The Dietary Supplemental Effect of Nitroethanol in Comparison with Monensin on Methane Emission, Growth Performance and Carcass Characteristics in Female Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experiment Design and Animals Feeding
2.3. Sampling and Measurements
2.4. Chemical Analyses
2.5. Calculations
2.6. Statistical Analysis
3. Results
3.1. Digestibility
3.2. Growth Performance
3.3. Methane Emission
3.4. Carcass Characteristics
3.5. Economic Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mosoni, P.; Chaucheyras-Durand, F.; Béra-Maillet, C.; Forano, E. Quantification by real-time pcr of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: Effect of a yeast additive. J. Appl. Microbiol. 2010, 103, 2676–2685. [Google Scholar] [CrossRef] [PubMed]
- Gobindram, M.N.N.E.; Bognanno, M.; Luciano, G.; Avondo, M.; Piccione, G.; Biondi, L. The effects of barley replacement by dehydrated citrus pulp on feed intake, performance, feeding behaviour and serum metabolic indicators in lambs. Anim. Prod. Sci. 2015, 57, 133–140. [Google Scholar] [CrossRef]
- Armato, L.; Gianesella, M.; Fiore, E.; Arfuso, F.; Morgante, M. Effect of live yeast & yeast cell wall saccharomyces cerevisiae diet supplementation on faeces chemical composition and growth performance in growing and finishing beef steers. Large Anim. Rev. 2016, 22, 203–210. [Google Scholar]
- Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: A review. Animal 2013, 7, 220–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Hess, H.D.; Beuret, R.A.; Lotscher, M.; Hindrichsen, I.K.; Machmuller, A.; Carulla, J.E.; Lascano, C.E.; Kreuzer, M. Ruminal fermentation, methanogenesis and nitrogen utilization of sheep receiving tropical grass hay–concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage. Animal 2004, 79, 177–189. [Google Scholar]
- Beauchemin, K.A.; Kreuzer, M.O.; O’Mara, F.; Mcallister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Guan, H.; Wittenberg, K.M.; Ominski, K.H.; Krause, D.O. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 2006, 84, 1896–1906. [Google Scholar] [CrossRef] [Green Version]
- Soltan, Y.A.; Hashem, N.M.; Morsy, A.S.; El-Azrak, K.M.; Sallam, S.M. Comparative effects of Moringa oleifera root bark and monensin supplementations on ruminal fermentation, nutrient digestibility and growth performance of growing lambs. Anim. Feed Sci. Technol. 2018, 235, 189–201. [Google Scholar] [CrossRef]
- Van Vugt, C. Impact of monensin on methane production and performance of cows fed forage diets. Proc. N. Z. Soc. Anim. Prod. 2005, 65, 362–366. [Google Scholar]
- Odongo, N.; Bagg, R.; Vessie, G.; Dick, P.; Or-Rashid, M.; Hook, S.; Gray, J.; Kebreab, E.; France, J.; McBride, B. Long-term effects of feeding monensin on methane production in lactating dairy cows. J. Dairy Sci. 2007, 90, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
