Settle Down! Ranging Behaviour Responses of Roe Deer to Different Capture and Release Methods
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species and Study Sites
2.2. Capture Methods
2.3. Manipulation and Marking
2.4. Capture and Release Response Metrics and Statistics
2.5. Statistics
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Area Specific Description of Capture Methods
Appendix B
References
- Kays, R.; Crofoot, M.C.; Jetz, W.; Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 2015, 348, aaa2478. [Google Scholar] [CrossRef] [Green Version]
- Hebblewhite, M.; Haydon, D.T. Distinguishing technology from biology: A critical review of the use of GPS telemetry data in ecology. Philos. Trans. R. Soc. B 2010, 365, 2303–2312. [Google Scholar] [CrossRef]
- Powell, R.A.; Proulx, G. Trapping and marking terrestrial mammals for research: Integrating ethics, performance criteria, techniques, and common sense. ILAR J. 2003, 44, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Iossa, G.; Soulsbury, C.D.; Harris, S. Mammal trapping: A review of animal welfare standards of killing and restraining traps. Anim. Welf. 2007, 16, 335–352. [Google Scholar]
- Cattet, M.; Boulanger, J.; Stenhouse, G.; Powell, R.P.; Reynolds-Hogland, M.J. An evaluation of long-term capture effects in ursids: Implications for wildlife welfare and research. J. Mammal. 2008, 89, 973–990. [Google Scholar] [CrossRef]
- Wilson, R.P.; McMahon, C.R. Measuring devices on wild animals: What constitutes acceptable practice? Front. Ecol. Environ. 2006, 4, 147–154. [Google Scholar] [CrossRef]
- Casper, R.M. Guidelines for instrumentation of wild birds and mammals. Anim. Behav. 2009, 78, 1477–1483. [Google Scholar] [CrossRef]
- Rachlow, J.L.; Peter, R.M.; Shipley, L.A.; Johnson, T.R. Sub-lethal effects of capture and collaring on wildlife: Experimental and field evidence. Wildl. Soc. Bull. 2014, 38, 458–465. [Google Scholar] [CrossRef]
- Morellet, N.; Verheyden, H.; Angibault, J.-M.; Cargnelutti, B.; Lourtet, B.; Hewison, A.J.M. The effect of capture on ranging behaviour and activity of the European roe deer Capreolus capreolus. Wildl. Biol. 2009, 15, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Neumann, W.; Ericsson, G.; Dettki, H.; Arnemo, J.M. Effect of immobilizations on the activity and space use of female moose (Alces alces). Can. J. Zool. 2011, 89, 1013–1018. [Google Scholar] [CrossRef] [Green Version]
- Northrup, J.M.; Anderson, C.R.; Wittemyer, G. Effects of helicopter capture and handling on movement behavior of mule deer. J. Wildl. Manag. 2014, 78, 731–738. [Google Scholar] [CrossRef]
- Grandin, T.; Shively, C. How farm animals react and perceive stressful situations such as handling restraint and transport. Animals 2015, 5, 1233–1251. [Google Scholar] [CrossRef]
- Theil, P.K.; Coutant, A.E.; Olesen, C.R. Seasonal changes and activity-dependent variation in heart rate of roe deer. J. Mammal. 2004, 85, 245–253. [Google Scholar] [CrossRef]
- Gentsch, R.P.; Kjellander, P.; Röken, B.O. Cortisol response of wild ungulates to trauma situations: Hunting is not necessarily the worst stressor. Eur. J. Wildl. Res. 2018, 64, 11. [Google Scholar] [CrossRef] [Green Version]
- Grigor, P.N.; Goddard, P.J.; Littlewood, C.A. The relative aversiveness to farmed red deer of transport, physical restraint, human proximity and social isolation. Appl. Anim. Behav. Sci. 1998, 56, 255–262. [Google Scholar] [CrossRef]
- Goumas, M.; Lee, V.E.; Boogert, N.J.; Kelley, L.A.; Thornton, A. The role of animal cognition in human-wildlife interactions. Front. Psychol. 2020, 11, 3019. [Google Scholar] [CrossRef]
- Boissy, A. Fear and Fearfulness in Animals. Q. Rev. Biol. 1995, 70, 165–191. [Google Scholar] [CrossRef]
