Evaluating the Effects of Climate Change on Spatial Aggregation of Giant Pandas and Sympatric Species in a Mountainous Landscape
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Selected Species
2.2. Species Occurrence Data
2.3. Environmental Variables
2.4. Species Distribution Modeling
2.5. Spatial Analysis
2.6. Ecological Niche Similarity Analysis
3. Results
3.1. Model Performance
3.2. Suitable Habitat Change between the Current and Future Conditions
3.3. Niche Similarity Analysis
3.4. Analysis of Overlapping Area Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joshi, A. Interspecific Competition. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Durant, J.M.; Krasnov, Y.V.; Nikolaeva, N.G.; Stenseth, N.C. Within and between species competition in a seabird community: Statistical exploration and modeling of time-series data. Oecologia 2011, 169, 685–694. [Google Scholar] [CrossRef]
- Corlatti, L.; Bonardi, A.; Bragalanti, N.; Pedrotti, L. Long-term dynamics of Alpine ungulates suggest interspecific competition. J. Zool. 2019, 309, 241–249. [Google Scholar] [CrossRef]
- Putman, R.J. Competition and Resource Partitioning in Temperate Ungulate Assemblies; Chapman & Hall: London, UK, 1996. [Google Scholar]
- Wang, F.; Zhao, Q.; McShea, W.J.; Songer, M.; Huang, Q.; Zhang, X.; Zhou, L. Incorporating biotic interactions reveals potential climate tolerance of giant pandas. Conserv. Lett. 2018, 11, e12592. [Google Scholar] [CrossRef]
- Mccarty, J.P. Ecological Consequences of Recent Climate Change. Conserv. Biol. 2001, 15, 320–331. [Google Scholar] [CrossRef]
- Iverson, L.R.; Prasad, A.M. Predicting Abundance of 80 Tree Species Following Climate Change in the Eastern United States. Ecol. Monogr. 1998, 68, 465. [Google Scholar]
- Andrewartha, H.G.; Birch, L.C. The Distribution and Abundance of Animals; University of Chicago Press: Chicago, IL, USA, 1954. [Google Scholar]
- Gong, M.; Guan, T.; Hou, M.; Liu, G.; Zhou, T. Hopes and challenges for giant panda conservation under climate change in the Qinling Mountains of China. Ecol. Evol. 2016, 7, 596–605. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.R.; Nielsen, S.E.; Stenhouse, G.B. Idiosyncratic responses of grizzly bear habitat to climate change based on pro-jected food resource changes. Ecol. Appl. 2014, 24, 1144–1154. [Google Scholar] [CrossRef]
- Maclean, I.M.D.; Wilson, R. Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl. Acad. Sci. USA 2011, 108, 12337–12342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nat. Cell Biol. 2002, 416, 389–395. [Google Scholar] [CrossRef]
- Ponce-Reyes, R.; Nicholson, E.; Baxter, P.W.J.; Fuller, R.A.; Possingham, H. Extinction risk in cloud forest fragments under climate change and habitat loss. Divers. Distrib. 2013, 19, 518–529. [Google Scholar] [CrossRef] [Green Version]
- Poloczanska, E.S.; Hawkins, S.J.; Southward, A.J.; Burrows, M.T. Modeling the response of populations of competing species to climate change. Ecology 2008, 89, 3138–3149. [Google Scholar] [CrossRef] [Green Version]
- Gellesch, E.; Hein, R.; Jaeschke, A.; Beierkuhnlein, C.; Jentsch, A. Biotic Interactions in the Face of Climate Change. Prog. Bot. 2012, 74, 321–349. [Google Scholar] [CrossRef]
- Yang, L.; Rudolf, V.H.W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 2010, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Reyer, C.; Lasch, P.; Mohren, G.M.; Sterck, F.J. Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change—A model-based analysis. Ann. For. Sci. 2010, 67, 805. [Google Scholar] [CrossRef]
- Stenseth, N.C.; Durant, J.M.; Fowler, M.S.; Matthysen, E.; Adriaensen, F.; Jonzén, N.; Chan, K.-S.; Liu, H.; De Laet, J.; Sheldon, B.; et al. Testing for effects of climate change on competitive relationships and coexistence between two bird species. Proc. R. Soc. B Biol. Sci. 2015, 282, 20141958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milazzo, M.; Mirto, S.; Domenici, P.; Gristina, M. Climate change exacerbates interspecific interactions in sympatric coastal fishes. J. Anim. Ecol. 2012, 82, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Braz, A.G.; Lorini, M.L.; Vale, M.M. Climate change is likely to affect the distribution but not parapatry of the Brazilian mar-moset monkeys (Callithrix spp.). Divers. Distrib. 2018, 25, 536–550. [Google Scholar] [CrossRef] [Green Version]
- Li, B.V.; Pimm, S.L. China’s endemic vertebrates sheltering under the protective umbrella of the giant panda. Conserv. Biol. 2016, 30, 329–339. [Google Scholar] [CrossRef]
