Random Regression Model for Genetic Evaluation and Early Selection in the Iranian Holstein Population
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Model
2.3. Prediction of Breeding Values
2.4. Estimation of Genetic Parameters
2.5. Cross-Validation
3. Results
3.1. Fixed Effects
3.2. Estimation of Genetic Parameters
3.3. Cross-Validation
4. Discussion
4.1. Model
4.2. Genetic Parameters
4.3. Cross Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrabi, S.; Moran, C. Selection of dairy cow bulls for artificial insemination. Int. J. Agric. Biol. 2007, 9, 175–178. [Google Scholar]
- Powell, R.; Norman, H.; Sanders, A. Progeny testing and selection intensity for Holstein bulls in different countries. J. Dairy Sci. 2003, 86, 3386–3393. [Google Scholar] [CrossRef]
- VanRaden, P.; Van Tassell, C.; Wiggans, G.; Sonstegard, T.; Schnabel, R.; Taylor, J.; Schenkel, F. Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 2009, 92, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigel, K.; VanRaden, P.; Norman, H.; Grosu, H. A 100-Year Review: Methods and impact of genetic selection in dairy cattle—from daughter–dam comparisons to deep learning algorithms. J. Dairy Sci. 2017, 100, 10234–10250. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, J.; McDaniel, B.T. Prediction of most recent evaluations of Holstein bulls from first available pedigree information. J. Dairy Sci. 2002, 85, 670–676. [Google Scholar] [CrossRef]
- Norman, H.; Powell, R.; Wright, J.; Sattler, C. Timeliness and effectiveness of progeny testing through artificial insemination. J. Dairy Sci. 2003, 86, 1513–1525. [Google Scholar] [CrossRef] [Green Version]
- Hayes, B. Efficient parentage assignment and pedigree reconstruction with dense single nucleotide polymorphism data. J. Dairy Sci. 2011, 94, 2114–2117. [Google Scholar] [CrossRef]
- Cesarani, A.; Hidalgo, J.; Garcia, A.; Degano, L.; Vicario, D.; Masuda, Y.; Misztal, I.; Lourenco, D. Beef trait genetic parameters based on old and recent data and its implications for genomic predictions in Italian Simmental cattle. J. Anim. Sci. 2020, 98, 1–8. [Google Scholar] [CrossRef]
- Patry, C.; Ducrocq, V. Evidence of biases in genetic evaluations due to genomic preselection in dairy cattle. J. Dairy Sci. 2011, 94, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Benedet, A.; Costa, A.; De Marchi, M.; Penasa, M. Heritability estimates of predicted blood beta-hydroxybutyrate and nonesterified fatty acids and relationships with milk traits in early-lactation Holstein cows. J. Dairy Sci. 2020, 103, 6354–6363. [Google Scholar] [CrossRef]
- Dhakal, K.; Tiezzi, F.J.; Clay, S.; Maltecca, C. Causal relationships between clinical mastitis events, milk yields and lactation persistency in US Holsteins. Livest. Sci. 2016, 189, 8–16. [Google Scholar] [CrossRef]
- Prendiville, R.; Pierce, K.; Delaby, L.; Buckley, F. Animal performance and production efficiencies of Holstein-Friesian, Jersey and Jersey× Holstein-Friesian cows throughout lactation. J. Dairy Sci. 2011, 138, 25–33. [Google Scholar] [CrossRef]
- Shadparvar, A.; Yazdanshenas, M. Genetic parameters of milk yield and milk fat percentage test day records of Iranian Holstein cows. Asian-Australas J. Anim. Sci. 2005, 18, 1231–1236. [Google Scholar] [CrossRef]
- Hidalgo, J.; Tsuruta, S.; Lourenco, D.; Masuda, Y.; Huang, Y.; Gray, K.A.; Misztal, I. Changes in genetic parameters for fitness and growth traits in pigs under genomic selection. JAS 2020, 98, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobsen, J.H.; Madsen, P.; Jensen, J.; Pedersen, J.; Christensen, L.; Sorensen, D. Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML. J. Dairy Sci. 2002, 85, 1607–1616. [Google Scholar] [CrossRef]
- Schaeffer, L.R. Application of random regression models in animal breeding. Livest. Sci. 2004, 86, 35–45. [Google Scholar] [CrossRef]