- Vyas, D.; Alemu, A.W.; McGinn, S.M.; Stephane, M.D.; Maik, K.; Karen, A.B. The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high forage and high grain diets. J. Anim. Sci. 2018, 96, 2923–2938. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.C.; Callaway, T.R.; Kessel, J.A.S.V.; Yong, S.J.; Edrington, T.S.; Nisbet, D.J. Effect of select nitrocompounds on ruminal fermentation; an initial look at their potential to reduce economic and environmental costs associated with ruminal methanogenesis. Bioresour. Technol. 2003, 90, 59–63. [Google Scholar] [CrossRef]
- Anderson, R.C.; Krueger, N.A.; Stanton, T.B.; Callaway, T.R.; Edrington, T.S.; Harvey, R.B.; Jung, Y.S.; Nisbet, D.J. Effects of select nitrocompounds on in vitro ruminal fermentation during conditions of limiting or excess added reductant. Bioresour. Technol. 2008, 99, 8655–8661. [Google Scholar] [CrossRef]
- Božic, A.K.; Anderson, R.C.; Carstens, G.E.; Ricke, S.C.; Callaway, T.R.; Yokoyama, M.T.; Wang, J.K.; Nisbet, D.J. Effects of the methane–inhibitors nitrate, nitroethane, lauric acid, Lauricidin and the Hawaiian marine algae. Bioresour. Technol. 2009, 99, 4017–4025. [Google Scholar] [CrossRef]
- Gutierrez-Bañuelos, H.; Anderson, R.C.; Carstens, G.E.; Tedeschi, L.O.; Pinchak, W.E.; Elisa, C.D.; Krueger, N.A.; Callaway, T.R.; Nisbet, D.J. Effects of nitroethane and monensin on ruminal fluid fermentation characteristics and nitrocompound–metabolizing bacterial populations. J. Agric. Food Chem. 2008, 56, 4650–4658. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Wang, Y.L.; Chen, Y.Y.; Wang, W.K.; Zhang, L.T.; Luo, H.L.; Yang, H.J. The Nitroethanol in Comparison with Monensin Exhibits Greater Feed Efficiency through Inhibiting Rumen Methanogenesis More Efficiently and Persistently in Feedlotting Lambs. Animals 2019, 9, 784. [Google Scholar] [CrossRef] [Green Version]
- Askar, A.R.; Guada, J.A.; Gonzalez, J.M.; de Vega, A.; Castrillo, C. Diet selection by growing lambs offered whole barley and a protein supplement, free choice: Effects on performance and digestion. Livest. Sci. 2006, 101, 81–93. [Google Scholar] [CrossRef]
- Rodríguez, A.B.; Bodas, R.; Prieto, N.; Landa, R.; Mantecón, A.R.; Giráldez, F.J. Effect of sex and feeding system on feed intake, growth, and meat and carcass characteristics of fattening Assaf lambs. Livest. Sci. 2008, 116, 118–125. [Google Scholar] [CrossRef]
- Abouheif, M.A.; Kraides, M.S.; Shatat, R.A. Effect of docking and sex of lambs on carcass characteristics of the fat tailed Najdi sheep. J. Appl. Anim. Res. 1992, 1, 91–101. [Google Scholar] [CrossRef]
- Aregheore, E.M. Effect of sex on growth rate, voluntary intake and nutrient digestibility of West African Dwarf goats. Small Rumin. Res. 1994, 15, 217–221. [Google Scholar] [CrossRef]
- A.O.A.C. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Peng, K.; Shirley, D.C.; Xu, Z.; Huang, Q.; Mcallister, T.A.; Chaves, A.V.; Acharya, S.; Liu, C.L.; Wang, S.X.; Wang, Y.X. Effect of purple prairie clover (dalea purpurea vent.) hay and its condensed tannins on growth performance, wool growth, nutrient digestibility, blood metabolites and ruminal fermentation in lambs fed total mixed rations. Anim. Feed Sci. Technol. 2016, 222, 100–110. [Google Scholar] [CrossRef]