- Xiang, X.; Ma, Y.; Yu, L.; Li, J. Advances in giant panda habitat researches. J. Sichuan For. Sci. Technol. 2018, 39, 31–35. [Google Scholar]
- Yang, C.H.; Zhang, H.M.; Zhou, X.P.; Wang, P.Y.; Wang, X.M. Review of habitat selection in the Giant Panda (Ailuropoda melanoleuca). Acta Ecol. Sin. 2006, 26, 3442–3453. [Google Scholar]
- Li, J.; Liu, F.; Xue, Y.; Zhang, Y.; Li, D. Assessing vulnerability of giant pandas to climate change in the Qinling Mountains of China. Ecol. Evol. 2017, 7, 4003–4015. [Google Scholar] [CrossRef]
- Tuanmu, M.-N.; Viña, A.; Winkler, J.A.; Li, Y.; Xu, W.; Ouyang, Z.; Liu, J. Climate-change impacts on understorey bamboo species and giant pandas in China’s Qinling Mountains. Nat. Clim. Chang. 2013, 3, 249–253. [Google Scholar] [CrossRef]
- Fan, J.; Li, J.; Xia, R.; Hu, L.; Wu, X.; Li, G. Assessing the impact of climate change on the habitat distribution of the giant panda in the Qinling Mountains of China. Ecol. Model. 2014, 274, 12–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Mathewson, P.D.; Zhang, Q.; Porter, W.P.; Ran, J. An ecophysiological perspective on likely giant panda habitat responses to climate change. Glob. Chang. Biol. 2018, 24, 1804–1816. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.T.; Ran, J.H.; Zhao, C.H.; Zhong, X.; Liang, M.Y. Climate-change impacts on bamboo distribution and giant panda habitat in Qionglao mountains. Acta Ecol. Sin. 2017, 37, 2360–2367. [Google Scholar]
- Shen, G.; Pimm, S.L.; Feng, C.; Ren, G.; Liu, Y.; Xu, W.; Li, J.; Si, X.; Xie, Z. Climate change challenges the current conservation strategy for the giant panda. Biol. Conserv. 2015, 190, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Gao, K. Food Resource Competition of Giant Panda during the Bamboo Shoot Season; Guizhou Normal University: Guiyang, China, 2017. [Google Scholar]
- Wang, F.; McShea, W.J.; Wang, D.; Li, S. Shared resources between giant panda and sympatric wild and domestic mammals. Biol. Conserv. 2015, 186, 319–325. [Google Scholar] [CrossRef]
- Wang, P.; Bai, W.K.; Huang, J.Y.; Zhang, J.D.; Liu, D.; Xia, S.S.; Rao, J.; Zhou, C.Q. Habitat use of differentiation between sympatric giant panda and sambar. Acta Ecol. Sin. 2018, 38, 5577–5583. [Google Scholar]
- He, M.; Chen, L.; Luo, G.; Gu, X.; Wang, G.; Ran, J. Suitable habitat prediction and overlap analysis of two sympatric species, giant panda (Ailuropoda melanoleuca) and Asiatic black bear (Ursus thibetanus) in Liangshan Mountains. Biodivers. Sci. 2018, 26, 1180–1189. [Google Scholar] [CrossRef] [Green Version]
- State Forestry Administration. The Giant Pandas of China: Status Quo-Major Findings of the Forth National Survey on Giant Pandas; State Forestry Administration: Beijing, China, 2015.
- Ye, X.; Yu, X.; Yu, C.; Tayibazhaer, A.; Xu, F.; Skidmore, A.; Wang, T. Impacts of future climate and land cover changes on threatened mammals in the semi-arid Chinese Altai Mountains. Sci. Total Environ. 2018, 612, 775–787. [Google Scholar] [CrossRef]
- Songer, M.; DeLion, M.; Biggs, A.; Huang, Q. Modeling Impacts of Climate Change on Giant Panda Habitat. Int. J. Ecol. 2012, 2012, 1–12. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Reisinger, A.; Meinshausen, M.; Manning, M. Future changes in global warming potentials under representative concentration pathways. Environ. Res. Lett. 2011, 6, 024020. [Google Scholar] [CrossRef]
- Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Qin, D.; Dasgupta, P.; Dubash, N.K.; et al. Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Zhang, Y.; Wu, Y.; Zhang, Q.; Ran, J.; Price, M. Distribution of a giant panda population influenced by land cover. J. Wildl. Manag. 2018, 82, 1199–1209. [Google Scholar] [CrossRef]
- Kang, D.; Wang, X.; Yang, H.; Duan, L.; Li, J. Habitat use by giant panda in relation to man-made forest in Wanglang Nature Reserve of China. Environ. Sci. Pollut. Res. 2014, 21, 13440–13445. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xu, M.; Wong, M.H.G.; Qiu, S.; Sheng, Q.; Li, X.; Song, Z. Climate change-induced decline in bamboo habitats and species diversity: Implications for giant panda conservation. Divers. Distrib. 2015, 21, 379–391. [Google Scholar] [CrossRef]
- Thuiller, W.; Georges, D.; Gueguen, M.; Engler, R.; Breiner, F. Biomod2: Ensemble Platform for Species Distribution Modeling. 2019. Available online: https://CRAN.R-project.org/package=biomod2 (accessed on 10 January 2018).