- Dantzer, R.; Mormède, P. Stress in farm animals: A need for reevaluation. J. Anim. Sci. 1983, 57, 6–18. [Google Scholar] [CrossRef]
- Morton, D.J.; Anderson, E.; Foggin, C.M.; Kock, M.D.; Tiran, E.P. Plasma cortisol as an indicator of stress due to capture and translation in wildlife species. Vet. Rec. 1995, 63, 136–160. [Google Scholar]
- Shettleworth, S.J. Cognition, Evolution, and Behavior; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Kreeger, T.J.; Arnemo, J.M.; Raath, J.P. Handbook of Wildlife Chemical Immobilization; International Wildlife Pharmaceuticals: Laramie, WY, USA, 2002. [Google Scholar]
- Grozer, G.K.D.; Schulte-Hostedde, A.I. The ethical dimensions of wildlife disease management in an evolutionary context. Evol. Appl. 2014, 7, 788–798. [Google Scholar]
- Lindsjö, J.; Fahlman, Å.; Törnqvist, E. Animal welfare from mouse to moose–implementing the principles of the 3Rs in wildlife research. J. Wildl. Dis. 2016, 52, S65–S77. [Google Scholar] [CrossRef]
- Stéen, M.; Cvek, K.; Kjellander, P. Wild animal research—New legal requirements in the European Union. Alces 2013, 49, 127–131. [Google Scholar]
- Buchanan, K.; Burt de Perera, T.; Carere, C.; Carter, T.; Hailey, A.; Hubrecht, R.; Jennings, D.; Metcalfe, N.; Pitcher, T.; Peron, F.; et al. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 2012, 83, 301–309. [Google Scholar]
- JWD Wildlife Welfare Supplement Editorial Board. Advances in animal welfare for free-living animals. J. Wildl. Dis. 2016, 52, S4–S13. [Google Scholar] [CrossRef]
- International Bio-Logging Society Constitution. Available online: https://www.bio-logging.net/ (accessed on 30 May 2021).
- Ranc, N.; Moorcroft, P.R.; Hansen, K.W.; Ossi, F.; Sforna, T.; Ferraro, E.; Brugnoli, A.; Cagnacci, F. Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability. Sci. Rep. 2020, 10, 11946. [Google Scholar]
- Mysterud, A. Bed sites selection by adult roe deer. Wildl. Biol. 1996, 2, 101–106. [Google Scholar] [CrossRef]
- Gehr, B.; Bonnot, N.; Heurich, M.; Cagnacci, F.; Ciuti, S.; Hewison, A.J.M.; Gaillard, J.-M.; Ranc, N.; Premier, J.; Vogt, K.; et al. Stay home, stay safe-site familiarity reduces predation risk in a large herbivore in two contrasting study sites. J. Anim. Ecol. 2020, 6, 1329–1339. [Google Scholar] [CrossRef]
- Bonacic, C.; Feber, R.E.; Macdonald, D.W. Capture of the vicuna (Vicugna vicugna) for sustainable use: Animal welfare implications. Biol. Conserv. 2006, 129, 543–550. [Google Scholar] [CrossRef]
- Haulton, S.M.; Porter, W.F.; Rudolph, B.A. Evaluating 4 methods to capture white-tailed deer. Wildl. Soc. Bull. 2001, 29, 255–264. [Google Scholar]
- Benhaiem, S.; Delon, M.; Lourtet, B.; Cargnelutti, B.; Aulagnier, S.; Hewison, A.J.M.; Morellet, N.; Verheyden, H. Hunting increases vigilance levels in roe deer and modifies feeding site selection. Anim. Behav. 2008, 76, 611–618. [Google Scholar] [CrossRef]
- Picardi, S.; Basille, M.; Peters, W.; Ponciano, J.M.; Boitani, L.; Cagnacci, F. Movement responses of roe deer to hunting risk. J. Wildl. Manag. 2019, 83, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Linnell, J.D.; Andersen, R. Site tenacity in roe deer: Short-term effects of logging. Wildl. Soc. Bull. 1995, 23, 31–35. [Google Scholar]
- Hewison, A.J.M.; Vincent, J.-P.; Joachim, J.; Boisaubert, B.; Angibault, J.-M. Modelling the effects of woodland fragmentation on roe deer (Capreolus capreolus) distribution in agricultural landscapes. Gibier Faune Sauvag. 1998, 15, 323–329. [Google Scholar]
- Peters, W.; Hebblewhite, M.; Mysterud, A.; Spitz, D.; Focardi, S.; Urbano, F.; Morellet, N.; Heurich, M.; Kjellander, P.; Linnell, J.D.; et al. Migration in geographic and ecological space by a large herbivore. Ecol. Monogr. 2017, 87, 297–320. [Google Scholar] [CrossRef] [Green Version]
