SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo)
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area, Sampling and Data Collection
2.2. Expression and Purification of RBD of Spike
2.3. Detection of SARS-CoV-2 Antibodies by In-House ELISA
3. Results
3.1. Characterization of the Animals under Study
3.2. Serological Prevalence of SARS-CoV-2 Infection in Client-Owned-Ferrets
3.3. Health Condition in SARS-CoV-2 Seropositive Animals and Follow Up
3.4. Health Condition in Animals with Diagnosis of FRECV and FRSCV
3.5. SARS-CoV-2 in Ferrets with Exposure to Confirmed COVID-19 Infected Humans
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perera, K.D.; Galasiti Kankanamalage, A.C.; Rathnayake, A.D.; Honeyfield, A.; Groutas, W.; Chang, K.O.; Kim, Y. Protease inhibitors broadly effective against feline, ferret and mink coronaviruses. Antivir. Res. 2018, 160, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Shigemoto, J.; Muraoka, Y.; Wise, A.G.; Kiupel, M.; Maes, R.K.; Torisu, S. Two Cases of Systemic Coronavirus-Associated Disease Resembling Feline Infectious Peritonitis in Domestic Ferrets in Japan. J. Exot. Pet Med. 2014, 23, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Stout, A.E.; André, N.M.; Jaimes, J.A.; Millet, J.K.; Whittaker, G.R. Coronaviruses in cats and other companion animals: Where does SARS-CoV-2/COVID-19 fit? Vet. Microbiol. 2020, 247, 108777. [Google Scholar] [CrossRef]
- Cox, R.M.; Wolf, J.D.; Plemper, R.K. Therapeutically administered rbonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nat. Microbiol. 2021, 6, 11–18. [Google Scholar] [CrossRef]
- Hossain, M.G.; Javed, A.; Akter, S.; Saha, S. SARS-CoV-2 host diversity: An update of natural infections and experimental evidence. J. Microbiol. Immunol. Infect. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.I.; Kim, S.G.; Kim, S.M.; Kim, E.H.; Park, S.J.; Yu, K.M.; Chang, J.H.; Kim, E.J.; Lee, S.; Casel, M.; et al. Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 2020, 27, 704–709.e2. [Google Scholar] [CrossRef]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef] [PubMed]
- Richard, M.; Kok, A.; de Meulder, D.; Bestebroer, T.M.; Lamers, M.M.; Okba, N.; Fentener van Vlissingen, M.; Rockx, B.; Haagmans, B.L.; Koopmans, M.; et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat. Commun. 2020, 11, 3496. [Google Scholar] [CrossRef] [PubMed]
- Schlottau, K.; Rissmann, M.; Graaf, A.; Schön, J.; Sehl, J.; Wylezich, C.; Höper, D.; Mettenleiter, T.C.; Balkema-Buschmann, A.; Harder, T.; et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: An experimental transmission study. Lancet Microbe 2020, 1, e218–e225. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.S.; Abdelwhab, E.M. Evidence for SARS-CoV-2 Infection of Animal Hosts. Pathogens 2020, 9, 529. [Google Scholar] [CrossRef]
- Sarkar, J.; Guha, R. Infectivity, virulence, pathogenicity, host-pathogen interactions of SARS and SARS-CoV-2 in experimental animals: A systematic review. Vet. Res. Commun. 2020, 44, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, R.J.; Vreman, S.; Hakze-van der Honing, R.W.; Zwart, R.; de Rond, J.; Weesendorp, E.; Smit, L.; Koopmans, M.; Bouwstra, R.; Stegeman, A.; et al. Clinical and Pathological Findings in SARS-CoV-2 Disease Outbreaks in Farmed Mink (Neovison vison). Vet. Pathol. 2020, 57, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Oreshkova, N.; Molenaar, R.J.; Vreman, S.; Harders, F.; Oude Munnink, B.B.; Hakze-van der Honing, R.W.; Gerhards, N.; Tolsma, P.; Bouwstra, R.; Sikkema, R.S.; et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance 2020, 25, 2001005. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.K.; de Oliveira-Filho, E.F.; Rasche, A.; Greenwood, A.D.; Osterrieder, K.; Drexler, J.F. Potential zoonotic sources of SARS-CoV-2 infections. Transbound. Emerg. Dis. 2020. [Google Scholar] [CrossRef]
