295–301. [Google Scholar] [CrossRef]
- Perri, A.M.; O’Sullivan, T.L.; Harding, J.C.S.; Wood, R.D.; Friendship, R.M. Hematology and Biochemistry Reference Intervals for Ontario Commercial Nursing Pigs Close to the Time of Weaning. Can. Vet. J. 2017, 58, 371–376. [Google Scholar]
- Revilla, M.; Friggens, N.C.; Broudiscou, L.P.; Lemonnier, G.; Blanc, F.; Ravon, L.; Mercat, M.J.; Billon, Y.; Rogel-Gaillard, C.; Floch, N.L.; et al. Towards the Quantitative Characterisation of Piglets’ Robustness to Weaning: A Modelling Approach. Animal 2019, 13, 2536–2546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colditz, I.G.; Hine, B.C. Resilience in Farm Animals: Biology, Management, Breeding and Implications for Animal Welfare. Anim. Prod. Sci. 2016, 56, 1961–1983. [Google Scholar] [CrossRef]
- Bhattarai, S.; Nielsen, J.P. Association between Hematological Status at Weaning and Weight Gain Post-Weaning in Piglets. Livest. Sci. 2015, 182, 64–68. [Google Scholar] [CrossRef] [Green Version]
- De Rodas, B.; Youmans, B.P.; Danzeisen, J.L.; Tran, H.; Johnson, T.J. Microbiome Profiling of Commercial Pigs from Farrow to Finish. J. Anim. Sci. 2018, 96, 1778–1794. [Google Scholar] [CrossRef]
- Metzler-Zebeli, B.U.; Lawlor, P.G.; Magowan, E.; Zebeli, Q. Interactions between Metabolically Active Bacteria and Host Gene Expression at the Cecal Mucosa in Pigs of Diverging Feed Efficiency. J. Anim. Sci. 2018, 96, 2249–2264. [Google Scholar] [CrossRef] [PubMed]
- Petri, D.; Hill, J.E.; Van Kessel, A.G. Microbial Succession in the Gastrointestinal Tract (GIT) of the Preweaned Pig. Livest. Sci. 2010, 133, 107–109. [Google Scholar] [CrossRef]
- Scanlon, K.A.; Cagney, C.; Walsh, D.; McNulty, D.; Carroll, A.; McNamara, E.B.; McDowell, D.A.; Duffy, G. Occurrence and Characteristics of Fastidious Campylobacteraceae Species in Porcine Samples. Int. J. Food Microbiol. 2013, 163, 6–13. [Google Scholar] [CrossRef]
- Bruford, E.A.; Braschi, B.; Denny, P.; Jones, T.E.M.; Seal, R.L.; Tweedie, S. Guidelines for Human Gene Nomenclature. Nat. Genet. 2020, 52, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Ponsuksili, S.; Reyer, H.; Trakooljul, N.; Murani, E.; Wimmers, K. Single- and Bayesian Multi-Marker Genome-Wide Association for Haematological Parameters in Pigs. PLoS ONE 2016, 11, e0159212. [Google Scholar] [CrossRef] [Green Version]
- Bartelt, D.C.; Shapanka, R.; Greene, L.J. The Primary Structure of the Human Pancreatic Secretory Trypsin Inhibitor. Amino Acid Sequence of the Reduced S-Aminoethylated Protein. Arch. Biochem. Biophys. 1977, 179, 189–199. [Google Scholar] [CrossRef]
- Gregorczyk, I.; Maślanka, T. Effect of Selected Non-Steroidal Anti-Inflammatory Drugs on Activation-Induced CD25 Expression on Murine CD4+ and CD8+ T Cells: An in Vitro Study. Cent. Eur. J. Immunol. 2019, 44, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Gross, G.; van Der Meulen, J.; Snel, J.; van Der Meer, R.; Kleerebezem, M.; Niewold, T.A.; Hulst, M.M.; Smits, M.A. Mannose-Specific Interaction of Lactobacillus Plantarum with Porcine Jejunal Epithelium. FEMS Immunol. Med. Microbiol. 2008, 54, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Trevisi, P.; Priori, D.; Jansman, A.J.M.; Luise, D.; Koopmans, S.-J.; Hynönen, U.; Palva, A.; van der Meulen, J.; Bosi, P. Molecular Networks Affected by Neonatal Microbial Colonization in Porcine Jejunum, Luminally Perfused with Enterotoxigenic Escherichia Coli, F4ac Fimbria or Lactobacillus Amylovorus. PLoS ONE 2018, 13, e0202160. [Google Scholar] [CrossRef]