- Andersen, R.; Duncan, P.; Linnell, J.D. The European Roe Deer: The Biology of Success; Scandinavian University Press: Oslo, Norway, 1998. [Google Scholar]
- Ossi, F.; Gaillard, J.-M.; Hebblewhite, M.; Morellet, N.; Ranc, N.; Sandfort, R.; Kroechel, M.; Kjellander, P.; Mysterud, A.; Linnell, J.D.C.; et al. Plastic response by a small cervid to ad-libitum supplemental feeding in winter across a wide environmental gradient. Ecosphere 2017, 8, e01629. [Google Scholar] [CrossRef] [Green Version]
- Heurich, M.; Möst, L.; Schauberger, G.; Reulen, H.; Sustr, P.; Hothorn, T. Survival and causes of death of European Roe Deer before and after Eurasian Lynx reintroduction in the Bavarian Forest National Park. Eur. J. Wildl. Res. 2012, 58, 567–578. [Google Scholar] [CrossRef]
- Bergvall, U.A.; Jäderberg, L.; Kjellander, P. The use of box-traps for wild roe deer: Behaviour, injuries and recaptures. Eur. J. Wildl. Res. 2017, 63, 67. [Google Scholar] [CrossRef] [Green Version]
- Ossi, F.; Gaillard, J.-M.; Hebblewhite, M.; Cagnacci, F. Snow sinking depth and forest canopy drive winter resource selection more than supplemental feeding in an alpine population of roe deer. Eur. J. Wildl. Res. 2015, 61, 111–124. [Google Scholar] [CrossRef]
- Montané, J.; Marco, I.; López-Olvera, J.; Manteca, X.; Lavin, S. Transport stress in roe deer (Capreolus capreolus): Effect of a short-acting antipsychotic. Anim. Welf. 2002, 11, 405–418. [Google Scholar]
- Ratcliff, P.R.; Mayle, B.A. Roe deer biology and management. For. Comm. Bull. 1992, 105, 1–44. [Google Scholar]
- Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 2006, 197, 516–519. [Google Scholar] [CrossRef]
- Börger, L.; Franconi, N.; De Michele, G.; Gantz, A.; Meschi, F.; Manica, A.; Lovari, S.; Coulson, T.I.M. Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol. 2006, 75, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Burnham, K.P.; Anderson, D.R.; Huyvaert, K.P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 2011, 65, 23–35. [Google Scholar] [CrossRef]
- Wood, S.; Scheipl, F. gamm4: Generalized Additive Mixed Models Using ‘mgcv’ and ‘lme4’. R Package Version 0.2-4. 2016. Available online: https://CRAN.R-project.org/package=gamm4 (accessed on 15 April 2021).
- Hutson, G.D. The influence of barley food rewards on sheep movement through a handling system. Appl. Anim. Behav. Sci. 1985, 14, 263–273. [Google Scholar] [CrossRef]
- Ranc, N.; Moorcroft, P.R.; Ossi, F.; Cagnacci, F. Experimental evidence of memory-based foraging decisions in a large wild mammal. Proc. Natl. Acad. Sci. USA 2021, 118, e2014856118. [Google Scholar] [CrossRef] [PubMed]
- Bonnot, N.; Morellet, N.; Verheyden, H.; Cargnelutti, B.; Lourtet, B.; Klein, F.; Hewison, A.J.M. Habitat use under predation risk: Hunting, roads and human dwellings influence the spatial behaviour of roe deer. Eur. J. Wildl. Res. 2013, 59, 185–193. [Google Scholar] [CrossRef]
- Ossi, F.; Ranc, N.; Moorcroft, P.; Bonanni, P.; Cagnacci, F. Ecological and Behavioral Drivers of Supplemental Feeding Use by Roe Deer Capreolus capreolus in a Peri-Urban Context. Animals 2020, 10, 2088. [Google Scholar] [CrossRef] [PubMed]
- Monestier, C.; Morellet, N.; Verheyden, H.; Gaillard, J.-M.; Bideau, E.; Denailhac, A.; Lourtet, B.; Cebe, N.; Picot, D.; Rames, J.L.; et al. Neophobia is linked to behavioural and haematological indicators of stress in captive roe deer. Anim. Behav. 2017, 126, 135–143. [Google Scholar] [CrossRef]
- Hoppitt, W.; Laland, K.N. Social Learning: An Introduction to Mechanisms, Methods, and Models; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Frair, J.L.; Merrill, E.H.; Visscher, D.R.; Fortin, D.; Beyer, H.L.; Morales, J.M. Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landsc. Ecol. 2005, 20, 273–287. [Google Scholar] [CrossRef]
