Development and Validation of Equations for Predicting the Metabolizable Energy Value of Double-Low Rapeseed Cake for Growing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.1.1. Experimental Design, Dietary Treatments, Sample Collection, Chemical Analysis, and Calculation
2.1.2. Statistical Analyses
2.2. Experiment 2
2.2.1. Experimental Design and Dietary Treatments
2.2.2. Sample Collection
2.2.3. Chemical Analysis and Calculation
2.2.4. Statistical Analyses
3. Results
3.1. Experiment 1
Metabolizable Energy Prediction Equations
3.2. Experiment 2
3.2.1. Growth Performance, Caloric Efficiency of ME, and Serum Parameters
3.2.2. Nutrient Digestibility
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA. Oilseeds: World Markets and Trade, USDA Foreign Agricultural Service. Available online: http://apps.fas.usda.gov/psdonline/circulars/production.pdf (accessed on 11 November 2019).
- Keith, M.O.; Bell, J.M. Composition and digestibility of canola press cake as a feedstuff for use in swine diets. Can. J. Anim. Sci. 1991, 71, 879–885. [Google Scholar] [CrossRef]
- Leming, R.; Lember, A. Chemical composition of expeller-extracted and cold-pressed rapeseed cake. Agraarteadus 2005, 16, 103–109. [Google Scholar]
- Landero, J.L.; Beltranena, E.; Cervantes, M.; Araiza, A.B.; Zijlstra, R.T. The effect of feeding expeller-pressed canola meal on growth performance and diet nutrient digestibility in weaned pigs. Anim. Feed Sci. Technol. 2012, 171, 240–245. [Google Scholar] [CrossRef]
- Zhou, X.; Beltranena, E.; Zijlstra, R.T. Effects of feeding canola press-cake on diet nutrient digestibility and growth performance of weaned pigs. Anim. Feed Sci. Technol. 2016, 211, 208–215. [Google Scholar] [CrossRef]
- Li, P.L.; Wu, F.; Chen, Y.F.; Wang, J.R.; Guo, P.P.; Li, Z.C.; Liu, L.; Lai, C.H. Determination of the energy content and amino acid digestibility of double-low rapeseed cakes fed to growing pigs. Anim. Feed Sci. Technol. 2015, 210, 243–253. [Google Scholar] [CrossRef]
- Powles, J.; Wiseman, J.; Cole, D.J.A.; Jagger, S. Prediction of the apparent digestible energy value of fats given to pigs. Anim. Sci. 1995, 61, 149–154. [Google Scholar] [CrossRef]
- Xu, X.; Wang, H.; Piao, X. Validation of metabolisable energy prediction equation for de-oiled corn distillers dried grains with solubles fed to finishing pigs. Ital. J. Anim. Sci. 2016, 15, 55–61. [Google Scholar] [CrossRef]
- Meloche, K.J.; Kerr, B.J.; Billor, N.; Shurson, G.C.; Dozier, W.A., III. Validation of prediction equations for apparent metabolizable energy of corn distillers dried grains with solubles in broiler chicks. Poult. Sci. 2014, 93, 1428–1439. [Google Scholar] [CrossRef]
- Li, Z.C. Net Energy Prediction of Plant Protein Ingredients to Growing Pigs. Ph.D. Thesis, China Agricultural University, Beijing, China, 2017. [Google Scholar]