- Luise, D.; Motta, V.; Bertocchi, M.; Salvarani, C.; Clavenzani, P.; Fanelli, F.; Pagotto, U.; Bosi, P.; Trevisi, P. Effect of Mucine 4 and Fucosyltransferase 1 Genetic Variants on Gut Homoeostasis of Growing Healthy Pigs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Pabst, R.; Geist, M.; Rothkötter, H.J.; Fritz, F.J. Postnatal Development and Lymphocyte Production of Jejunal and Ileal Peyer’s Patches in Normal and Gnotobiotic Pigs. Immunology 1988, 64, 539–544. [Google Scholar] [PubMed]
- Carver, J.D. Dietary Nucleotides: Effects on the Immune and Gastrointestinal Systems. Acta Paediatr. 1999, 88, 83–88. [Google Scholar] [CrossRef]
- Waititu, S.M.; Yin, F.; Patterson, R.; Yitbarek, A.; Rodriguez-Lecompte, J.C.; Nyachoti, C.M. Dietary Supplementation with a Nucleotide-Rich Yeast Extract Modulates Gut Immune Response and Microflora in Weaned Pigs in Response to a Sanitary Challenge. Anim. Int. J. Anim. Biosci. 2017, 11, 2156–2164. [Google Scholar] [CrossRef]
- Panneerselvam, D.; Budh, D.P. Peyer Patches. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Takeuchi, T.; Gonda, T. Distribution of the Pores of Epithelial Basement Membrane in the Rat Small Intestine. J. Vet. Med. Sci. 2004, 66, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Gebert, A.; Rothkötter, H.-J.; Pabst, R. Cytokeratin 18 Is an M-Cell Marker in Porcine Peyer’s Patches. Cell Tissue Res. 1994, 276, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Scopesi, F.; Verkeste, C.M.; Paola, D.; Gazzolo, D.; Pronzato, M.A.; Bruschettini, P.L.; Marinari, U.M. Dietary Nucleotide Supplementation Raises Erythrocyte 2,3-Diphosphoglycerate Concentration in Neonatal Rats. J. Nutr. 1999, 129, 662–665. [Google Scholar] [CrossRef] [Green Version]
- DeLucchi, C.; Pita, M.L.; Faus, M.J.; Molina, J.A.; Uauy, R.; Gil, A. Effects of Dietary Nucleotides on the Fatty Acid Composition of Erythrocyte Membrane Lipids in Term Infants. J. Pediatr. Gastroenterol. Nutr. 1987, 6, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Boza, J.; Jimenez, J.; Faus, M.J.; Gil, A. Influences of Postnatal Age and Dietary Nucleotides on Plasma Fatty Acids in the Weanling Rat. J. Parenter. Enter. Nutr. 1992, 16, 322–326. [Google Scholar] [CrossRef]
- Axelsson, I.; Flodmark, C.E.; Räihä, N.; Tacconi, M.; Visentin, M.; Minoli, I.; Moro, G.; Warm, A. The Influence of Dietary Nucleotides on Erythrocyte Membrane Fatty Acids and Plasma Lipids in Preterm Infants. Acta Paediatr. 1997, 86, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Shigeoka, M.; Arimoto, S.; Akashi, M. JCAD Expression and Localization in Human Blood Endothelial Cells. Heliyon 2020, 6, e05121. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.G.; Stein, S. JCAD: From Systems Genetics Identification to the Experimental Validation of a Coronary Artery Disease Risk Locus. Eur. Heart J. 2019, 40, 2409–2412. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Units | Content |
---|---|---|
