The Impact of Polyamine Precursors, Polyamines, and Steroid Hormones on Temporal Messenger RNA Abundance in Bovine Satellite Cells Induced to Differentiate
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bovine Satellite Cell Isolation
2.2. Bovine Satellite Cell Culture
2.3. Induction of Differentiation and Treatment of BSC Cultures
2.4. RNA Isolation, Quantification, and cDNA Synthesis
2.5. Quantitative Real-Time PCR
2.6. Statistical Analysis
3. Results
3.1. The Effects of Steroidal Hormones on Abundance of mRNA Involved in BSC Differentiation
3.2. The Effects of Steroidal Hormones on Abundance of mRNA Involved in the Polyamine Biosynthesis Pathway
3.3. The Effects of Polyamine Precursors on Abundance of mRNA Related to Satellite Cell Differentiation
3.4. The Effects of Polyamine Precursors on Abundance of mRNA Involved in the Polyamine Biosynthesis Pathway
3.5. The Effects of Polyamines on Abundance of mRNA Related to Satellite Cell Differentiation
3.6. The Effects of Polyamines on Abundance of mRNA Involved in the Polyamine Biosynthesis Pathway
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thornton, K.J. Triennial Growth Symposium: The Nutrition of Muscle Growth: Impacts of nutrition on the proliferation and differentiation of satellite cells in livestock species. J. Anim. Sci. 2019, 29, 2258–2269. [Google Scholar] [CrossRef] [PubMed]
- England, E.; Scheffler, T.; Kasten, S.; Matarneh, S.; Gerrard, D. Exploring the unknowns involved in the transformation of muscle to meat. Meat Sci. 2013, 95, 837–843. [Google Scholar] [CrossRef]
- Capper, J.L.; Hayes, D.J. The environmental and economic impact of removing growth-enhancing tech-nologies from US beef production. J. Anim. Sci. 2012, 90, 3527–3537. [Google Scholar] [CrossRef] [Green Version]
- Hawke, T.J.; Garry, D.J. Myogenic satellite cells: Physiology to molecular biology. J. Appl. Physiol. 2001, 91, 534–551. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gonzalez, J.M.; Walker, D.K.; Hersom, M.J.; Ealy, A.D.; Johnson, S.E. Evidence of heterogeneity within bovine satellite cells isolated from young and adult animals. J. Anim. Sci. 2011, 89, 1751–1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yablonka-Reuveni, Z. The skeletal muscle satellite cell: Still young and fascinating at 50. J. Histochem. Cytochem. 2011, 59, 1041–1059. [Google Scholar] [CrossRef] [Green Version]
- Dayton, W.R.; White, M.E. Meat science and muscle biology symposium—Role of satellite cells in ana-bolic steroid-induced muscle growth in feedlot steers. J. Anim. Sci. 2014, 92, 30–38. [Google Scholar] [CrossRef]
- Gonzalez, M.L.; I Busse, N.; Waits, C.M.; E Johnson, S. Satellite cells and their regulation in livestock. J. Anim. Sci. 2020, 98. [Google Scholar] [CrossRef]
- Halevy, O.; Piestun, Y.; Allouh, M.Z.; Rosser, B.W.; Rinkevich, Y.; Reshef, R.; Rozenboim, I.; Wleklinski-Lee, M.; Yablonka-Reuveni, Z. Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev. Dyn. 2004, 231, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Yablonka-Reuveni, Z.; Day, K.; Vine, A.; Shefer, G. Defining the transcriptional signature of skeletal muscle stem cells. J. Anim. Sci. 2008, 1, E207–E216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duckett, S.K.; Owens, F.N.; Andrae, J.G. Effects of Implants on Performance and Carcass Traits of Feedlot Steers and Heifers; Research Report P; FAO: Roma, Italy, 1997. [Google Scholar]
- Duckett, S.K.; Pratt, S.L. Meat science and muscle biology symposium—Anabolic implants and meat quality. J. Anim. Sci. 2014, 92, 3–9. [Google Scholar] [CrossRef] [Green Version]
- APHIS. The Use of Growth-Promoting Implants in U.S. Feedlots; USDA-APHIS-VS-CEAH-NAHMS: Fort Collins, CO, USA, 2013. [Google Scholar]