- Legarra, A.; Reverter, A. Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method. Genet. Sel. Evol. 2018, 50, 53. [Google Scholar] [CrossRef] [Green Version]
- Bijma, P. Accuracies of estimated breeding values from ordinary genetic evaluations do not reflect the correlation between true and estimated breeding values in selected populations. J. Anim. Breed. Genet 2012, 129, 345–358. [Google Scholar] [CrossRef]
- Momen, M.; Campbell, M.T.; Walia, H.; Morota, G. Predicting longitudinal traits derived from high-throughput phenomics in contrasting environments using genomic Legendre polynomials and B-splines. G3 Bethesda 2019, 9, 3369–3380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legarra, A.; Reverter, A. Can we frame and understand cross-validation results in animal breeding. In Proceedings of the 22nd Conference Association for the Advancement of Animal Breeding and Genetics 2017, Townsville, Australia, 2–5 July 2017; pp. 2–5. [Google Scholar]
- Ihaka, R.; Gentleman, R. R: A language for data analysis and graphics. JCGS 1996, 5, 299–314. [Google Scholar]
- Jensen, J.; Madsen, P. DMU: A package for the analysis if multivariate mixed models 1994. In Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, Guelph, ON, Canada, 7–12 August 1994; pp. 45–46. [Google Scholar]
- Novomestky, F. Collection of functions for orthogonal and orthonormal polynomials Package. CRAN 2013, 02-04 07:42:24. Available online: https://rdrr.io/cran/orthopolynom/ (accessed on 1 October 2021).
- Pool, M.; Janss, L.; Meuwissen, T. Genetic parameters of Legendre polynomials for first parity lactation curves. J. Dairy Sci. 2000, 83, 2640–2649. [Google Scholar] [CrossRef]
- Van der Werf, J.; Goddard, M.; Meyer, K. The use of covariance functions and random regressions for genetic evaluation of milk production based on test day records. J. Dairy Sci. 1998, 81, 3300–3308. [Google Scholar] [CrossRef]
- Olori, V.; Hill, W.; McGuirk, B.; Brotherstone, S. Estimating variance components for test day milk records by restricted maximum likelihood with a random regression animal model. Livest. Prod. Sci. 1999, 61, 53–63. [Google Scholar] [CrossRef]
- López-Romero, P.; Rekaya, R.; Carabaño, M. Assessment of homogeneity vs. heterogeneity of residual variance in random regression test-day models in a Bayesian analysis. J. Dairy Sci. 2003, 86, 3374–3385. [Google Scholar] [CrossRef] [Green Version]
- Pirlo, G.; Miglior, F.; Speroni, M. Effect of age at first calving on production traits and on difference between milk yield returns and rearing costs in Italian Holsteins. J. Dairy Sci. 2000, 83, 603–608. [Google Scholar] [CrossRef]
- Bewley, J.; Palmer, R.W.; Jackson-Smith, D.B. Modeling Milk Production and Labor Efficiencyin Modernized Wisconsin Dairy Herds. J. Dairy Sci. 2001, 84, 705–716. [Google Scholar] [CrossRef]
- Nilforooshan, M.; Edriss, M. Effect of age at first calving on some productive and longevity traits in Iranian Holsteins of the Isfahan province. J. Dairy Sci. 2004, 87, 2130–2135. [Google Scholar] [CrossRef] [Green Version]
- López, S.; France, J.; Odongo, N.; McBride, R.; Kebreab, E.; AlZahal, O.; McBride, B.; Dijkstra, J. On the analysis of Canadian Holstein dairy cow lactation curves using standard growth functions. J. Dairy Sci. 2015, 98, 2701–2712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollott, G. A biological approach to lactation curve analysis for milk yield. J. Dairy Sci. 2000, 83, 2448–2458. [Google Scholar] [CrossRef]
- Khorshidie, R.; Shadparvar, A.; Hossein-Zadeh, N.G.; Shakalgurabi, S. Genetic trends for 305-day milk yield and persistency in Iranian Holsteins. Livest. Sci. 2012, 144, 211–217. [Google Scholar] [CrossRef]