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD-a platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Chefaoui, R.; Lobo, J. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol. Model. 2008, 210, 478–486. [Google Scholar] [CrossRef]
- VanDerWal, J.; Shoo, L.P.; Graham, C.; Williams, S.E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? Ecol. Model. 2009, 220, 589–594. [Google Scholar] [CrossRef]
- Bi, Y.; Xu, J.; Li, Q.; Guisan, A.; Thuiller, W.; Zimmermann, N.E.; Yang, Y.; Yang, X. Applying biomod for model ensemble in species distributions: A case study for Tsuga chinensis in China. Plant Divers. Resour. 2013, 35, 647–655. [Google Scholar]
- Yang, Y.; Wei, H.-Y.; Wang, D.; Shang, Z.-H. Comparision of the predicteion models of the potential geographical distribution of Forsythia suspense Chinese. J. Ecol. 2016, 35, 2562–2568. [Google Scholar]
- Rebelo, H.; Tarroso, P.; Jones, G. Predicted impact of climate change on European bats in relation to their biogeographic pat-terns. Glob. Chang. Biol. 2010, 16, 561–576. [Google Scholar] [CrossRef]
- Xiao-kang, H.U.; Yu-wan, H.A.; Shang, X.I.; Yun-hai, G.U.; Jing-bo, X.U.; Yun, Z.H.; Li-fang, W.A.; Yi, D.O.; Jing, X.U.; Shi-zhu, L.I. Detection of schistosomiasis transmission risk in Yunnan Province based on ecological niche modeling. Chin. J. Parasitol. Parasit. Dis. 2020, 28, 80. [Google Scholar]
- Li, B.; Wei, W.; Ma, J.; Zhang, R. Maximum entropy niche-based modeling (Maxent) of potential geographical distributions of fruit flies Dacus bivittatus, D. ciliatus and D. vertebrates (Diptera: Tephritidae). Acta Entomol. Sin. 2009, 52, 1122–1131. [Google Scholar]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Zhang, Z.; Mammola, S.; Xian, W.; Zhang, H. Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the Yangtze Estuary, China. Divers. Distrib. 2020, 26, 126–137. [Google Scholar] [CrossRef] [Green Version]
- Schoener, T.W. The Anolis Lizards of Bimini: Resource Partitioning in a Complex Fauna. Ecology 1968, 49, 704–726. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.E.; Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 2008, 62, 2868–2883. [Google Scholar] [CrossRef]
- Warren, D.; Matzke, N.; Cardillo, M.; Baumgartner, J.; Beaumont, L.; Turelli, M.; Glor, R.; Huron, N.; Simões, M.; Iglesias, T.; et al. ENMTools 1.0: An R package for comparative ecological biogeography. Ecography 2021, 44, 504–511. [Google Scholar] [CrossRef]
- Warren, D.L.; Glor, R.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Zhou, L. Qinling Giant Pandas—The Fourth Survey Report on Giant Pandas in Shaanxi Province; Shaanxi Science and Technology Press: Xi’an, China, 2017. [Google Scholar]
- Pollock, L.J.; Tingley, R.; Morris, W.K.; Golding, N.; O’Hara, R.B.; Parris, K.; Vesk, P.A.; McCarthy, M. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods Ecol. Evol. 2014, 5, 397–406. [Google Scholar] [CrossRef]
- Waddle, J.H.; Dorazio, R.M.; Walls, S.C.; Rice, K.G.; Beauchamp, J.; Schuman, M.J.; Mazzotti, F.J. A new parameterization for estimating co-occurrence of interacting species. Ecol. Appl. 2010, 20, 1467–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, H.; Zeng, Z.; Gao, X.; Liang, Q.; Song, Y. Species of birds and animals feeding on bamboo in Foping national nature reserve. Chin. J. Zool. 2006, 41, 31–36. [Google Scholar]
