Dietary Pomegranate By-Product Alleviated the Oxidative Stress Induced by Dexamethasone in Laying Hens in the Pre-Peak Period
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Diets, and Experimental Design
2.2. Materials
2.3. Experimental Design
2.4. Performance Indicators
2.5. Egg Quality
2.6. Blood Sampling
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sujatha, T.; Rajini, R.A.; Prabakaran, R. Efficacy of pre-lay diet. J. Appl. Anim. Res. 2014, 42, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Woelders, H.; Zuidberg, C.A.; Hiemstra, S.J. Animal genetic resources conservation in the Netherlands and Europe: Poultry perspective1. Poultr. Sci. 2006, 85, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Scanes, C.G. Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poultr. Sci. 2016, 95, 2208–2215. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant defence systems and oxidative stress in poultry biology: An update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.-M.; Liu, L.-P.; Yin, B.; Liu, Y.-Y.; Dong, W.-W.; Gong, S.; Zhang, J.; Tan, J.-H. Heat stress decreases egg production of laying hens by inducing apoptosis of follicular cells via activating the FasL/Fas and TNF-α systems. Poultr. Sci. 2020, 99, 6084–6093. [Google Scholar] [CrossRef]
- El-Hadary, A.E.; Taha, M. Pomegranate peel methanolic-extract improves the shelf-life of edible-oils under accelerated oxidation conditions. Food Sci. Nutr. 2020, 8, 1798–1811. [Google Scholar] [CrossRef]
- Sugiharto, S.; Yudiarti, T.; Isroli, I.; Widiastuti, E. The potential of tropical agro-industrial by-products as a functional feed for poultry. Iran. J. Appl. Anim. Sci. 2018, 8, 375–385. [Google Scholar]
- Eid, Y.; Ebeid, T.; Younis, H. Vitamin E supplementation reduces dexamethasone-induced oxidative stress in chicken semen. Br. Poult. Sci. 2006, 47, 350–356. [Google Scholar] [CrossRef]
- Kasapidou, E.; Sossidou, E.; Mitlianga, P. Fruit and vegetable co-products as functional feed ingredients in farm animal nutrition for improved product quality. Agriculture 2015, 5, 1020–1034. [Google Scholar] [CrossRef] [Green Version]
- Avazeh, A.; Adel, M.; Shekarabi, S.P.H.; Emamadi, H.; Dawood, M.A.; Omidi, A.H.; Bavarsad, M. Effects of dietary pomegranate peel meal on the growth performance, blood indices, and innate immune response of rainbow trout (Oncorhynchus mykiss). Ann. Anim. Sci. 2020, 1. [Google Scholar] [CrossRef]
- Ismail, T.; Sestili, P.; Akhtar, S. Pomegranate peel and fruit extracts: A review of potential anti-inflammatory and anti-infective effects. J. Ethnopharmacol. 2012, 143, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Arafa, S.A.; Hassan, F.A.; Zaki, E.E. Utilization of pomegranate (Punica granatum L.) by-product powder as a natural growth promoter in growing rabbit diets. Egypt. J. Rabbit. Sci. 2017, 27, 197–217. [Google Scholar]
- Abbas, R.J.; Al-Salhie, K.C.K.; Al-Hummod, S. The effect of using different levels of pomegranate (Punica granatum) peel powder on productive and physiological performance of Japanese quail (Coturnix coturnix japonica). Livest. Res. Rural Dev. 2017, 29, 2017. [Google Scholar]