- Ciuti, S.; Muhly, T.B.; Paton, D.G.; McDevitt, A.D.; Musiani, M.; Boyce, M.S. Human selection of elk behavioural traits in a landscape of fear. Proc. R. Soc. B Biol. Sci. 2012, 279, 4407–4416. [Google Scholar] [CrossRef] [Green Version]
- Eldridge, G.A.; Winfield, C.G.; Cahill, D.J. Responses of cattle to different space allowances, pen sizes and road conditions during transport. Aust. J. Exp. Agric. 1988, 28, 155–159. [Google Scholar] [CrossRef]
- Stockman, C.A.; Collins, T.; Barnes, A.L.; Miller, D.; Wickham, S.L.; Beatty, D.T.; Blache, D.; Wemelsfelder, F.; Fleming, P.A. Qualitative behavioral assessment and quantitative physiological measurement of cattle naive and habituated to road transport. Anim. Prod. Sci. 2011, 51, 240–249. [Google Scholar] [CrossRef]
- Tarrant, P.V. Transportation of cattle by road. Appl. Anim. Behav. Sci. 1990, 28, 153–170. [Google Scholar] [CrossRef]
- Huber, N.; Vetter, S.G.; Evans, A.L.; Kjellander, P.; Küker, S.; Bergvall, U.A.; Arnemo, J.M. Quantifying capture stress in free ranging European roe deer (Capreolus capreolus). BMC Vet. Res. 2017, 13, 127. [Google Scholar] [CrossRef] [PubMed]
- Loudon, K.M.; Tarr, G.; Pethick, D.W.; Lean, I.J.; Polkinghorne, R.; Mason, M.; Dunshea, F.R.; Gardner, G.E.; McGilchrist, P. The use of biochemical measurements to identify pre-slaughter stress in pasture finished beef cattle. Animals 2019, 9, 503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beringer, J.; Hansen, L.P.; Wilding, W.; Fischer, J.; Sheriff, S.L. Factors affecting capture myopathy in white-tailed deer. J. Wildl. Manag. 1996, 373–380. [Google Scholar] [CrossRef]
- Daly, M.; Wilson, M.I.; Behrends, R.P.; Jacobs, L.F. Sexually differentiated effects of radio transmitters on predation risk and behaviour in kangaroo rats Dipodomys merriami. Can. J. Zool. 1992, 70, 1851–1855. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.K.; Maney, D.L.; Maerz, J.C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 2008, 22, 760–772. [Google Scholar] [CrossRef]
- Moore, I.T.; Jessop, T.S. Stress, reproduction, and adrenocortical modulation in amphibians and reptiles. Horm. Behav. 2003, 43, 39–47. [Google Scholar] [CrossRef]
- Carbillet, J.; Rey, B.; Palme, R.; Morellet, N.; Bonnot, N.; Chaval, Y.; Cargnelutti, B.; Hewison, A.J.M.; Gilot-Fromont, E.; Verheyden, H. Under cover of the night: Context-dependency of anthropogenic disturbance on stress levels of wild roe deer Capreolus capreolus. Conserv. Physiol. 2020, 8, coaa086. [Google Scholar] [CrossRef]
- Bonnot, N.C.; Bergvall, U.A.; Jarnemo, A.; Kjellander, P. Who’s afraid of the big bad wolf? Variation in the stress response among personalities and populations in a large wild herbivore. Oecologia 2018, 188, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanc, F.; Brelurut, A. Short-term behavioral effects of equipping red deer hinds with a tracking collar. Z. Fuer Saeugetierkunde-Int. J. Mammal. Biol. 1997, 62, 18–26. [Google Scholar]
- Brivio, F.; Grignolio, S.; Sica, N.; Cerise, S.; Bassano, B. Assessing the impact of capture on wild animals: The case study of chemical immobilisation on alpine ibex. PLoS ONE 2015, 10, e0130957. [Google Scholar]
- Weilnböck, G.; Wöhr, C.; Erhard, M.; Menges, V.; Scheipl, F.; Möst, L.; Palme, R.; Heurich, M. Zur Stressbelastung des Rehwilds (Capreolus capreolus) beim Fang mit der Kastenfalle. In Current Research in Applied Ethology; Gaio, C., Erhard, M., Meyer, B., Eds.; Deutsche Veterinärmedizinische Gesellschaft Fachgruppe Ethologie und Tierhaltung, KTBL-Verlag: Freiburg/Breisgau, Germany, 2012; pp. 22–31. (In German) [Google Scholar]
- Saïd, S.; Gaillard, J.M.; Widmer, O.; Débias, F.; Bourgoin, G.; Delorme, D.; Roux, C. What shapes intra-specific variation in home range size? A case study of female roe deer. Oikos 2009, 118, 1299–1306. [Google Scholar] [CrossRef]