- Yamazaki, T.; Hagiya, K.; Takeda, H.; Yamaguchi, S.; Osawa, T.; Nagamine, Y. Genetic correlations among female fertility, 305-day milk yield and persistency during the first three lactations of Japanese Holstein cows. Livest. Sci 2014, 168, 26–31. [Google Scholar] [CrossRef]
- Dash, S.K.; Gupta, A.; Singh, A.; Chakravarty, A.; Valsalan, J.; Shivahre, P.; Panmei, A.; Divya, P. Analysis of genetic trend in fertility and production traits of Karan Fries (Holstein Friesian crossbred) cattle using BLUP estimation of breeding values. Indian J. Dairy Sci. 2016, 69, 186–189. [Google Scholar]
- Gara, A.B.; Rekik, B.; Bouallègue, M. Genetic parameters and evaluation of the Tunisian dairy cattle population for milk yield by Bayesian and BLUP analyses. Livest. Sci. 2006, 100, 142–149. [Google Scholar] [CrossRef]
- Rekaya, R.; Carabano, M.; Toro, M. Bayesian analysis of lactation curves of Holstein-Friesian cattle using a nonlinear model. J. Dairy Sci. 2000, 83, 2691–2701. [Google Scholar] [CrossRef]
- Naderi, Y. Estimation of genetic parameters for milk yield, somatic cell score, and fertility traits in Iranian Holstein dairy cattle. IIOAB J. 2016, 7, 122–129. [Google Scholar]
- Cilek, S.; Sahin, E. Estimation of some genetic parameters (heritability and repeatability) for milk yield in the Anatolian population of Holstein cows. Arch. Zootech. 2009, 12, 57–64. [Google Scholar]
- Erfani-Asl, Z.; Hashemi, A.; Farhadian, M. Estimates of repeatability and heritability of productive trait in Holstein dairy cattle. IJAAS 2015, 5, 827–832. [Google Scholar]
- Breider, I.S.; Wall, E.; Garnsworthy, P.C. Short communication: Heritability of methane production and genetic correlations with milk yield and body weight in Holstein-Friesian dairy cows. J. Dairy Sci. 2019, 102, 7277–7281. [Google Scholar] [CrossRef] [PubMed]
- Biassus, I.D.O.; Cobuci, J.A.; Costa, C.N.; Rorato, P.R.N.; Braccini Neto, J.; Cardoso, L.L. Genetic parameters for production traits in primiparous Holstein cows estimated by random regression models. Braz. J. Vet. Res. Anim. Sci. 2011, 40, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Cobuci, J.A.; Costa, C.N.; Braccini Neto, J.; Freitas, A.F. Genetic parameters for milk production by using random regression models with different alternatives of fixed regression modeling. Braz. J. Vet. Res. Anim. Sci. 2011, 40, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.N.; de Melo, C.M.R.; Packer, I.U.; de Freitas, A.F.; Teixeira, N.M.; Cobuci, J.A. Genetic parameters for test day milk yield of first lactation Holstein cows estimated by random regression using Legendre polynomials. Braz. J. Vet. Res. Anim. Sci. 2008, 37, 602–608. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salimiyekta, Y.; Vaez-Torshizi, R.; Abbasi, M.A.; Emmamjome-Kashan, N.; Amin-Afshar, M.; Guo, X.; Jensen, J. Random Regression Model for Genetic Evaluation and Early Selection in the Iranian Holstein Population. Animals 2021, 11, 3492. https://doi.org/10.3390/ani11123492
Salimiyekta Y, Vaez-Torshizi R, Abbasi MA, Emmamjome-Kashan N, Amin-Afshar M, Guo X, Jensen J. Random Regression Model for Genetic Evaluation and Early Selection in the Iranian Holstein Population. Animals. 2021; 11(12):3492. https://doi.org/10.3390/ani11123492
Chicago/Turabian StyleSalimiyekta, Yasamin, Rasoul Vaez-Torshizi, Mokhtar Ali Abbasi, Nasser Emmamjome-Kashan, Mehdi Amin-Afshar, Xiangyu Guo, and Just Jensen. 2021. "Random Regression Model for Genetic Evaluation and Early Selection in the Iranian Holstein Population" Animals 11, no. 12: 3492. https://doi.org/10.3390/ani11123492
APA StyleSalimiyekta, Y., Vaez-Torshizi, R., Abbasi, M. A., Emmamjome-Kashan, N., Amin-Afshar, M., Guo, X., & Jensen, J. (2021). Random Regression Model for Genetic Evaluation and Early Selection in the Iranian Holstein Population. Animals, 11(12), 3492. https://doi.org/10.3390/ani11123492