- Kamanga-Sollo, E.; Thornton, K.J.; White, M.E.; Dayton, W.R. Role of g protein-coupled estrogen recep-tor-1, matrix metalloproteinases 2 and 9, and heparin binding epidermal growth factor-like growth factor in estradiol-17beta-stimulated bovine satellite cell proliferation. Domest. Anim. Endocrinol. 2014, 49, 20–26. [Google Scholar] [CrossRef]
- Thornton, K.J.; Kamanga-Sollo, E.; White, M.E.; Dayton, W.R. Active g protein–coupled receptors (gpcr), matrix metalloproteinases 2/9 (mmp2/9), heparin-binding epidermal growth factor (hbegf), epidermal growth factor receptor (egfr), erbb2, and insulin-like growth factor 1 receptor (igf-1r) are necessary for trenbolone acetate–induced alterations in protein turnover rate of fused bovine satellite cell cul-tures. J. Anim. Sci. 2016, 94, 2332–2343. [Google Scholar]
- Thornton, K.J.; Kamange-Sollo, E.; White, M.E.; Dayton, W.R. Role of G protein–coupled receptors (GPCR), matrix metalloproteinases 2 and 9 (MMP2 and MMP9), heparin-binding epidermal growth factor–like growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) in trenbolone acetate–stimulated bovine satellite cell proliferation. J. Anim. Sci. 2015, 93, 4291–4301. [Google Scholar] [CrossRef] [Green Version]
- Kamanga-Sollo, E.; Thornton, K.; White, M.; Dayton, W. Role of G protein-coupled estrogen receptor-1 in estradiol 17β-induced alterations in protein synthesis and protein degradation rates in fused bovine satellite cell cultures. Domest. Anim. Endocrinol. 2017, 58, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Kamanga-Sollo, E.; White, M.E.; Chung, K.Y.; Johnson, B.J.; Dayton, W.R. Potential role of g- pro-tein-coupled receptor 30 (gpr30) in estradiol-17beta-stimulated igf-i mrna expression in bovine satel-lite cell cultures. Domest. Anim. Endocrinol. 2008, 35, 254–262. [Google Scholar] [CrossRef]
- Kamanga-Sollo, E.; White, M.E.; Hathaway, M.R.; Chung, K.Y.; Johnson, B.J.; Dayton, W.R. Roles of IGF-I and the estrogen, androgen and IGF-I receptors in estradiol-17beta- and trenbolone acetate-stimulated pro-liferation of cultured bovine satellite cells. Domest. Anim. Endocrinol. 2008, 35, 88–97. [Google Scholar] [CrossRef]
- Kamanga-Sollo, E.; White, M.E.; Hathaway, M.R.; Weber, W.J.; Dayton, W.R. Effect of Estradiol-17beta on protein synthesis and degradation rates in fused bovine satellite cell cultures. Domest. Anim. Endo-Crinol. 2010, 39, 54–62. [Google Scholar] [CrossRef]
- Kamanga-Sollo, E.; White, M.; Hathaway, M.; Weber, W.; Dayton, W. Effect of trenbolone acetate on protein synthesis and degradation rates in fused bovine satellite cell cultures. Domest. Anim. Endocrinol. 2011, 40, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, L.D.; Johnson, S.E.; Rhoads, M.L.; Jiang, H.; Rhoads, R.P. Oxytocin is involved in steroid hormone–stimulated bovine satellite cell proliferation and differentiation in vitro. Domest. Anim. Endocrinol. 2019, 66, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.H.; Taylor, R.L. Polyamine Synthesis and Accumulation in the Castrated Rat Uterus after Estradiol-17β Stimulation. Endocrinology 1971, 88, 1397–1403. [Google Scholar] [CrossRef]
- Thomas, T. Estradiol control of ornithine decarboxylase mRNA, enzyme activity, and polyamine levels in MCF-7 breast cancer cells: Therapeutic implications. Breast Cancer Res. Treat. 1994, 29, 189–201. [Google Scholar] [CrossRef]
- Reichhardt, C.; Ahmadpour, A.; Christensen, R.; Ineck, N.; Murdoch, G.; Thornton, K. Understanding the influence of trenbolone acetate and polyamines on proliferation of bovine satellite cells. Domest. Anim. Endocrinol. 2021, 74, 106479. [Google Scholar] [CrossRef]
- Pegg, A.E.; McCann, P.P. Polyamine metabolism and function. Am. J. Physiol. Physiol. 1982, 243, C212–C221. [Google Scholar] [CrossRef]