- Al-Zoreky, N.S. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 2009, 134, 244–248. [Google Scholar] [CrossRef]
- Gracious Ross, R.; Selvasubramanian, S.; Jayasundar, S. Immunomodulatory activity of Punica granatum in rabbits—a preliminary study. J. Ethnopharmacol. 2001, 78, 85–87. [Google Scholar] [CrossRef]
- Navarro, V.; Villarreal, M.L.; Rojas, G.; Lozoya, X. Antimicrobial evaluation of some plants used in Mexican traditional medicine for the treatment of infectious diseases. J. Ethnopharmacol. 1996, 53, 143–147. [Google Scholar] [CrossRef]
- Tzulker, R.; Glazer, I.; Bar-Ilan, I.; Holland, D.; Aviram, M.; Amir, R. Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. J. Agric. Food Chem. 2007, 55, 9559–9570. [Google Scholar] [CrossRef]
- El-Ghar, A.; Sh, R.; El-Karim, A. Effect of early selection for body weight, keel length and breast circumference on egg production traits in inshas strain of chickens. Egypt. Poult. Sci. J. 2016, 36, 375–387. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Association of Official Analytical Chemists, Official Methods of Analysis of AOAC International; AOAC: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Eid, Y.; Ebeid, T.; Moawad, M.; El-Habbak, M. Reduction of dexamethasone-induced oxidative stress and lipid peroxidation in laying hens by dietary vitamin E supplementation. Emir. J. Food Agric. 2008, 28–40. [Google Scholar] [CrossRef]
- NRC. National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Keshavarz, K.; Nakajima, S. The effect of dietary manipulations of energy, protein, and fat during the growing and laying periods on early egg weight and egg components1. Poultr. Sci. 1995, 74, 50–61. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Rudel, L.L.; Morris, M. Determination of cholesterol using o-phthalaldehyde. J. Lipid Res. 1973, 14, 364–366. [Google Scholar] [CrossRef]
- Richmond, W. Preparation and properties of a cholesterol oxidase from nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin. Chem. 1973, 19, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Finley, P.R.; Schifman, R.B.; Williams, R.J.; Lichti, D.A. Cholesterol in high-density lipoprotein: Use of Mg2+/dextran sulfate in its enzymic measurement. Clin. Chem. 1978, 24, 931–933. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Fossati, P.; Prencipe, L. The determination of triglyceride using enzymatic methods. Clin. Chem. 1982, 28, 2077–2080. [Google Scholar] [CrossRef]
- Nair, V.; Turner, G.A.; Offerman, R.J. Novel adducts from the modification of nucleic acid bases by malondialdehyde. J. Am. Chem. Soc. 1984, 106, 3370–3371. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Aebi, H. [13] Catalase in vitro. In Methods Enzymol; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Lv, Z.P.; Peng, Y.Z.; Zhang, B.B.; Fan, H.; Liu, D.; Guo, Y.M. Glucose and lipid metabolism disorders in the chickens with dexamethasone-induced oxidative stress. J. Anim. Physiol. Anim. Nutr. 2018, 102, e706–e717. [Google Scholar] [CrossRef] [PubMed]
- Yara, S.; Lavoie, J.-C.; Beaulieu, J.-F.; Delvin, E.; Amre, D.; Marcil, V.; Seidman, E.; Levy, E. Iron-ascorbate-mediated lipid peroxidation causes epigenetic changes in the antioxidant defense in intestinal epithelial cells: Impact on inflammation. PLoS ONE 2013, 8, e63456. [Google Scholar] [CrossRef] [PubMed]
