Analysis of Intestinal Mucosa Integrity and GLP-2 Gene Functions upon Porcine Epidemic Diarrhea Virus Infection in Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Animal
2.3. Paraffin Section Preparation and Hematoxylin and Eosin (H&E) Staining
2.4. Primer Design and Synthesis
2.5. Construction of shRNA Silencing Cells
2.6. PEDV Infects IPEC-J2 Cells and shRNA Silencing Cells
2.7. Total RNA Extraction and qPCR
2.8. Western Blotting Analysis
2.9. Statistical Analysis
3. Results
3.1. Hematoxylin and Eosin (H&E) Staining of the Small Intestine
3.2. Total RNA Quality Detection and qPCR Primer Specificity
3.3. Expression Analysis of GLP-2 Gene in Intestinal Segments of the Healthy and Damaged Intestinal Mucosa Group
3.4. Analysis of Differential Expression of GLP-2 Gene in IPEC-J2 Cells with PEDV Infection
3.5. Verification of GLP-2 Gene Interference Efficiency in IPEC-J2 Cells
3.6. Effect of GLP-2 Gene Silencing on PEDV Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- King, A.M.Q.; Adams, M.J.; Carstens, E.B.; Lefkowitz, E.J. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Saint Louisl, MO, USA, 2011. [Google Scholar]
- Kocherhans, R.; Bridgen, A.; Ackermann, M.; Tobler, K. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes 2001, 23, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Duarte, M.; Gelfi, J.; Lambert, P.; Rasschaert, D.; Laude, H. Genome organization of porcine epidemic diarrhoea virus. Adv. Exp. Med. Biol. 1993, 342, 55–60. [Google Scholar] [PubMed]
- Wang, K.; Lu, W.; Chen, J.F.; Xie, S.Q.; Shi, H.Y.; Hsu, H.J.; Yu, W.J.; Xu, K.; Bian, C.; Fisher, W.B.; et al. PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Lett. 2012, 586, 384–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, B.J.; Zee, R.V.D.; De Haan, C.A.M.D.; Rottier, P.J.M. The coronavirus spike protein is a class I virus fufsion protein: Structural and functional characterization of the fusion core complex. J. Virol. 2003, 77, 8801–8811. [Google Scholar] [CrossRef] [Green Version]
- Klumperman, J.; Locker, J.K.; Meijer, A.; Horzinek, M.C.; Geuze, H.J.; Rottier, P.J. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J. Virol. 1994, 68, 6523–6534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vennema, H.; Godeke, G.J.; Rossen, J.W.; Voorhout, W.F.; Horzinek, M.C.; Opstelten, D.J.; Rottier, P.J. Nucleocapsid-independent assembly of coronavirus-1ike particles by co-expression of viral envelope protein genes. EMBO J. 1996, 15, 2020–2028. [Google Scholar] [CrossRef]
- Pensaert, M.B.; Debouck, P. A new coronavirus-like particle associated with diarrhea in swine. Arch. Virol. 1978, 58, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molloy, M.; Bouladoux, N.; Belkaid, Y. Intestinal Microbiota: Shaping local and systemic immune responses. Semin. Immunol. 2012, 24, 58–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blikslager, A.T.; Moeser, A.J.; Gookin, J.L.; Jones, S.L.; Odle, J. Restoration of barrier function in injured intestinal mucosa. Physiol. Rev. 2007, 87, 545–564. [Google Scholar] [CrossRef]
- Laukoetter, M.G.; Bruewer, M.; Nusrat, A. Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr. Opin. Gastroenterol. 2006, 22, 85–89. [Google Scholar] [CrossRef]
- Tsukita, S.; Furuse, M.; Itoh, M. Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol. 2001, 2, 285–293. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, G.X.; Sun, Z.W.; Che, D.S.; Bao, N.; Zhang, X.D. Effects of soybean agglutinin on intestinal barrier permeability and tight junction protein expression in weaned piglets. Int. J. Mol. Sci. 2011, 12, 8502–8512. [Google Scholar] [CrossRef]
- Mowat, A.M. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 2003, 3, 331–341. [Google Scholar] [CrossRef]
- Drucker, D.J. Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 2002, 122, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Heuvel, E.D.; Wallace, L.; Sharkey, K.A.; Sigalet, D.L. Glucagon-like peptide 2 induces vasoactive intestinal polypeptide expression in enteric neurons via phosphatidylinositol 3-kinase-γ signaling. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E994–E1005. [Google Scholar] [CrossRef] [Green Version]
- Brubaker, P.L.; Anini, Y. Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. Can. J. Physiol. Pharm. 2003, 81, 1005–1012. [Google Scholar] [CrossRef]
- Drucker, D.J.; Erlich, P.; Asa, S.L.; Brubaker, P.L. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc. Natl. Acad. Sci. USA 1996, 93, 7911–7916. [Google Scholar] [CrossRef] [Green Version]