Study Site | Country | Location | Area | Method/s and Number of Individuals in Parenthesis |
---|---|---|---|---|
Aurignac 1 | France | 43°13′ N, 0°52′ E | 75 km2 | Net drives (73), Net drives sedation (116) |
BavarianNP 2 | Germany | 49°83′ N, 13°81′ E | ~1000 km2 | Box trap (108) |
Bernese 3 | Switzerland | 46˚55′ N, 7˚51′ E | ~1500 km2 | Box trap (14), net drives sedation (26) |
BialowiezaNP 4 | Poland | 52°43′ N, 23°27′ E | 175 km2 | Net trap (16) |
Bogesund 5 | Sweden | 59˚24′ N, 18˚12′ E | 13 km2 | Box trap (1) |
Chize 6 | France | 46°05′ N, 0°25′ W | 26.14 km2 | Net drives (1) |
Giudicarie 7 | Italy | 46°4′ N, 10°43′ E | 230 km2 | Box trap short (23) Net trap (1) |
Grimsö 5 | Sweden | 59°40′ N, 15°25′ E | 130 km2 | Box trap (3) |
Hegau Baden 8 | Germany | 47°50′ N, 8°43′ E | 75 km2 | Box trap (12) |
Kalø 9 | Denmark | 56°17′ N, 10°29′ E | 10 km2 | Net drives (4) |
Koberg 10 | Sweden | 58˚15′ N, 12˚44′ E | 84 km2 | Box trap (18) |
Monte Bondone 11 | Italy | 46°1′ N, 11°2′ E | 110 km2 | Box trap short (1), Net drives (17) |
Rhine Baden 12 | Germany | 48°38′ N, 7°59′ E | 100 km2 | Box trap (18), Net drives (9), Net trap (3) |
Trois-Fontaines 13 | France | 48°43′ N, 4°56′ E | 13.60 km2 | Net drives (14) |
Method | Brief Description | Length of the Events | Order | Prediction | Brief Description |
---|---|---|---|---|---|
All protocols | - | Lower than average/Slower recovery time than centre of gravity | Higher than average/Faster recovery time (site-fidelity) | ||
Box trap | Habituated to boxes, long acclimation time, medium increase in threat level (human arrival) | Long time (waiting in the closed trap) + short time (manipulation by humans) | Less stressful event first | Slower recovery time (long exposure)/alternatively | - |
Faster recovery time (habituation) | Faster recovery time (focal-based disturbance) | - | |||
Box trap short | Habituated to boxes, short acclimation time, medium increase in threat level (human arrival) | Short time (waiting) + short time (manipulation) | Less stressful event first | Faster recovery time (short exposure)/alternatively Slower recovery time (sensitization) | Faster recovery time (focal-based disturbance) |
Net drives no sedation | No acclimation, medium-delay cues in threat level increase | Long time (oncoming threat) + short time (manipulation by humans) | Most stressful event first | Slower recovery time (more stressful, frightening event first) | Slower recovery due to area avoidance (range-based disturbance) |
Net drives sedation | No acclimation, medium-delay cues in threat level increase | Long time (oncoming threat) + long time (manipulation and chemical recovery) | Most stressful event first | Slower recovery time (more stressful, frightening event first) | Slower recovery due to area avoidance (range-based disturbance) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergvall, U.A.; Morellet, N.; Kjellander, P.; Rauset, G.R.; Groeve, J.D.; Borowik, T.; Brieger, F.; Gehr, B.; Heurich, M.; Hewison, A.J.M.; et al. Settle Down! Ranging Behaviour Responses of Roe Deer to Different Capture and Release Methods. Animals 2021, 11, 3299. https://doi.org/10.3390/ani11113299
Bergvall UA, Morellet N, Kjellander P, Rauset GR, Groeve JD, Borowik T, Brieger F, Gehr B, Heurich M, Hewison AJM, et al. Settle Down! Ranging Behaviour Responses of Roe Deer to Different Capture and Release Methods. Animals. 2021; 11(11):3299. https://doi.org/10.3390/ani11113299
Chicago/Turabian StyleBergvall, Ulrika A., Nicolas Morellet, Petter Kjellander, Geir R. Rauset, Johannes De Groeve, Tomasz Borowik, Falko Brieger, Benedikt Gehr, Marco Heurich, A.J. Mark Hewison, and et al. 2021. "Settle Down! Ranging Behaviour Responses of Roe Deer to Different Capture and Release Methods" Animals 11, no. 11: 3299. https://doi.org/10.3390/ani11113299