Bakery former food | % | 20.00 |
Barley | % | 15.00 |
Soybean Protein Concentrate | % | 13.50 |
Wheat, soft | % | 12.20 |
Maize | % | 11.75 |
Whey, sweet, dehydrated, skimmed | % | 9.00 |
Wheat middlings | % | 5.00 |
Spray dried porcine plasma | % | 3.00 |
Lard | % | 2.00 |
Beet pulp, dehydrated | % | 1.50 |
Dicalcium phosphate anhydrous | % | 1.40 |
Dextrose | % | 1.20 |
Medium chain free fatty acid mixture | % | 1.00 |
Organic acid mixture | % | 1.00 |
l-Lysine HCl | % | 0.55 |
Calcium carbonate | % | 0.53 |
Sodium chloride | % | 0.30 |
Vitamin and trace mineral mixture 1 | % | 0.30 |
dl-Methionine | % | 0.28 |
l-Threonine | % | 0.28 |
l-Valine | % | 0.11 |
l-Tryptophan | % | 0.10 |
Calculated values 2 | ||
Metabolizable energy | Kcal/kg | 3340 |
Crude Protein | % | 18.00 |
Crude Fat | % | 6.44 |
Crude Fibre | % | 2.75 |
Ash | % | 5.71 |
Lysine | % | 1.34 |
Cysteine | % | 0.30 |
Methionine | % | 0.51 |
Threonine | % | 0.95 |
Tryptophan | % | 0.29 |
Valine | % | 0.99 |
Item | CO | NU | SEM | p-Value |
---|---|---|---|---|
BW, d 10, kg | 3.49 | 3.47 | 0.09 | 0.872 |
BW, d 21, kg | 6.38 | 6.22 | 0.14 | 0.409 |
BW, d 26, kg | 7.25 | 7.09 | 0.17 | 0.450 |
ADG, d 10-d21, g | 263.2 | 250.1 | 7.8 | 0.231 |
ADG, d 10-d26, g | 235.2 | 226.4 | 7.2 | 0.381 |
BW, d 38, kg | 9.55 | 9.38 | 0.20 | 0.559 |
ADG, d 10-d38, g | 216.5 | 211.0 | 5.2 | 0.448 |
ADG, d 28-d38, g | 190.1 | 188.1 | 7.5 | 0.849 |
FI, d 26-d38, g | 222.2 | 216.4 | 5.5 | 0.453 |
F:G, d 26-d39 | 1.33 | 1.20 | 0.08 | 0.225 |
Days with diarrea, n | 0.53 | 0.71 | 0.17 | 0.433 |
Item 1 | Diet | SEM | Sampling Time | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
CO | NU | Weaning | d 12 Post-Weaning | Diet 1 | Sex | Sampling Time 2 | |||
RBC, M/µL | 6.52 | 6.73 | 0.11 | 6.40 | 6.86 | 0.12 | 0.114 | 0.844 | 0.013 |
HGB, g/dL | 11.6 | 12.0 | 0.2 | 11.7 | 11.9 | 0.2 | 0.032 | 0.256 | 0.517 |
HCT, % | 35.4 | 36.9 | 0.6 | 35.2 | 37.1 | 0.6 | 0.026 | 0.354 | 0.037 |
MCV, fL | 54.5 | 55.1 | 0.6 | 55.3 | 54.3 | 0.7 | 0.469 | 0.196 | 0.327 |
MCH, pg | 17.9 | 18.0 | 0.2 | 18.4 | 17.4 | 0.2 | 0.736 | 0.182 | 0.003 |
MCHC, g/dL | 32.9 | 32.7 | 0.2 | 33.5 | 32.1 | 0.2 | 0.403 | 0.776 | 0.0001 |
RDW, % | 24.4 | 23.2 | 0.6 | 23.5 | 24.0 | 0.7 | 0.102 | 0.203 | 0.624 |
PLT, K/µL | 507 | 537 | 33 | 580 | 464 | 35 | 0.434 | 0.955 | 0.028 |
WBC, K/µL | 13.8 | 13.7 | 0.8 | 11.4 | 16.0 | 0.85 | 0.897 | 0.012 | 0.0004 |
Neutrophils, K/µL | 6.87 | 7.09 | 0.605 | 6.94 | 7.03 | 0.64 | 0.757 | 0.432 | 0.926 |
Lymphocytes, K/µL | 5.43 | 4.99 | 0.62 | 3.22 | 7.20 | 0.65 | 0.545 | 0.023 | 0.0001 |
Monocytes, K/µL | 1.15 | 1.26 | 0.15 | 1.05 | 1.36 | 0.16 | 0.559 | 0.496 | 0.209 |
Eosinophils, K/µL | 0.13 | 0.11 | 0.040 | 0 | 0.25 | 0.045 | 0.653 | 0.365 | <0.0001 |
Basophils, K/µL | 0.19 | 0.18 | 0.040 | 0.15 | 0.22 | 0.045 | 0.744 | 0.042 | 0.294 |
Neutrophils, % | 51.9 | 51.6 | 2.4 | 59.7 | 43.8 | 2.56 | 0.901 | 0.543 | <0.0001 |
Lymphocytes, % | 36.7 | 37.1 | 3.0 | 29.5 | 44.3 | 3.14 | 0.929 | 0.486 | 0.002 |
Monocytes, % | 8.95 | 9.29 | 0.995 | 9.33 | 8.91 | 1.06 | 0.774 | 0.568 | 0.793 |
Eosinophils, % | 0.97 | 0.71 | 0.28 | 0 | 1.75 | 0.295 | 0.434 | 0.155 | 0.0001 |
Basophils, % | 1.43 | 1.23 | 0.22 | 1.37 | 1.29 | 0.23 | 0.432 | 0.225 | 0.830 |