- Urriola, P.E.; Lia, M.; Kerrb, B.J.; Shursona, G.C. Evaluation of prediction equations to estimate gross, digestible, and metabolizable energy content of maize dried distillers grains with solubles (DDGS) for swine based on chemical composition. Anim. Feed Sci. Technol. 2014, 198, 196–202. [Google Scholar] [CrossRef]
- Rosero, D.S.; Odle, J.; Arellano, C. Development of prediction equations to estimate the apparent digestible energy content of lipids when fed to lactating sows. J. Anim. Sci. 2015, 93, 1165–1176. [Google Scholar] [CrossRef]
- Shi, C.X.; Liu, Z.Y.; Shi, M.; Li, P.; Zeng, Z.K.; Liu, L.; Huang, C.F.; Zhu, Z.P.; Li, D.F. Prediction of digestible and metabolizable energy content of rice bran fed to growing pigs. Asian-Australs. J. Anim. Sci. 2015, 28, 654–661. [Google Scholar] [CrossRef] [Green Version]
- Meloche, K.J.; Kerr, B.J.; Shurson, G.C.; Dozier, W.A., III. Apparent metabolizable energy and prediction equations for reduced-oil corn distillers dried grains with solubles in broiler chicks from 10 to 18 days of age. Poult. Sci. 2013, 92, 3176–3183. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academy of Sciences: Washington, DC, USA, 2012. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official’s Analytical Chemist: Arlington, VA, USA, 2007. [Google Scholar]
- Thiex, N.J.; Anderson, S.; Gildemeister, B. Crude fat, diethyl ether extraction, in feed, cereal grain, and forage (Randall/Soxtec/submersion method): Collaborative study. J. AOAC Int. 2003, 86, 888–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Daun, J.K.; McGregor, D.I. Glucosinolate analysis of rapeseed (canola). In Methods of the Grain Research Laboratory, 2nd ed.; Agriculture Canada, Canadian Grain Commission Press: Winnipeg, MB, Canada, 1981; pp. 111–116. [Google Scholar]
- Chen, Y.F.; Wu, F.; Li, P.L.; Lyu, Z.Q.; Liu, L.; Lyu, M.B.; Wang, F.L.; Lai, C.H. Energy content and amino acid digestibility of flaxseed expellers fed to growing pigs. J Anim. Sci. 2016, 94, 5295–5307. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Li, P.; Ma, X.K.; Xu, Y.T.; Tian, Q.Y.; Liu, L.; Li, D.F.; Piao, X.S. Tannin is a key factor in the determination and prediction of energy content in sorghum grains fed to growing pigs. J. Anim. Sci. 2016, 94, 2879–2889. [Google Scholar] [CrossRef] [PubMed]
- Fairbairn, S.L.; Patience, J.F.; Classen, H.L.; Zijlstra, R.T. The energy content of barley fed to growing pigs: Characterizing the nature of its variability and developing prediction equations for its estimation. J. Anim. Sci. 1999, 77, 1502–1512. [Google Scholar] [CrossRef]
- Smith, B.; Hassen, A.; Hinds, M.; Rice, D.; Jones, D.; Sauber, T.; Iiams, C.; Sevenich, D.; Allen, R.; Owens, F.; et al. Predicting the digestible energy of corn determined with growing swine from nutrient composition and cross-species measurements. J. Anim. Sci. 2015, 93, 1025–1038. [Google Scholar] [CrossRef] [Green Version]
- Noblet, J.; van Milgen, J. Energy value of pig feeds: Effect of pig body weight and energy evaluation system. J. Anim. Sci. 2004, 82, 229–238. [Google Scholar] [CrossRef]