- Tetsuka, M. Actions of glucocorticoid and their regulatory mechanisms in the ovary. Anim. Sci. J. 2007, 78, 112–120. [Google Scholar] [CrossRef]
- Saeed, M.; Babazadeh, D.; Arif, M.; Arain, M.A.; Bhutto, Z.A.; Shar, A.H.; Kakar, M.U.; Manzoor, R.; Chao, S. Silymarin: A potent hepatoprotective agent in poultry industry. World’s Poult. Sci. J. 2017, 73, 483–492. [Google Scholar] [CrossRef]
- Kumar, N.; Dr, N. Study on physico-chemical and antioxidant properties of pomegranate peel. J. Pharmacogn. Phytochem. 2018, 7, 2141–2147. [Google Scholar]
- Jurenka, J. Therapeutic applications of pomegranate (Punica granatum L.): A review. Altern. Med. Rev. 2008, 13, 128–144. [Google Scholar] [PubMed]
- Gözlekçi, S.; Saraçoğlu, O.; Onursal, E.; Ozgen, M. Total phenolic distribution of juice, peel, and seed extracts of four pomegranate cultivars. Pharmacogn. Mag. 2011, 7, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res. 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Banerjee, N.; Kim, H.; Talcott, S.; Mertens-Talcott, S. Pomegranate polyphenolics suppressed azoxymethane-induced colorectal aberrant crypt foci and inflammation: Possible role of miR-126/VCAM-1 and miR-126/PI3K/AKT/mTOR. Carcinogenesis 2013, 34, 2814–2822. [Google Scholar] [CrossRef] [Green Version]
- Prakash, C.V.S.; Prakash, I. Bioactive chemical constituents from pomegranate (Punica granatum) juice, seed and peel-a review. Int. J. Res. Chem. Environ. 2011, 1, 1–18. [Google Scholar]
- Opara, L.U.; Al-Ani, M.R.; Al-Shuaibi, Y.S. Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food Bioprocess Technol. 2009, 2, 315–321. [Google Scholar] [CrossRef]
- El-Lethey, H.; Huber-Eicher, B.; Jungi, T.W. Exploration of stress-induced immunosuppression in chickens reveals both stress-resistant and stress-susceptible antigen responses. Vet. Immunol. Immunopathol. 2003, 95, 91–101. [Google Scholar] [CrossRef]
- Huang, T.-J.; Shirley Li, P. Dexamethasone inhibits luteinizing hormone-induced synthesis of steroidogenic acute regulatory protein in cultured rat preovulatory follicles. Biol. Reprod. 2001, 64, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Burger, H.G. Evidence for a negative feedback role of inhibin in follicle stimulating hormone regulation in women. Hum. Reprod. 1993, 8, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Decuypere, E.; Rombauts, L.; Vanmontfort, D.; Verhoeven, G. Inhibin from embryo to adult hen. In Perspective in Avian Endocrinology; Havey, S., Etches, R.J., Eds.; Journal of Endocrinology: Bristol, UK, 1997. [Google Scholar]
- Li-Chan, E.C.; Kim, H.-O. Structure and chemical composition of eggs. In Egg Bioscience and Biotechnology; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2008; pp. 1–96. [Google Scholar]
- Saki, A.; Shamsollah, T.; Ashoori, A. Egg iron enrichment in response to various levels of pomegranate by-product in laying hen diet. Iran. J. Appl. Anim. Sci. 2019, 9, 747–754. [Google Scholar]