- Igarashi, K.; Kashiwagi, K. Polyamines: Mysterious Modulators of Cellular Functions. Biochem. Biophys. Res. Commun. 2000, 271, 559–564. [Google Scholar] [CrossRef]
- Thomas, T.; Thomas, T.J. Polyamines in cell growth and cell death: Molecular mechanisms and thera-peutic applications. CMLS MLS 2001, 58, 244–258. [Google Scholar] [CrossRef]
- Murdoch, G.K.; Okine, E.K.; Christopherson, R.J. Chapter 5 Metabolic Modifiers in Animal Nutrition: Po-Tential Benefits and Risks. In Biology of Growing Animals; Mosenthin, R., Zentek, J., Żebrowska, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 135–178. [Google Scholar]
- Bardócz, S.; Duguid, T.J.; Brown, D.S.; Grant, G.; Pusztai, A.; White, A.; Ralph, A. The importance of dietary polyamines in cell regeneration and growth. Br. J. Nutr. 1995, 73, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Gouru, A.; Murdoch, G. PSVII-36 Examining the effect of a physiological dose of the polyamine; spermine, on myogenic regulatory transcription factor expression. J. Anim. Sci. 2019, 97, 359. [Google Scholar] [CrossRef]
- Lee, N.K.L.; MacLean, H.E. Polyamines, androgens, and skeletal muscle hypertrophy. J. Cell. Physiol. 2011, 226, 1453–1460. [Google Scholar] [CrossRef]
- Lee, D.K. Androgen receptor enhances myogenin expression and accelerates differentiation. Biochem. Biophys. Res. Commun. 2002, 294, 408–413. [Google Scholar] [CrossRef]
- Frey, R.S.; Johnson, B.J.; Hathaway, M.R.; White, M.E.; Dayton, W.R. Growth factor responsiveness of prima-ry satellite cell cultures from steers implanted with trenbolone acetate and estradiol-17β. Basic Appl. Myol. 1995, 5, 71–79. [Google Scholar]
- Hathaway, M.R.; Hembree, J.R.; Pampusch, M.S.; Dayton, W.R. Effect of transforming growth factor beta-1 on ovine satellite cell proliferation and fusion. J. Cell Physiol. 1991, 146, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Chapalamadugu, K.C.; Robison, B.D.; Drew, R.E.; Powell, M.S.; Hill, R.A.; Amberg, J.J.; Rodnick, K.J.; Hardy, R.W.; Hill, M.L.; Murdoch, G.K. Dietary carbohydrate level affects transcription factor expression that regulates skeletal muscle myogenesis in rainbow trout. Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 2009, 153, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Thornton, K.J.; Welch, C.M.; Davis, L.C.; Doumit, M.E.; Hill, R.A.; Murdoch, G.K. Bovine sire selection based on maintenance energy affects muscle fiber type and meat color of F1 progeny. J. Anim. Sci. 2012, 90, 1617–1627. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.; Tupac-Yupanqui, I.; Dunner, S. Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue. BMC Mol. Biol. 2008, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Green, A.; Wells, D.; Oback, B. Cattle Cloned from Increasingly Differentiated Muscle Cells. Biol. Reprod. 2007, 77, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Sabourin, L.A.; Girgis-Gabardo, A.; Seale, P.; Asakura, A.; Rudnicki, M.A. Reduced Differentiation Potential of Primary MyoD−/− Myogenic Cells Derived from Adult Skeletal Muscle. J. Cell Biol. 1999, 144, 631–643. [Google Scholar] [CrossRef] [Green Version]
- Duckett, S.K.; Andrae, J.G. Implant strategies in an integrated beef production system. J. Anim. Sci. 2001, 79, E110–E117. [Google Scholar] [CrossRef] [Green Version]
- Cepero, M.; Cubría, J.C.; Reguera, R.; Balańa-Fouce, R.; Ordȯńez, C.; Ordȯńez, D. Plasma and Muscle Poly-amine Levels in Aerobically Exercised Rats Treated with Salbutamol. J. Pharm. 1998, 50, 1059–1064. [Google Scholar] [CrossRef]
- Käpyaho, K.; Pösö, H.; Jänne, J. Role of propylamine transferases in hormone-induced stimulation of polyamine biosynthesis. Biochem. J. 1980, 192, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Le Grand, F.; Rudnicki, M.A. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 2007, 1, 628–633. [Google Scholar] [CrossRef] [Green Version]