- Bell, J.M. Factors affecting the nutritional value of canola meal: A review. Can. J. Anim. Sci. 1993, 73, 689–697. [Google Scholar] [CrossRef]
- Bruce, K.J.; Karr-Lilienthal, L.K.; Zinn, K.E.; Pope, L.L.; Mahan, D.C.; Fastinger, N.D.; Watts, M.; Utterback, P.L.; Parsons, C.M.; Castaneda, E.O.; et al. Evaluation of the inclusion of soybean oil and soybean processing by-products to soybean meal on nutrient composition and digestibility in swine and poultry. J. Anim. Sci. 2006, 84, 1403–1414. [Google Scholar] [CrossRef]
- Maison, T.; Liu, Y.; Stein, H.H. Digestibility of energy and detergent fiber and digestible and metabolizable energy values in canola meal, 00-rapeseed meal, and 00-rapeseed expellers fed to growing pigs. J. Anim. Sci. 2015, 93, 652–660. [Google Scholar] [CrossRef]
- Velayudhan, D.E.; Schuh, K.; Woyengo, T.A.; Sands, J.S.; Nyachoti, C.M. Effect of expeller extracted canola meal on growth performance, organ weights, and blood parameters of growing pigs. J. Anim. Sci. 2017, 95, 3402–3409. [Google Scholar] [CrossRef]
- Seneviratne, R.W.; Young, M.G.; Beltranena, E.; Goonewardene, L.A.; Newkirk, R.W.; Zijlstra, R.T. The nutritional value of expeller-pressed canola meal for grower-finisher pigs. J. Anim. Sci. 2010, 88, 2073–2083. [Google Scholar] [CrossRef] [Green Version]
- Roth-Maier, D.A.; Böhmer, B.M.; Roth, F.X. Effects of feeding canola meal and sweet lupin (L. luteus, L. angustifolius) in amino acid balanced diets on growth performance and carcass characteristics of growing-finishing pigs. Anim. Res. 2004, 53, 21–34. [Google Scholar] [CrossRef]
- Le, M.H.A.; Buchet, A.D.; Beltranena, E.; Gerrits, W.J.; Zijlstra, R.T. Digestibility energy and amino acids of canola meal from two species (Brassica juncea and Brassica napus) fed to distal ileum cannulated grower pigs. J. Anim. Sci. 2012, 90, 218–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jong, J.A.; DeRouchey, J.M.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D. Effects of dietary wheat middlings, corn dried distillers grains with solubles, and net energy formulation on nursery pig performance. J. Anim. Sci. 2014, 92, 3471–3481. [Google Scholar] [CrossRef] [PubMed]
- Graham, A.B.; Goodband, R.D.; Tokach, M.D.; Dritz, S.S.; DeRouchey, J.M.; Nitikanchana, S. The effects of medium-oil dried distillers grains with solubles on growth performance, carcass traits, and nutrient digestibility in growing-finishing pigs. J. Anim. Sci. 2014, 92, 604–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertol, T.M.; Zanotto, D.L.; Coldebella, A.; Ludke, J.V. Development and validation of equations to predict the metabolizable energy value of corn for pigs. J. Anim. Sci. 2017, 95, 291–301. [Google Scholar] [CrossRef]
- Parr, C.K.; Liu, Y.; Parsons, C.M.; Stein, H.H. Effects of high-protein or conventional canola meal on growth performance, organ weights, bone ash, and blood characteristics of weanling pigs. J. Anim. Sci. 2015, 93, 2165–2173. [Google Scholar] [CrossRef]