- Mateos, G.G.; Jiménez-Moreno, E.; Serrano, M.P.; Lázaro, R.P. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics1 1Papers from the Informal Nutrition Symposium, “Exploring Maximum Animal Responses,” were presented at the Poultry Science Association and American Association of Avian Pathologists 2011 Annual Meeting in St. Louis, Missouri, on July 16, 2011. J. Appl. Poult. Res. 2012, 21, 156–174. [Google Scholar] [CrossRef]
- Esmaillzadeh, A.; Tahbaz, F.; Gaieni, I.; Alavi-Majd, H.; Azadbakht, L. Concentrated pomegranate juice improves lipid profiles in diabetic patients with hyperlipidemia. J. Med. Food 2004, 7, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Aengwanich, W.; Simaraks, S. Pathology of heart, lung, liver and kidney in broilers under chronic heat stress. Pathology 2004, 26, 418. [Google Scholar]
- Kapakin, K.A.T.; Gümüş, R.; Halit, İ.; Kapakin, S.; Sağlam, Y.S. Effects of ascorbic and α-lipoic acid on secretion of HSP-70 and apoptosis in liver and kidneys of broilers exposed to heat stress. Ank. Üniv. Vet. Fak. Derg. 2012, 59, 279–287. [Google Scholar] [CrossRef]
- Koc, M.; Imik, H.; Odabasoglu, F. Gastroprotective and anti-oxidative properties of ascorbic acid on indomethacin-induced gastric injuries in rats. Biol. Trace Elem. Res. 2008, 126, 222–236. [Google Scholar] [CrossRef] [PubMed]
Item | Control | Pomegranate Peel Powder | |
---|---|---|---|
2% | 4% | ||
Yellow corn | 66 | 63.6 | 61.2 |
Soybean meal (44%) | 24 | 24.3 | 24.6 |
Wheat bran | 0 | 0.1 | 0.2 |
PPP | 0 | 2 | 4 |
Limestone | 7.59 | 7.59 | 7.59 |
Di-calcium phosphate | 1.71 | 1.71 | 1.71 |
Sodium chloride | 0.3 | 0.3 | 0.3 |
Vit. and min. mixture * | 0.3 | 0.3 | 0.3 |
DL. Methionine | 0.1 | 0.1 | 0.1 |
Total | 100 | 100 | 100 |
Calculated analysis | |||
Metabolizable energy (MJ/kg) | 2750 | 2751 | 2751 |
Crude protein, % | 16.43 | 16.43 | 16.43 |
Crude fiber, % | 3.20 | 3.43 | 3.66 |
Ether extract, % | 2.70 | 2.65 | 2.61 |
Calcium, % | 3.33 | 3.40 | 3.47 |
Available phosphate, % | 0.45 | 0.47 | 0.50 |
Lysine, % | 0.39 | 0.39 | 0.38 |
Methionine, % | 16.43 | 16.43 | 16.43 |
Items | Components % |
---|---|
DM | 94.79 |
CP | 3.29 |
EE | 1.93 |
CF | 12.48 |
Ash | 3.84 |
TP | 30.98 |
TF | 25.59 |
AA | 11.54 |
Production Traits | Negative Control (−DEX) | Positive Control (+DEX) | 2% (PPP + DEX) | 4% (PPP + DEX) | p-Value |
---|---|---|---|---|---|
IBW (g) | 1333 ± 0.520 | 1333 ± 1.322 | 1331 ± 0.784 | 1333 ± 1.622 | 0.548 |
FBW (g) | 1554 ± 21.16 ab | 1468 ± 13.19 c | 1536 ± 17.67 b | 1599 ± 20.82 a | 0.007 |
BWG (g) | 221 ± 21.09 a | 135 ± 11.92 b | 205 ± 18.44 a | 266 ± 20.04 a | 0.006 |
ADFI (g/d) | 92.5 ± 0.407 a | 83.2 ± 0.758 b | 88.6 ± 1.035 a | 90.1 ± 2.349 a | 0.007 |
EP (%) | 52.79 ± 1.834 a | 47.49 ± 1.442 b | 54.14 ± 1.218 a | 56.43 ± 0.687 a | 0.010 |
EW (g) | 47.14 ± 0.077 a | 43.32 ± 0.90 c | 45.26 ± 0.126 b | 46.82 ± 0.783 a | 0.001 |
FCR (g fed/g egg) | 3.72 ± 0.113 ab | 4.05 ± 0.155 a | 3.61 ± 0.039 b | 3.41 ± 0.095 b | 0.019 |
EM (g/hen/day) | 24.88 ± 0.825 a | 20.62 ± 0.658 b | 24.50 ± 0.546 a | 26.41 ± 0.182 a | 0.001 |
Parameter | Negative Control (−DEX) | Positive Control (+DEX) | 2% (PPP + DEX) | 4% (PPP + DEX) | p-Value |
---|---|---|---|---|---|
EL (mm) | 55.4 ± 1.17 a | 53.0 ± 1.44 a | 55.1 ± 0.44 a | 55.3 ± 0.35 a | 0.315 |
ED (mm) | 44.7 ± 0.40 a | 41.1 ± 2.23 a | 43.9 ± 0.97 a | 43.6 ± 0.68 a | 0.291 |