- Le Bihan, M.C.; Barrio-Hernandez, I.; Mortensen, T.P.; Henningsen, J.; Jensen, S.S.; Bigot, A.; Blagoev, B.; Butler-Browne, G.; Kratchmarova, I. Cellular proteome dynamics during differentiation of human primary myoblasts. J. Preoteom. Res. 2015, 7, 3348–3361. [Google Scholar] [CrossRef]
- Greenbaum, D.; Jansen, R.; Gerstein, M. Analysis of mRNA expression and protein abundance data: An approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts. Bioinformation 2002, 18, 585–596. [Google Scholar] [CrossRef]
- Jeanplong, F.; Bass, J.J.; Smith, H.K.; Kirk, S.P.; Kambadur, R.; Sharma, M.; Oldham, J.M. Prolonged underfeeding of sheep increases myostatin and myogenic regulatory factor Myf-5 in skeletal muscle while IGF-I and myogenin are repressed. J. Endocrinol. 2003, 176, 425–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, D.T.; Clarke, D.S.; Macko, A.R.; Anderson, M.J.; Shelton, L.A.; Nearing, M.; Allen, R.E.; Rhoads, R.; Limesand, S.W. Myoblasts from intrauterine growth-restricted sheep fetuses exhibit intrinsic deficiencies in proliferation that contribute to smaller semitendinosus myofibres. J. Physiol. 2014, 592, 3113–3125. [Google Scholar] [CrossRef]
- Reuveni, Z.Y.-; Rivera, A.J. Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev. Biol. 1994, 164, 588–603. [Google Scholar] [CrossRef] [Green Version]
- Kook, S.-H.; Son, Y.-O.; Choi, K.-C.; Lee, H.-J.; Chung, W.-T.; Hwang, I.-H.; Lee, J.-C. Cyclic mechanical stress suppresses myogenic differentiation of adult bovine satellite cells through activation of extracellular signal-regulated kinase. Mol. Cell. Biochem. 2007, 309, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Diel, P.; Baadners, D.; Schlupmann, K.; Velders, M.; Schwarz, J.P. C2C12 myoblastoma cell differentiation and proliferation is stimulated by androgens and associated with a modulation of myostatin and Pax7 expression. J. Mol. Endocrinol. 2008, 40, 231–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Artaza, J.N.; Taylor, W.E.; Gonzalez-Cadavid, N.F.; Bhasin, S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology 2003, 144, 5081–5088. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-X.; Hu, J.; Zhu, M.-J.; Du, M. Trenbolone enhances myogenic differentiation by enhancing β-catenin signaling in muscle-derived stem cells of cattle. Domest. Anim. Endocrinol. 2011, 40, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Doumit, M.E.; Cook, D.R.; Merkel, R.A. Testosterone up-regulates androgen receptors and decreases differentiation of porcine myogenic satellite cells in vitro. Endocrinology 1996, 137, 1385–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, M.; Yamaji, R.; Higashimura, Y.; Harada, N.; Ashida, H.; Nakano, Y.; Inui, H. 17β-Estradiol Represses Myogenic Differentiation by Increasing Ubiquitin-specific Peptidase 19 through Estrogen Receptor α*. J. Biol. Chem. 2011, 286, 41455–41465. [Google Scholar] [CrossRef] [Green Version]
- Picard, B.; Depreux, F.; Geay, Y. Muscle differentiation of normal and double-muscled bovine foetal myoblasts in primary culture. Basic Appl. Myol. 1998, 8, 197–203. [Google Scholar]
- Quinn, L.S.; Ong, L.D.; Roeder, R.A. Paracrine control of myoblast proliferation and differentiation by fibroblasts. Dev. Biol. 1990, 140, 8–19. [Google Scholar] [CrossRef]
- Dodson, M.V.; McFarland, D.C.; Grant, A.L.; Doumit, M.E.; Velleman, S.G. Extrinsic regulation of domestic animal-derived satellite cells. Domest. Anim. Endocrinol. 1996, 13, 107–126. [Google Scholar] [CrossRef]
- Goldstone, A.; Koenig, H.; Lu, C. Testosterone-dependent sexual dimorphism of the mouse kidney is me-diated by polyamines. Biochem. Biophys. Res. Commun. 1982, 104, 165–172. [Google Scholar] [CrossRef]