- Bowland, J.P. Evaluation of low glucosinolate–low erucic acid rapeseed meals as protein supplements for young growing pigs, including effects on blood serum constituents. Can. J. Anim. Sci. 1975, 55, 409–419. [Google Scholar] [CrossRef]
- Hocquette, J.F.; Ortigues-Marty, I.; Pethick, D.; Herpin, P.; Fernandez, X. Nutritional and hormonal regulation of energy metabolism in skeletal muscles of meat-producing animals. Livest. Prod. Sci. 1998, 56, 115–143. [Google Scholar] [CrossRef]
- Landero, J.L.; Beltranena, E.; Cervantes, M.; Morales, A.; Zijlstra, R.T. The effect of feeding solvent-extracted canola meal on growth performance and diet nutrient digestibility in weaned pigs. Anim. Feed Sci. Technol. 2011, 170, 136–140. [Google Scholar] [CrossRef]
- Grieshop, C.M.; Reese, D.E.; Fahey, G.C., Jr. Nonstarch polysaccharides and oligosaccharides in swine nutrition. In Swine Nutrition, 2nd ed.; Lewis, A.J., Southern, L.L., Eds.; CRC Press: Washington, DC, USA, 2001; pp. 107–131. [Google Scholar]
- Wilfart, A.; Montagne, L.; Simmins, H.; Noblet, J.; Van Milgen, J. Effect of fibre content in the diet on the mean retention time in different segments of the digestive tract in growing pigs. Livest. Sci. 2007, 109, 27–29. [Google Scholar] [CrossRef]
- Sève, B.; Mariscal-Landin, G.; Colleaux, Y.; Lebreton, Y. Ileal endogenous amino acid and amino sugar flows in pigs fed graded levels of protein or fiber. In Digestive Physiology in Pigs, 2nd ed.; Souffrant, W.B., Hagemeiser, H., Eds.; EAAP Press: Bad Doberan, Germany, 1994; pp. 35–38. [Google Scholar]
Items | Basal Diet | Test Diets 4 |
---|---|---|
Corn | 77.40 | 61.90 |
Soybean meal | 18.60 | 14.90 |
Double-low rapeseed cake | - | 19.22 |
Dicalcium phosphate | 1.20 | 1.20 |
Limestone | 1.10 | 1.10 |
Wheat rice stone 1 | 0.80 | 0.80 |
Salt | 0.30 | 0.30 |
L-Lysine·HCl, 78% 2 | 0.10 | 0.08 |
Mineral and vitamin premix 3 | 0.50 | 0.50 |
Items | Content |
---|---|
Chemical composition, % | |
DM | 96.34 |
GE, MJ/kg | 21.03 |
CP | 37.96 |
EE | 10.25 |
CF | 18.12 |
NDF | 40.21 |
ADF | 19.92 |
Ash | 7.71 |
Ca | 0.68 |
TP | 0.99 |
TGS, μmol/g | 9.38 |
Predicted ME, MJ/kg | |
DM basis | 13.58 |
As-fed basis | 13.03 |
Double-Low Rapeseed Cake, % | ||||
---|---|---|---|---|
Items | 0 | 7 | 14 | 21 |
Ingredient composition, % | ||||
Corn | 75.44 | 75.38 | 75.31 | 75.25 |
Soybean meal | 21.00 | 14.00 | 7.00 | 0.00 |
Double-low rapeseed cake, % | 0.00 | 7.00 | 14.00 | 21.00 |
Dicalcium phosphate | 1.20 | 1.14 | 1.13 | 1.14 |
Limestone | 0.75 | 0.73 | 0.68 | 0.60 |
Salt | 0.35 | 0.35 | 0.35 | 0.35 |
L-Lys·HCl, 78% 1 | 0.44 | 0.54 | 0.63 | 0.73 |
DL-Met | 0.10 | 0.08 | 0.06 | 0.04 |
L-Trp | 0.02 | 0.03 | 0.05 | 0.06 |
L-Thr | 0.13 | 0.16 | 0.18 | 0.21 |
L-Val | 0.07 | 0.09 | 0.11 | 0.12 |
Mineral and vitamin premix 2 | 0.50 | 0.50 | 0.50 | 0.50 |
Nutrient levels | ||||
Analyzed composition, % | ||||
DM | 86.47 | 86.93 | 87.29 | 87.76 |
GE, MJ/kg | 15.69 | 15.88 | 16.07 | 16.28 |
CP | 15.40 | 15.27 | 14.91 | 14.17 |