- Patra, A.K.; Lalhriatpuii, M.; Debnath, B.C. Predicting enteric methane emission in sheep using linear and non-linear statistical models from dietary variables. Anim. Prod. Sci. 2016, 56, 574–584. [Google Scholar] [CrossRef]
- Benchaar, C. Diet supplementation with cinnamon oil, cinnamaldehyde, or monensin does not reduce enteric methane production of dairy cows: An international journal of animal bioscience. Anim. Inter. J. Anim. Biosci. 2016, 10, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Mohini, M.; Malla, B.A.; Mondal, G.; Pandita, S. Effects of monensin feeding on performance, nutrient utilisation and enteric methane production in growing buffalo heifers. Trop. Anim. Health Prod. 2019, 51, 1–8. [Google Scholar] [CrossRef]
- Zhang, D.F.; Yang, H.J. In vitro ruminal methanogenesis of a hay-rich substrate in response to different combination supplements of nitrocompounds; pyromellitic diimide and 2-bromoethanesulphonate. Anim. Feed Sci. Technol. 2011, 163, 20–32. [Google Scholar] [CrossRef]
- Zhang, D.F.; Yang, H.J. Combination effects of nitrocompounds, pyromellitic diimide, and 2-bromoethanesulfonate on in vitro ruminal methane production and fermentation of a grain-rich feed. J. Agric. Food Chem. 2012, 60, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Bergen, W.G.; Bates, D.B. Ionophores: Their effect on production efficiency and mode of action. J. Anim. Sci. 1984, 58, 1465–1483. [Google Scholar] [CrossRef]
- Aderinboye, R.Y.; Onwuka, C.F.; Arigbede, O.M.; Oduguwa, O.O.; Aina, A.B. Effect of dietary monensin inclusion on performance, nutrient utilisation, rumen volatile fatty acid concentration and blood status of West African dwarf bucks fed with basal diets of forages. Trop. Anim. Health Prod. 2012, 44, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.E.; Chester-Jones, H.; Ziegler, D.; Clapper, J.A.; Erickson, P.S. Effects of cinnamaldehyde or monensin on performance of weaned Holstein dairy heifers. J. Dairy Sci. 2017, 100, 1712–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susin, I.; Mendes, C.Q.; Pires, A.V.; Packer, I.U. Monensin or decoquinate in high concentrate diets fed to Santa Ines lambs. J. Dairy Sci. 2004, 87, 40. [Google Scholar]
- Safaei, K.; Tahmasbi, A.M.; Moghaddam, G. Effects of high concentrate:forage ratio diets containing monensin on the management of ruminal acidosis in Gezhel lambs. Small Rumin. Res. 2014, 121, 183–187. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Fox, D.G.; Tylutki, T.P. Potential environmental benefits of ionophores in ruminant diets. J. Environ. Qual. 2003, 32, 1591–1602. [Google Scholar] [CrossRef] [PubMed]
- Kebreab, E.; Clark, K.; Wagner-Riddle, C.; France, J. Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Can. J. Anim. Sci. 2006, 86, 135–158. [Google Scholar] [CrossRef]
- Hammond, K.J.; Crompton, L.A.; Bannink, A.; Dijkstra, J.; Yáñez-Ruiz, D.R.; O’Kiely, P.; Kebreab, E.; Eugène, M.A.; Yu, Z.; Shingfield, K.J.; et al. Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Anim. Feed Sci. Technol. 2016, 219, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Ramin, M.; Huhtanen, P. Development of equations for predicting methane emissions from ruminants. J. Dairy Sci. 2013, 96, 2476–2493. [Google Scholar] [CrossRef]