- Petersen, Y.M.; Hartmann, B.; Holst, J.J.; Huerou-Luron, I.L.; Bjørnvad, C.R.; Sangild, P.T. Introduction of enteral food increases plasma GLP-2 and decreases GLP-2 receptor mRNA abundance during pig development. J. Nutr. 2003, 133, 1781–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamin, M.A.; Mckay, D.M.; Yang, P.C.; Cameron, H.; Perdue, M.H. Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut 2000, 47, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Moran, J.W.; O’neill, C.; Mclaughlin, J.T. GLP-2 enhances barrier formation and attenuates TNFα-induced changes in a Caco-2 cell model of the intestinal barrier. Regul. Pept. 2012, 178, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Zong, Q.F.; Huang, Y.J.; Wu, L.S.; Wu, Z.C.; Wu, S.L.; Bao, W.B. Effects of porcine epidemic diarrhea virus infection on tight junction protein gene expression and morphology of the intestinal mucosa in pigs. Pol. J. Vet. Sci. 2019, 211, 345–353. [Google Scholar]
- Jung, K.; Wang, Q.; Scheuer, K.A.; Lu, Z.; Zhang, Y.; Saif, L.J. Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs. Emerg. Infect. Dis. 2014, 20, 662–665. [Google Scholar] [CrossRef]
- Yusta, B.; Somwar, R.; Wang, F.; Munroe, D.; Grinstein, S.; Klip, A.; Drucker, D.J. Identification of glucagon-like peptide-2(GLP-2)-activited signaling pathways in baby hamster kidney fibroblasts expressing the rat GLP-2 receptor. J. Biol. Chem. 1999, 274, 30459–30467. [Google Scholar] [CrossRef] [Green Version]
- Jasleen, J.; Shimoda, N.; Shen, E.R.; Tavakkolizaden, A.; Whang, E.E.; Jacobs, D.O.; Zinner, M.J.; Ashley, S.W. Signaling mechanisms of glucagon-like peptide 2-induced intestinal epithelial cell proliferation. J. Surg. Res. 2000, 90, 13–18. [Google Scholar] [CrossRef]
- Cameron, H.L.; Perdue, M.H. Stress impairs murine intestinal barrier function: Improvement by glucagon-like peptide-2. J. Pharm. Exp. 2005, 313, 214–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, H.L.; Yang, P.C.; Perdue, M.H. Glucagon-like peptide-2 enhanced barrier function reduces pathophysiology in a model of food allergy. Am. J. Physiol. Gastrointestiest. Liver Physiol. 2003, 284, G905–G912. [Google Scholar] [CrossRef] [Green Version]
- Boushey, R.P.; Yusta, B.; Druckey, D.J. Glucagon-like peptide (GLP)-2 reduces chemotherapy-associated mortality and enhances cell survival in cells expressing a transfected GLP-2 receptor. Cancer Res. 2001, 61, 687–693. [Google Scholar] [PubMed]
- Jinguji, Y.; Ishikawa, H. Electron microscopic observations on the maintenance of the tight junction during cell division in the epithelium of the mouse small intestine. Cell Struct. Funct. 1992, 17, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.; Eyerly, B.; Annamalai, T.; Lu, Z.Y.; Saif, L.J. Structural alteration of tight and adherens junctions in villous and crypt epithelium of the small and large intestine of conventional nursing piglets infected with porcine epidemic diarrhea virus. Vet. Microbiol. 2015, 177, 373–378. [Google Scholar] [CrossRef]
- Dickman, K.G.; Hempson, S.J.; Anderson, J.; Lippe, S.; Zhao, L.; Burakoff, R.; Shaw, R.D. Rotavirus alters paracellular permeability and energy metabolism in Caco-2 cells. Am. J. Physiol. Gastrointestiest. Liver Physiol. 2000, 279, G757–G766. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequence | Product Length (bp) |
---|---|---|
GLP-2 | F: 5′-ACTCACAGGGCACGTTTACCA-3′ R: 5′-AGGTCCCTTCAGCATGTCTCT-3′ | 150 |
PEDV M | F: 5′-AGGTCTGCATTCCAGTGCTT-3′ R: 5′-CCTGCCCAGATTCAGCAAAG-3′ | 216 |
GAPDH | F: 5′-ACATCATCCCTGCTTCTACTGG-3′ R: 5′-CTCGGACGCCTGCTTCAC-3′ | 187 |
β-ACTIN | F: 5′-TGGCGCCCAGCACGATGAAG-3′ R: 5′-GATGGAGGGGCCGGACTCGT-3′ | 149 |
Name | Sequence of Oligo |
---|---|
shRNA1 | F: 5′-CACCGTTTTTTG -3′ R: 5′-GATCCAAAAAAC-3′ |
shRNA2 | F: 5′-CACCTTTTTTG-3′ R: 5′-GATCCAAAAAA-3′ |
shRNA3 | F: 5′-CACCGTTTTTTG-3′ R: 5′-GATCCAAAAAAC-3′ |
shRNA NC | F: 5′-CACCGTTTTTTG-3′ R: 5′- GATCCAAAAAAC-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Ren, Z.; Zhang, S.; Wang, H.; Wu, S.; Bao, W. Analysis of Intestinal Mucosa Integrity and GLP-2 Gene Functions upon Porcine Epidemic Diarrhea Virus Infection in Pigs. Animals 2021, 11, 644. https://doi.org/10.3390/ani11030644
Zhou Y, Ren Z, Zhang S, Wang H, Wu S, Bao W. Analysis of Intestinal Mucosa Integrity and GLP-2 Gene Functions upon Porcine Epidemic Diarrhea Virus Infection in Pigs. Animals. 2021; 11(3):644. https://doi.org/10.3390/ani11030644
Chicago/Turabian StyleZhou, Yajing, Zhanshi Ren, Shuai Zhang, Haifei Wang, Shenglong Wu, and Wenbin Bao. 2021. "Analysis of Intestinal Mucosa Integrity and GLP-2 Gene Functions upon Porcine Epidemic Diarrhea Virus Infection in Pigs" Animals 11, no. 3: 644. https://doi.org/10.3390/ani11030644
APA StyleZhou, Y., Ren, Z., Zhang, S., Wang, H., Wu, S., & Bao, W. (2021). Analysis of Intestinal Mucosa Integrity and GLP-2 Gene Functions upon Porcine Epidemic Diarrhea Virus Infection in Pigs. Animals, 11(3), 644. https://doi.org/10.3390/ani11030644