- Conceicao, A.; Thakur, N.; Human, S.; Kelly, J.T.; Logan, L.; Bialy, D.; Bhat, S.; Stevenson-Leggett, P.; Zagrajek, A.K.; Hollinghurst, P.; et al. The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol. 2020, 18, e3001016. [Google Scholar] [CrossRef]
- Premkumar, L.; Segovia-Chumbez, B.; Jadi, R.; Martinez, D.R.; Raut, R.; Markmann, A.; Cornaby, C.; Bartelt, L.; Weiss, S.; Park, Y.; et al. The RBD of the Spike Protein of SARS-Group Coronaviruses is a highly specific target of SARS-CoV-2 antibodies but not other pathogenic human and animal coronavirus antibodies. medRxiv 2020. [Google Scholar] [CrossRef]
- Chia, W.N.; Tan, C.W.; Foo, R.; Kang, A.; Peng, Y.; Sivalingam, V.; Tiu, C.; Ong, X.M.; Zhu, F.; Young, B.E.; et al. Serological differentiation between COVID-19 and SARS infections. Emerg. Microbes Infect. 2020, 9, 1497–1505. [Google Scholar] [CrossRef]
- Klumpp-Thomas, C.; Kalish, H.; Drew, M.; Hunsberger, S.; Snead, K.; Fay, M.P.; Mehalko, J.; Shunmugavel, A.; Wall, V.; Frank, P.; et al. Standardization of enzyme-linked immunosorbent assays for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood sampling. medRxiv 2020. [Google Scholar] [CrossRef]
- McAloose, D.; Laverack, M.; Wang, L.; Killian, M.L.; Caserta, L.C.; Yuan, F.; Mitchell, P.K.; Queen, K.; Mauldin, M.R.; Cronk, B.D.; et al. From People to Panthera: Natural SARS-CoV-2 Infection in Tigers and Lions at the Bronx Zoo. mBio 2020, 11, e02220-20. [Google Scholar] [CrossRef]
- Fritz, M.; Rosolen, B.; Krafft, E.; Becquart, P.; Elguero, E.; Vratskikh, O.; Denolly, S.; Boson, B.; Vanhomwegen, J.; Gouilh, M.A.; et al. High prevalence of SARS-CoV-2 antibodies in pets from COVID-19+ households. One Health 2021, 11, 100192. [Google Scholar] [CrossRef]
- Guan, W.J.; Liang, W.H.; Zhao, Y.; Liang, H.R.; Chen, Z.S.; Li, Y.M.; Liu, X.Q.; Chen, R.C.; Tang, C.L.; Wang, T.; et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur. Respir. J. 2020, 55, 2000547. [Google Scholar] [CrossRef]
- Turner, P.V.; Brash, M.L.; Smith, D.A. Ferrets In Pathology in Small Mammal Pets, 1st ed.; Turner, P.V., Brash, M.L., Smith, D.A., Eds.; Willey Blackwell: Hoboken, NJ, USA, 2018; pp. 89–146. [Google Scholar]
- Patterson, E.I.; Elia, G.; Grassi, A.; Giordano, A.; Desario, C.; Medardo, M.; Smith, S.L.; Anderson, E.R.; Prince, T.; Patterson, G.T.; et al. Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nat. Commun. 2020, 11, 6231. [Google Scholar] [CrossRef] [PubMed]
- Isho, B.; Abe, K.T.; Zuo, M.; Jamal, A.J.; Rathod, B.; Wang, J.H.; Li, Z.; Chao, G.; Rojas, O.L.; Bang, Y.M.; et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Immunol. 2020, 5, eabe5511. [Google Scholar]
- Iyer, A.S.; Jones, F.K.; Nodoushani, A.; Kelly, M.; Becker, M.; Slater, D.; Mills, R.; Teng, E.; Kamruzzaman, M.; Garcia-Beltran, W.F.; et al. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci. Immunol. 2020, 5, eabe0367. [Google Scholar] [CrossRef]
- Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.; Hemmings, O.; O’Byrne, A.; Kouphou, N.; Galao, R.P.; et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat. Microbiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Gudbjartsson, D.F.; Norddahl, G.L.; Melsted, P.; Gunnarsdottir, K.; Holm, H.; Eythorsson, E.; Arnthorsson, A.O.; Helgason, D.; Bjarnadottir, K.; Ingvarsson, R.F.; et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N. Eng. J. Med. 2020, 383, 1724–1734. [Google Scholar] [CrossRef]
- Wajnberg, A.; Amanat, F.; Firpo, A.; Altman, D.R.; Bailey, M.J.; Mansour, M.; McMahon, M.; Meade, P.; Mendu, D.R.; Muellers, K.; et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 2020, 370, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Ibarrondo, F.J.; Fulcher, J.A.; Goodman-Meza, D.; Elliott, J.; Hofmann, C.; Hausner, M.A.; Ferbas, K.G.; Tobin, N.H.; Aldrovandi, G.M.; Yang, O.O. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N. Engl. J. Med. 2020, 383, 1085–1087. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.X.; Tang, X.J.; Shi, Q.L.; Li, Q.; Deng, H.J.; Yuan, J.; Hu, J.L.; Xu, W.; Zhang, Y.; Lv, F.J.; et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef]
- Hobbs, E.C.; Reid, T.J. Animals and SARS-CoV-2: Species susceptibility and viral transmission in experimental and natural conditions, and the potential implications for community transmission. Transbound. Emerg. Dis. 2020. [Google Scholar] [CrossRef]
- Gryseels, S.; De Bruyn, L.; Gyseling, R.; Calvignac, S.; Spencer, S.; Leendertz, F.H.; Leir, H.; Risk, H. Risk of human-to-wildlife transmission of SARS-CoV-2. Mammal Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
Ferret Number | Dates | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gender | Age (y) | Health Condition | January | February | March | April | May | June | July | August | September | October | November | |
F 1 | ♀ | 8 | ED | 0.059 | 0.057 | na | na | na | na | na | na | na | na | na |
F 2 | ♀ | 2 | UD | 0.050 | na | 0.057 | na | na | na | na | na | na | na | na |
F 3 | ♂ | 7 | CRD/CD | 0.066 | na | na | 0.046 | na | na | na | na | na | na | 0.049 |
F 4 | ♂ | 5 | UD | 0.064 | na | na | na | na | na | na | na | 0.078 | na | na |
F 5 | ♂ | 5 | CRD | 0.063 | na | 0.091 | na | na | na | na | na | na | 0.069 | na |
F 6 | ♂ | 5 | N | 0.061 | na | na | 0.085 | na | na | na | na | na | na | na |
F 7 (FRECV1) | GD | na | 0.076 | 0.049 | na | na | na | na | 0.083 | na | na | na | ||
F 8 | ♀ | 4 | Leish | na | 0.088 | 0.104 | 0.074 | na | na | na | na | na | na | na |
F 9 (FRSCV2) | ♀ | 1 | FRSCV | 0.068 | 0.069 | na | na | na | na | na | na | na | na | na |
F 10 | ♂ | 5 | ED | na | 0.098 | na | na | na | 0.130 | 0.100 | 0.121 | na | na | na |
F 11 | ♂ | 5 | S | na | 0.075 | na | na | na | 0.069 | 0.081 | na | na | na | na |
F 12 | ♀ | 5 | HD | na | na | 0,064 | na | na | 0.118 | na | na | na | na | na |
F 13 | ♀ | 5 | UD | na | na | 0.107 | na | na | na | 0.097 | na | na | na | na |
F 14 | ♂ | 3 | GD | na | na | na * | 0.091 * | na | na | na | 0.078 * | na | na | na |
F 15 | ♀ | 6 | Leish | na | na | 0.076 | 0.123 | 0.107 | na | na | na | na | na | na |
F 16 | ♂ | 1 | NAD | na | na | 0.059 | na | na | 0.109 | na | na | na | na | na |
F 17 | ♂ | 1 | NAD | na | na | 0.071 | na | 0.069 | na | na | na | na | na | na |
F 18 | ♂ | 3 | N | na | na | na | 0.079 | na | 0.285 | na | na | na | 0.285 | na |