- Cottle, D.J.; Eckard, R.J. Global beef cattle methane emissions: Yield prediction by cluster and meta-analyses. Anim. Prod. Sci. 2018, 58, 2167–2177. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Wang, Y.L.; Wang, W.K.; Li, Y.H.; Cao, Z.J.; Li, S.L.; Yang, H.J. The inhibitory action mode of nitrocompounds on in vitro rumen methanogenesis: A comparison of nitroethane, 2-nitroethanl and 2-nitro-1-propanol. J. Agric. Sci. 2019, 157, 471–479. [Google Scholar] [CrossRef]
- Eckard, R.J.; Grainger, C.; De Klein, C.A.M. Options for the abatement of methane and nitrous oxide from ruminant production. Livest. Sci. 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Gilka, J.; Jelínek, P.; Janková, B.; Krejči, P.; Habrda, J. Carcass traits and meat quality of male lambs fed monensin or lasalocid. Meat Sci. 1989, 25, 265–272. [Google Scholar] [CrossRef]
- Van Vuuren, B.G.J.; Nel, J.W. The effect of monensin on the efficiency of feed conversion, carcass traits and the occurrence of coccidiosis in lambs. S. Afr. J. Anim. Sci. 1983, 3, 87–90. [Google Scholar]
Item | TMR |
---|---|
Ingredients (g/kg, as fed basis) | |
Corn silage | 600 |
Peanut vine hay | 100 |
Corn meal | 109.5 |
Wheat bran | 30 |
Soybean meal | 150 |
Limestone | 3 |
Sodium bicarbonate | 1.5 |
Salt | 3 |
Premix 1 | 3 |
Chemical composition (g/kg, as dry matter) | |
Organic matter | 944 |
Crude protein (N×6.25) | 163 |
Ether extract | 22 |
Neutral detergent fiber | 360 |
Acid detergent fiber | 223 |
Calcium | 5.5 |
Phosphorus | 4.5 |
Gross Energy (MJ/kg) | 15.2 |
Treatment | |||||
---|---|---|---|---|---|
Item | Control | Monensin | NEOH | SEM | p Value |
Dry matter digestibility, g/kg | |||||
day 0~32 | 715 | 712 | 711 | 5.4 | 0.82 |
day 33~70 | 703 | 706 | 695 | 11.4 | 0.76 |
Organic matter digestibility, g/kg | |||||
day 0~32 | 737 | 733 | 731 | 5.1 | 0.72 |
day 33~70 | 723 | 729 | 714 | 11.1 | 0.63 |
Crude protein digestibility, g/kg | |||||
day 0~32 | 712 | 718 | 714 | 5.9 | 0.76 |
day 33~70 | 656 | 677 | 668 | 12.6 | 0.50 |
Neutral detergent fibre digestibility, g/kg | |||||
day 0~32 | 577 | 563 | 552 | 8.7 | 0.19 |
day 33~70 | 560 | 543 | 482 | 30.3 | 0.23 |
Acid detergent fibre digestibility, g/kg | |||||
day 0~32 | 558 | 567 | 541 | 22.0 | 0.72 |
day 33~70 | 552 | 570 | 561 | 37.8 | 0.94 |
Treatment | |||||
---|---|---|---|---|---|
Items | Control | Monensin | NEOH | SEM | p Value |
Dry matter intake (kg/day) | 1045 a | 998 b | 1006 b | 7.000 | <0.01 |
Average daily gain (g/day) | 186 b | 213 a | 218 a | 2.000 | <0.01 |
Feed conversion ration | 0.18 b | 0.21 a | 0.22 a | 0.003 | <0.01 |
Treatment | |||||
---|---|---|---|---|---|
Items | Control | Monensin | NEOH | SEM | p-Value |
Gross energy intake (MJ/day) | 15.3 a | 14.6 c | 14.8 b | 0.05 | <0.01 |
Fecal energy loss (MJ/day) | 4.8 a | 4.6 b | 4.7 b | 0.04 | <0.01 |
Digestible energy (MJ/day) | 10.6 a | 10.3 b | 10.3 b | 0.03 | <0.01 |
Metabolizable energy (MJ/day) | 8.7 a | 8.5 b | 8.4 b | 0.02 | <0.01 |
CH4 (L/day) | 12.3 a | 11.3 b | 11.0 c | 0.03 | <0.01 |