ESI | 80.8 ± 1.23 a | 77.6 ± 4.20 a | 79.7 ± 2.29 a | 78.9 ± 1.68 a | 0.850 |
YW (g) | 15.8 ± 0.29 a | 14.2 ± 0.31 b | 15.6 ± 0.40 a | 16.7 ± 0.37 a | 0.006 |
AW (g) | 25.9 ± 0.24 a | 24.1 ± 0.43 b | 24.4 ± 0.4 b | 24.8 ± 0.47 ab | 0.044 |
YH (mm) | 17.7 ± 0.28 a | 17.2 ± 0.11 a | 17.9 ± 0.43 a | 17.6 ± 0.34 a | 0.541 |
YD (mm) | 41.5 ± 0.83 a | 40.1 ± 0.30 a | 41.5 ± 0.66 a | 40.7 ± 0.57 a | 0.373 |
YI | 42.6 ± 1.53a | 42.9 ± 0.52 a | 43.0 ± 0.71 a | 43.2 ± 1.11 a | 0.955 |
AH (mm) | 5.83 ± 0.06 a | 5.65 ± 0.27 a | 6.39 ± 0.30 a | 5.81 ± 0.30 a | 0.254 |
HU (%) | 80.1 ± 0.42 a | 80.3 ± 1.82 a | 84.4 ± 1.92 a | 80.0 ± 1.83 a | 0.240 |
SW (g) | 5.35 ± 0.05 a | 5.04 ± 0.04 b | 5.30 ± 0.04 a | 5.35 ± 0.01 a | 0.001 |
ST (mm) | 0.35 ± 0.003 b | 0.34 ± 0.007 c | 0.37 ± 0.013 ab | 0.38 ± 0.009 a | 0.006 |
Blood Biochemical Traits | Negative Control (−DEX) | Positive Control (+ DEX) | 2% (PPP + DEX) | 4% (PPP + DEX) | p-Value |
---|---|---|---|---|---|
CH (mg/dL) | 158.80 ± 0.352 b | 189.20 ± 1.189 a | 146.77 ± 0.890 c | 145.42 ± 0.763 c | <0.001 |
HDL (mg/dL) | 98.18 ± 0.46 a | 79.94 ± 0.50 c | 92.83 ± 0.57 b | 99.25 ± 0.52 a | <0.001 |
LDL (mg/dL) | 33.00 ± 0.80 b | 41.70 ± 0.26 a | 32.35 ± 0.20 b | 32.05 ± 0.17 b | <0.001 |
TG (mg/dL) | 293.15 ± 19.14 b | 337.86 ± 8.88 a | 270.16 ± 5.78 b | 259.49 ± 6.36 b | 0.005 |
Antioxidative traits | Negative Control (−DEX) | Positive Control (+ DEX) | 2% (PPP + DEX) | 4% (PPP + DEX) | p-Value |
---|---|---|---|---|---|
MDA (nmole/L) | 9.21 ± 0.28 b | 14.17 ± 0.43 a | 9.40 ± 0.30 b | 9.50 ± 0.43 b | <0.001 |
SOD (U/mL) | 121.12 ± 1.00 a | 94.52 ± 0.72 c | 110.88 ± 0.97 b | 120.89 ± 1.08 a | <0.001 |
GPx (U/L) | 1.58 ± 0.04 b | 1.29 ± 0.42 c | 1.70 ± 0.62 ab | 1.83 ± 0.59 a | <0.001 |
CAT (U/mL) | 7.45 ± 0.16 b | 6.00 ± 0.24 c | 7.19 ± 0.07 ab | 7.41 ± 0.27 a | <0.001 |
TAC (mmole/L) | 0.44 ± 0.01 b | 0.29 ± 0.03 c | 0.50 ± 0.01 ab | 0.53 ± 0.02 a | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eid, Y.; Kirrella, A.A.; Tolba, A.; El-Deeb, M.; Sayed, S.; El-Sawy, H.B.; Shukry, M.; Dawood, M.A.O. Dietary Pomegranate By-Product Alleviated the Oxidative Stress Induced by Dexamethasone in Laying Hens in the Pre-Peak Period. Animals 2021, 11, 1022. https://doi.org/10.3390/ani11041022
Eid Y, Kirrella AA, Tolba A, El-Deeb M, Sayed S, El-Sawy HB, Shukry M, Dawood MAO. Dietary Pomegranate By-Product Alleviated the Oxidative Stress Induced by Dexamethasone in Laying Hens in the Pre-Peak Period. Animals. 2021; 11(4):1022. https://doi.org/10.3390/ani11041022
Chicago/Turabian StyleEid, Yahya, Abeer A Kirrella, Ahmed Tolba, Maged El-Deeb, Samy Sayed, Hanan B. El-Sawy, Mustafa Shukry, and Mahmoud A. O. Dawood. 2021. "Dietary Pomegranate By-Product Alleviated the Oxidative Stress Induced by Dexamethasone in Laying Hens in the Pre-Peak Period" Animals 11, no. 4: 1022. https://doi.org/10.3390/ani11041022
APA StyleEid, Y., Kirrella, A. A., Tolba, A., El-Deeb, M., Sayed, S., El-Sawy, H. B., Shukry, M., & Dawood, M. A. O. (2021). Dietary Pomegranate By-Product Alleviated the Oxidative Stress Induced by Dexamethasone in Laying Hens in the Pre-Peak Period. Animals, 11(4), 1022. https://doi.org/10.3390/ani11041022