F 19 | ♂ | 4 | CRD | na | na | na * | 0.068 * | na | na | 0.069 †* | 0.085 * | 0.048 * | na | na |
F 20 | ♀ | 4 | HD | na | na | na | 0.041 | na | na | na | na | na | 0.049 | na |
F 21 | ♂ | <1 | NAD | na | na | na | na | na | na | na | na | na | 0.071 | 0.071 |
F 22 | ♂ | 4 | NAD | na | na | na * | 0.102 * | 0.092 * | na | na | na | na | na | na |
F 23 | ♀ | 8 | UD | na | na | na | 0.082 | 0.097 | na | na | na | na | na | na |
F 24 | ♀ | 3 | GD/N | na | 0.056 | 0.066 | 0.068 | 0.110 | na | na | na | na | na | 0.042 * |
F 25 | ♂ | 4 | S | na | na | na | na | 0.076 | 0.101 | na | na | na | na | na |
F 26 | ♀ | 3 | NAD | na | na | na | na | 0.073 | 0.153 | na | na | na | na | na |
F 27 | ♀ | 4 | Leish | na | na | na | 0.048 | na | 0.092 | 0.069 | 0.066 | 0.066 | 0.042 | na |
F 28 | ♂ | 6 | ED | na | na | na | na | na | 0.064 | na | 0.066 | na | na | na |
F 29 | ♂ | 4 | GD | na | na | na | na | na | 0.068 | 0.074 | na | na | na | na |
F 30 | ♀ | 3 | GD | na | na | na | na | na | 0.058 | na | 0.067 | na | na | na |
F 31 | ♂ | 5 | S | na | na | 0.071 | na | na | 0.300 | na | na | na | 0.059 | na |
F 32 | ♀ | 5 | ED | na | na | na | na | na | 0.087 | na | 0.081 | na | na | 0.112 |
F 33 (FRSCV1) | ♀ | 1 | SC | na | na | na | na | na | 0.054 | na | na | na | 0.085 | 0.046 |
F 34 | ♂ | 4 | GD | na | na | na | na | na | 0.058 | na | 0.067 | na | na | na |
F 35 | ♂ | 6 | CD | na | na | na | na | na | 0.073 | na | na | na | na | 0.055 |
F 36 | ♀ | 5 | NAD | na | na | na | na | na | 0.085 | 0.074 | na | na | na | na |
F 37 | ♀ | 1 | NAD | na | na | na | na | na | 0.068 | 0.061 | na | na | na | na |
F 38 | ♀ | 4 | N | na | na | na | na | na | na | 0.071 | 0.075 | na | na | na |
F 39 | ♂ | 4 | HD | na | na | na | na | na | na | 0.112 | 0.082 | 0.115 | na | 0.091 |
F 40 | ♂ | 2 | UD | na | na | na | na | na | na | 0.070 | 0.075 | na | na | na |
F 41 | ♀ | 8 | ED | na | na | na | na | na | na | 0.063 | 0.070 | na | na | na |
F 42 | ♂ | 4 | S | na | na | na | na | na | na | 0.068 | na | na | 0.066 | na |
F 43 | ♀ | 3 | NAD | na | na | na | na | na | na | na | na | na | 0.057 | 0.057 |
F 44 | ♂ | 5 | NAD | na | na | 0.092 | na | na | na | na | na | na | na | 0.072 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giner, J.; Villanueva-Saz, S.; Tobajas, A.P.; Pérez, M.D.; González, A.; Verde, M.; Yzuel, A.; García-García, A.; Taleb, V.; Lira-Navarrete, E.; et al. SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo). Animals 2021, 11, 667. https://doi.org/10.3390/ani11030667
Giner J, Villanueva-Saz S, Tobajas AP, Pérez MD, González A, Verde M, Yzuel A, García-García A, Taleb V, Lira-Navarrete E, et al. SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo). Animals. 2021; 11(3):667. https://doi.org/10.3390/ani11030667
Chicago/Turabian StyleGiner, Jacobo, Sergio Villanueva-Saz, Ana Pilar Tobajas, María Dolores Pérez, Ana González, Maite Verde, Andrés Yzuel, Ana García-García, Víctor Taleb, Erandi Lira-Navarrete, and et al. 2021. "SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo)" Animals 11, no. 3: 667. https://doi.org/10.3390/ani11030667
APA StyleGiner, J., Villanueva-Saz, S., Tobajas, A. P., Pérez, M. D., González, A., Verde, M., Yzuel, A., García-García, A., Taleb, V., Lira-Navarrete, E., Hurtado-Guerrero, R., Pardo, J., Santiago, L., Paño, J. R., Ruíz, H., Lacasta, D., & Fernández, A. (2021). SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo). Animals, 11(3), 667. https://doi.org/10.3390/ani11030667