CH4 (L/kg ADG) | 70.0 a | 61.1 b | 57.8 c | 0.80 | <0.01 |
CH4 DMI (L/day) | 11.4 a | 11.1 b | 11.1b | 0.02 | <0.01 |
CH4 DEI (L/day) | 12.8 a | 12.6 b | 12.5 b | 0.02 | <0.01 |
CH4E (CH4 energy, MJ/day) | 0.96 a | 0.88 b | 0.86 c | 0.002 | <0.01 |
CH4E in Gross energy (%) | 6.3 a | 6.0 b | 5.8 c | 0.01 | <0.01 |
CH4E in Digestible energy (%) | 9.1 a | 8.5 b | 8.3 c | 0.02 | <0.01 |
CH4E in Metabolizable energy (%) | 11.2 a | 10.7 b | 10.3 c | 0.03 | <0.01 |
Treatment | |||||
---|---|---|---|---|---|
Items | Control | Monensin | NEOH | SEM | p Value |
Live weight slaughtered, kg | 43.6 | 44.2 | 42.0 | 0.65 | 0.07 |
Carcass weight, kg | 21.5 | 21.1 | 20.4 | 0.49 | 0.35 |
Net muscle weight, kg | 16.7 | 16.5 | 16.5 | 0.32 | 0.81 |
Net muscle, % carcass | 77.7 b | 78.2 a | 79.3 a | 0.28 | 0.03 |
Bone weight, kg | 3.5 | 3.6 | 3.5 | 0.07 | 0.73 |
Meat:bone ratio | 4.8 | 4.7 | 4.7 | 0.13 | 0.61 |
Backfat thickness, mm | 8.4 | 8.5 | 8.2 | 0.20 | 0.59 |
Lion eye area, cm2 | 21.7 | 22.3 | 21.3 | 1.26 | 0.85 |
Items | CTR | MON | NEOH |
---|---|---|---|
Feed consumption, kg/lamb | 121.5 | 117.0 | 116.0 |
Total feed cost, CNY/lamb 1 | 72.3 | 69.6 | 69.0 |
Sale benefit of live weight2 | |||
Live weight gain, kg/lamb | 13.1 | 14.8 | 15.3 |
Income of gain, CNY/lamb | 366 | 414 | 428 |
Net revenue, CNY/lamb | 294 | 344 | 359 |
Economic feed efficiency | 4.1 | 4.9 | 5.2 |
Relative economic feed efficiency (%) | 100 | 120 | 127 |
Sale benefit of carcass meat3 | |||
Net meat mass, kg/lamb | 16.4 | 16.5 | 16.6 |
Income of meat, CNY/lamb | 951 | 957 | 963 |
Net revenue, CNY/lamb | 879 | 887 | 894 |
Economic feed efficiency | 12.2 | 12.7 | 12.9 |
Relative economic feed efficiency (%) | 100 | 104 | 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.-W.; Wang, Y.-L.; Chen, Y.-Y.; Zhang, L.-T.; Zhang, Y.-J.; Liu, Y.-Q.; Guo, Y.-X.; Yang, H.-J. The Dietary Supplemental Effect of Nitroethanol in Comparison with Monensin on Methane Emission, Growth Performance and Carcass Characteristics in Female Lambs. Animals 2021, 11, 327. https://doi.org/10.3390/ani11020327
Zhang Z-W, Wang Y-L, Chen Y-Y, Zhang L-T, Zhang Y-J, Liu Y-Q, Guo Y-X, Yang H-J. The Dietary Supplemental Effect of Nitroethanol in Comparison with Monensin on Methane Emission, Growth Performance and Carcass Characteristics in Female Lambs. Animals. 2021; 11(2):327. https://doi.org/10.3390/ani11020327
Chicago/Turabian StyleZhang, Zhen-Wei, Yan-Lu Wang, Yong-Yan Chen, Luo-Tong Zhang, Ying-Jie Zhang, Yue-Qin Liu, Yun-Xia Guo, and Hong-Jian Yang. 2021. "The Dietary Supplemental Effect of Nitroethanol in Comparison with Monensin on Methane Emission, Growth Performance and Carcass Characteristics in Female Lambs" Animals 11, no. 2: 327. https://doi.org/10.3390/ani11020327
APA StyleZhang, Z.-W., Wang, Y.-L., Chen, Y.-Y., Zhang, L.-T., Zhang, Y.-J., Liu, Y.-Q., Guo, Y.-X., & Yang, H.-J. (2021). The Dietary Supplemental Effect of Nitroethanol in Comparison with Monensin on Methane Emission, Growth Performance and Carcass Characteristics in Female Lambs. Animals, 11(2), 327. https://doi.org/10.3390/ani11020327