NDF | 15.99 | 16.39 | 18.18 | 18.64 |
ADF | 6.72 | 6.98 | 7.63 | 8.10 |
Ash | 4.33 | 4.35 | 4.48 | 4.32 |
Calculated composition | ||||
ME, MJ/kg | 13.83 | 13.78 | 13.72 | 13.66 |
SID Lys/ME | 0.72 | 0.72 | 0.72 | 0.72 |
SID AA/SID Lys | ||||
Met | 0.33 | 0.32 | 0.31 | 0.30 |
Met + Cys | 0.56 | 0.56 | 0.56 | 0.56 |
Trp | 0.17 | 0.17 | 0.17 | 0.17 |
Thr | 0.60 | 0.60 | 0.60 | 0.60 |
Val | 0.65 | 0.65 | 0.65 | 0.65 |
Number | Regression Equation | R2 | AIC | RMSE | p-Value |
---|---|---|---|---|---|
1 | ME = 18.32 − 0.12 × NDF | 0.80 | −17.15 | 0.39 | <0.001 |
2 | ME = 21.33 − 0.10 × NDF −0.21 × CF | 0.88 | −20.26 | 0.32 | <0.001 |
3 | ME = 9.33 − 0.09 × NDF − 0.25 × CF + 0.59 × GE | 0.93 | −23.94 | 0.26 | <0.001 |
Items | Double Low Rapeseed Cake, % | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | Linear | Quadratic | ||
Initial BW, kg | 29.74 | 29.62 | 29.72 | 29.73 | 1.20 | 0.992 | 0.958 |
Final BW, kg | 51.15 | 50.65 | 50.56 | 49.82 | 1.73 | 0.601 | 0.942 |
ADFI, kg/d | 1.76 | 1.76 | 1.73 | 1.72 | 0.07 | 0.608 | 0.972 |
ADG, kg/d | 0.77 | 0.75 | 0.75 | 0.72 | 0.02 | 0.163 | 0.719 |
F/G | 2.30 | 2.36 | 2.33 | 2.39 | 0.07 | 0.401 | 0.929 |
ME caloric efficiency, MJ/kg | 31.83 | 32.44 | 31.95 | 32.69 | 1.00 | 0.607 | 0.941 |
T3, ng/mL | 0.71 | 0.70 | 0.68 | 0.56 | 0.05 | 0.041 | 0.273 |
T4, ng/mL | 47.73 | 42.67 | 39.19 | 29.72 | 2.30 | <0.001 | 0.351 |
Items | Double-Low Rapeseed Cake, % | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 7 | 14 | 21 | Linear | Quadratic | ||
DM | 80.41 | 78.80 | 77.76 | 77.71 | 0.67 | 0.009 | 0.252 |
GE | 78.82 | 77.26 | 76.44 | 76.40 | 0.80 | 0.041 | 0.356 |
CP | 73.47 | 70.06 | 67.48 | 64.59 | 1.21 | <0.001 | 0.831 |
NDF | 55.23 | 52.24 | 52.03 | 52.17 | 1.98 | 0.302 | 0.437 |
ADF | 54.30 | 51.62 | 50.10 | 46.94 | 1.63 | <0.001 | 0.880 |
OM | 84.04 | 82.74 | 81.90 | 81.68 | 0.59 | 0.009 | 0.372 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Hu, Q.; Li, P.; Lai, C.; Li, D.; Zang, J.; Ni, S. Development and Validation of Equations for Predicting the Metabolizable Energy Value of Double-Low Rapeseed Cake for Growing Pigs. Animals 2021, 11, 1168. https://doi.org/10.3390/ani11041168
Wang L, Hu Q, Li P, Lai C, Li D, Zang J, Ni S. Development and Validation of Equations for Predicting the Metabolizable Energy Value of Double-Low Rapeseed Cake for Growing Pigs. Animals. 2021; 11(4):1168. https://doi.org/10.3390/ani11041168
Chicago/Turabian StyleWang, Lu, Qile Hu, Peili Li, Changhua Lai, Defa Li, Jianjun Zang, and Shouqing Ni. 2021. "Development and Validation of Equations for Predicting the Metabolizable Energy Value of Double-Low Rapeseed Cake for Growing Pigs" Animals 11, no. 4: 1168. https://doi.org/10.3390/ani11041168
APA StyleWang, L., Hu, Q., Li, P., Lai, C., Li, D., Zang, J., & Ni, S. (2021). Development and Validation of Equations for Predicting the Metabolizable Energy Value of Double-Low Rapeseed Cake for Growing Pigs. Animals, 11(4), 1168. https://doi.org/10.3390/ani11041168