Gene Set Name | Total Number of Genes | Normalized Standard Error | p-Value | FDR q-Value |
---|---|---|---|---|
CO Group | ||||
HEME_METABOLISM | 185 | 2.922 | 0.000 | 0.000 |
INTERFERON_ALPHA_RESPONSE | 87 | 2.820 | 0.000 | 0.000 |
INTERFERON_GAMMA_RESPONSE | 177 | 2.672 | 0.000 | 0.000 |
IL6_JAK_STAT3_SIGNALING | 80 | 2.106 | 0.000 | 0.000 |
TNFA_SIGNALING_VIA_NFKB | 192 | 1.903 | 0.000 | 0.000 |
MYOGENESIS | 188 | 1.863 | 0.000 | 0.001 |
P53_PATHWAY | 187 | 1.772 | 0.000 | 0.002 |
KRAS_SIGNALING_UP | 183 | 1.772 | 0.000 | 0.002 |
INFLAMMATORY_RESPONSE | 188 | 1.767 | 0.000 | 0.001 |
MITOTIC_SPINDLE | 198 | 1.759 | 0.000 | 0.001 |
ANGIOGENESIS | 31 | 1.696 | 0.002 | 0.003 |
COMPLEMENT | 185 | 1.678 | 0.000 | 0.004 |
ESTROGEN_RESPONSE_LATE | 174 | 1.646 | 0.000 | 0.005 |
XENOBIOTIC_METABOLISM | 169 | 1.585 | 0.000 | 0.009 |
APOPTOSIS | 154 | 1.571 | 0.001 | 0.010 |
APICAL_JUNCTION | 184 | 1.559 | 0.001 | 0.011 |
IL2_STAT5_SIGNALING | 191 | 1.544 | 0.001 | 0.013 |
COAGULATION | 116 | 1.530 | 0.006 | 0.014 |
WNT_BETA_CATENIN_SIGNALING | 39 | 1.524 | 0.025 | 0.015 |
EPITHELIAL_MESENCHYMAL_TRANSITION | 185 | 1.508 | 0.001 | 0.017 |
REACTIVE_OXYGEN_SPECIES_PATHWAY | 49 | 1.460 | 0.034 | 0.026 |
HYPOXIA | 186 | 1.429 | 0.006 | 0.033 |
HEDGEHOG_SIGNALING | 32 | 1.422 | 0.055 | 0.033 |
UV_RESPONSE_UP | 145 | 1.405 | 0.009 | 0.036 |
NU Group | ||||
MYC_TARGETS_V1 | 193 | −2.469 | 0 | 0 |
Gene Set Name | Total Number of Genes | Normalized Standard Error | p-Value | FDR q-Value |
---|---|---|---|---|
CO group | ||||
OXIDATIVE_ PHOSPHORYLATION | 167 | 2.826 | 0.000 | 0.000 |
MYC_TARGETS_V1 | 193 | 2.408 | 0.000 | 0.000 |
DNA_REPAIR | 143 | 2.159 | 0.000 | 0.000 |
FATTY_ACID_ METABOLISM | 140 | 1.999 | 0.000 | 0.000 |
NU group | ||||
EPITHELIAL_ MESENCHYMAL_ TRANSITION | 185 | −1.823 | 0.000 | 0.014 |
INTERFERON_ ALPHA_RESPONSE | 87 | −1.720 | 0.000 | 0.017 |
UV_RESPONSE_DN | 136 | −1.696 | 0.000 | 0.015 |
TNFA_SIGNALING_ VIA_NFKB | 192 | −1.665 | 0.000 | 0.016 |
HEME_METABOLISM | 185 | −1.664 | 0.002 | 0.013 |
INTERFERON_ GAMMA_RESPONSE | 177 | −1.550 | 0.002 | 0.031 |
ANGIOGENESIS | 31 | −1.526 | 0.039 | 0.032 |
HEDGEHOG_ SIGNALING | 32 | −1.516 | 0.029 | 0.032 |
INFLAMMATORY_ RESPONSE | 188 | −1.456 | 0.004 | 0.048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa, F.; Luise, D.; Archetti, I.; Bosi, P.; Trevisi, P. Investigation of Early Supplementation of Nucleotides on the Intestinal Maturation of Weaned Piglets. Animals 2021, 11, 1489. https://doi.org/10.3390/ani11061489
Correa F, Luise D, Archetti I, Bosi P, Trevisi P. Investigation of Early Supplementation of Nucleotides on the Intestinal Maturation of Weaned Piglets. Animals. 2021; 11(6):1489. https://doi.org/10.3390/ani11061489
Chicago/Turabian StyleCorrea, Federico, Diana Luise, Ivonne Archetti, Paolo Bosi, and Paolo Trevisi. 2021. "Investigation of Early Supplementation of Nucleotides on the Intestinal Maturation of Weaned Piglets" Animals 11, no. 6: 1489. https://doi.org/10.3390/ani11061489
APA StyleCorrea, F., Luise, D., Archetti, I., Bosi, P., & Trevisi, P. (2021). Investigation of Early Supplementation of Nucleotides on the Intestinal Maturation of Weaned Piglets. Animals, 11(6), 1489. https://doi.org/10.3390/ani11061489