- Lee, N.K.L.; Skinner, J.P.J.; Zajac, J.D.; MacLean, H.E. Ornithine decarboxylase is upregulated by the androgen receptor in skeletal muscle and regulates myoblast proliferation. Am. J. Physiol. Metab. 2011, 301, E172–E179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Webb, K.E., Jr. Peptide-bound methionine as methionine sources for protein accretion and cell proliferation in primary cultures of ovine skeletal muscle. J. Nutr. 1998, 128, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Torrentera, N.; Carrasco, R.; Salinas-Chavira, J.; Plascencia, A.; Zinn, R.A. Influence of methionine supple-mentation of growing diets enriched with lysine on feedlot performance and characteristics of diges-tion in Holstein steer calves. Asian-Australas. J. Anim. Sci. 2017, 30, 42. [Google Scholar] [CrossRef] [Green Version]
- Klemesrud, M.J.; Klopfenstein, T.J.; Lewis, A.J. Metabolizable methionine and lysine requirements of growing cattle. J. Anim. Sci. 2000, 78, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Wernerman, J.; Hammarqvist, F.; Von der Decken, A.; Vinnarts, E. Ornithine-alpha-ketoglutarate improves skeletal muscle protein synthesis as assessed by ribosome analysis and nitrogen use after surgery. Ann. Surg. 1987, 206, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, G.; Awawdeh, M.; Gnad, D.; Titgemeyer, E.C. Effects of energy source on methionine utilization by growing steers. Kans. Agric. Exp. Stn. Res. Rep. 2005, 84, 1505–1511. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.; Niermann, K.; Wendisch, V.F. Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J. Biotechnol. 2011, 154, 191–198. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | GBA 1 Number | Primers and Probe Sequences, 5′-3′ |
---|---|---|
18S2 | AF243428 | FP: CCACGCGAGATTGAGCAAT |
RP: GCAGCCCCGGACATCTAA | ||
TP: ACAGGTCTGTGATGCC | ||
PAX73 | XM_616352.4 | FP: AGGACGGCGAGAAGAAAGC |
RP: CCCTTTGTCGCCCAGGAT | ||
TP: AAGCACAGCATCGAC | ||
MYF54 | NM_174116.1 | FP: AGCCCCACCTCAAGTTGCT |
RP: GCTGTCAAAACTGCTGCTCTTTC | ||
TP: CATGCCTGAATGTAAC | ||
MYOD5 | NM_001040478.2 | FP: CCGCCTGAGCAAAGTCAAC |
RP: GGGCAGCCGCTGGTTT | ||
TP: TGCACGTCTAGCAACC | ||
MYOG6 | XM_001790098.1 | FP: CCGCCACGCTGAGAGAGA |
RP: GGCCTCGAAGGCTTCATTC | ||
TP: GGCCTCGAAGGCTTCATTC | ||
ODC7 | NM_174130 | FP: CTGTACTGATCCTGAGACCTTTG |
RP: GCTTTACATCCTCTGATCCAGG | ||
TP: ATCTCTGATGCCCGCTGTGTCTTT | ||
AMD18 | NM_173990 | FP: TGCTGGAGGTTTGGTTCTC |
RP: TCAAAAGTATGTCCCACTCGG | ||
TP: TTGGTTTGCGTCGGGTTGCTG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reichhardt, C.C.; Okamoto, L.L.; Motsinger, L.A.; Griffin, B.P.; Murdoch, G.K.; Thornton, K.J. The Impact of Polyamine Precursors, Polyamines, and Steroid Hormones on Temporal Messenger RNA Abundance in Bovine Satellite Cells Induced to Differentiate. Animals 2021, 11, 764. https://doi.org/10.3390/ani11030764
Reichhardt CC, Okamoto LL, Motsinger LA, Griffin BP, Murdoch GK, Thornton KJ. The Impact of Polyamine Precursors, Polyamines, and Steroid Hormones on Temporal Messenger RNA Abundance in Bovine Satellite Cells Induced to Differentiate. Animals. 2021; 11(3):764. https://doi.org/10.3390/ani11030764
Chicago/Turabian StyleReichhardt, Caleb C., Lillian L. Okamoto, Laura A. Motsinger, Brian P. Griffin, Gordon K. Murdoch, and Kara J. Thornton. 2021. "The Impact of Polyamine Precursors, Polyamines, and Steroid Hormones on Temporal Messenger RNA Abundance in Bovine Satellite Cells Induced to Differentiate" Animals 11, no. 3: 764. https://doi.org/10.3390/ani11030764
APA StyleReichhardt, C. C., Okamoto, L. L., Motsinger, L. A., Griffin, B. P., Murdoch, G. K., & Thornton, K. J. (2021). The Impact of Polyamine Precursors, Polyamines, and Steroid Hormones on Temporal Messenger RNA Abundance in Bovine Satellite Cells Induced to Differentiate. Animals, 11(3), 764. https://doi.org/10.3390/ani11030764