- Jianghong, R.; Shaoying, L.; Hongjia, W.; Zhiyu, S.; Zongyoug, Z.; Shichang, L. Effecting of grazing on giant pandas’ habitat in Yele nature reserve. Acta Theriol. Sin. 2003, 23, 288–294. [Google Scholar]
- Qi, Z.; Xu, W.; Xiong, X.; Ouyang, Z.; Zheng, H.; Gan, D. Assessment of potential habitat for Ursus thibetanus in the Qinling Mountains. Biodivers. Sci. 2011, 19, 343–352. [Google Scholar]
- Roberge, J.-M.; Angelstam, P. Usefulness of the Umbrella Species Concept as a Conservation Tool. Conserv. Biol. 2004, 18, 76–85. [Google Scholar] [CrossRef]
- Nicholson, E.; Possingham, H. Objectives for Multiple-Species Conservation Planning. Conserv. Biol. 2006, 20, 871–881. [Google Scholar] [CrossRef]
- Thuiller, W.; Guéguen, M.; Renaud, J.; Karger, D.N.; Zimmermann, N.E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 2019, 10, 1446. [Google Scholar] [CrossRef]
- Wiens, J.A.; Stralberg, D.; Jongsomjit, D.; Howell, C.A.; Snyder, M.A. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. USA 2009, 106, 19729–19736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Kappa | TSS | AUC |
---|---|---|---|
Giant pandas | 0.631 | 0.769 | 0.937 |
Black bears | 0.313 | 0.581 | 0.822 |
Golden takins | 0.669 | 0.717 | 0.916 |
Wild boars | 0.537 | 0.620 | 0.866 |
Species | Current | 2050s | 2070s | ||
---|---|---|---|---|---|
RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | ||
Giant pandas | 6566.31 | 8969.98 | 4603.31 | 8256.33 | 4916.34 |
Black bears | 7947.02 | 2987.82 | 3350.23 | 6576.55 | 1529.78 |
Golden takins | 6989.28 | 6548.60 | 4609.83 | 5484.65 | 5426.89 |
Wild boars | 7957.27 | 2674.78 | 4681.57 | 4668.52 | 1475.74 |
Climate Scenarios | Black Bears | Golden Takins | Wild Boars | |||
---|---|---|---|---|---|---|
D | I | D | I | D | I | |
Current | 0.6854 | 0.9190 | 0.8454 | 0.9697 | 0.6976 | 0.9272 |
2050-RCP4.5 | 0.7444 | 0.9392 | 0.8651 | 0.9829 | 0.8147 | 0.9676 |
2050-RCP8.5 | 0.6851 | 0.9163 | 0.8034 | 0.9609 | 0.6689 | 0.9131 |
2070-RCP4.5 | 0.7604 | 0.9491 | 0.8662 | 0.9818 | 0.8256 | 0.9690 |
2070-RCP8.5 | 0.7101 | 0.9251 | 0.8401 | 0.9694 | 0.6943 | 0.9225 |
Climate Scenarios | Black Bears | Golden Takins | Wild Boars |
---|---|---|---|
Current | 86.30 | 88.64 | 86.16 |
2050-RCP4.5 | 30.97 | 71.37 | 29.11 |
2070-RCP4.5 | 72.19 | 65.41 | 55.72 |
2050-RCP8.5 | 48.73 | 77.66 | 56.06 |
2070-RCP8.5 | 27.82 | 87.02 | 25.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, N.; Zhang, X.; Shan, G.; Ye, X. Evaluating the Effects of Climate Change on Spatial Aggregation of Giant Pandas and Sympatric Species in a Mountainous Landscape. Animals 2021, 11, 3332. https://doi.org/10.3390/ani11113332
Zhao N, Zhang X, Shan G, Ye X. Evaluating the Effects of Climate Change on Spatial Aggregation of Giant Pandas and Sympatric Species in a Mountainous Landscape. Animals. 2021; 11(11):3332. https://doi.org/10.3390/ani11113332
Chicago/Turabian StyleZhao, Naxun, Ximing Zhang, Guoyu Shan, and Xinping Ye. 2021. "Evaluating the Effects of Climate Change on Spatial Aggregation of Giant Pandas and Sympatric Species in a Mountainous Landscape" Animals 11, no. 11: 3332. https://doi.org/10.3390/ani11113332
APA StyleZhao, N., Zhang, X., Shan, G., & Ye, X. (2021). Evaluating the Effects of Climate Change on Spatial Aggregation of Giant Pandas and Sympatric Species in a Mountainous Landscape. Animals, 11(11), 3332. https://doi.org/10.3390/ani11113332