Effects of Topically Applied Betulinic Acid and NVX-207 on Melanocytic Tumors in 18 Horses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Approval of the Animal Experiments
2.2. Horses
2.3. Topical Treatment
2.4. Clinical Safety Assessment of the Treatment
2.5. Tumor Response Evaluation
2.6. Statistical Analysis
3. Results
3.1. Tumor Response
3.2. Clinical Safety Assessment of the Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sundström, E.; Imsland, F.; Mikko, S.; Wade, C.; Sigurdsson, S.; Pielberg, G.R.; Golovko, A.; Curik, I.; Seltenhammer, M.H.; Sölkner, J.; et al. Copy number expansion of the STX17 duplication in melanoma tissue from Grey horses. BMC Genom. 2012, 13, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pielberg, G.R.; Golovko, A.; Sundström, E.; Curik, I.; Lennartsson, J.; Seltenhammer, M.H.; Druml, T.; Binns, M.; Fitzsimmons, C.; Lindgren, G.; et al. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat. Genet. 2008, 40, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Seltenhammer, M.H.; Simhofer, H.; Scherzer, S.; Zechner, P.; Curik, I.; Sölkner, J.; Brandt, S.; Jansen, B.; Pehamberger, H.; Eisenmenger, E. Equine melanoma in a population of 296 grey Lipizzaner horses. Equine Vet. J. 2010, 35, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Fleury, C.; Berard, F.; Balme, B.; Thomas, L. The Study of Cutaneous Melanomas in Camargue-Type Gray-Skinned Horses (1): Clinical-Pathological Characterization. Pigment. Cell Res. 2000, 13, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Seltenhammer, M.H.; Heere-Ress, E.; Brandt, S.; Druml, T.; Jansen, B.; Pehamberger, H.; Niebauer, G.W. Comparative Histopathology of Grey-Horse-Melanoma and Human Malignant Melanoma. Pigment. Cell Res. 2004, 17, 674–681. [Google Scholar] [CrossRef]
- Sutton, R.H.; Coleman, G.T. Melanoma and the greying horse. RIRDC Res. Pap. Ser. 1997, 97, 1–27. [Google Scholar]
- Johnson, P.J. Dermatologic Tumors (Excluding Sarcoids). Vet. Clin. N. Am. Equine Pract. 1998, 14, 625–658. [Google Scholar] [CrossRef]
- Macgillivray, K.C.; Sweeney, R.W.; Piero, F.D. Metastatic Melanoma in Horses. J. Vet. Intern. Med. 2002, 16, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.S.; Shaw, C.; Shaw, E.; Buechner-Maxwell, V.; Scarratt, W.; Crisman, M.V.; Furr, M.; Robertson, J.L. Melanoma in horses: Current perspectives. Equine Vet. Educ. 2013, 25, 144–151. [Google Scholar] [CrossRef]
- Patterson-Kane, J.; Sanchez, L.; Uhl, E.; Edens, L. Disseminated Metastatic Intramedullary Melanoma in an Aged Grey Horse. J. Comp. Pathol. 2001, 125, 204–207. [Google Scholar] [CrossRef]
- Smith, S.H.; Goldschmidt, M.; McManus, P.M. A Comparative Review of Melanocytic Neoplasms. Vet. Pathol. 2002, 39, 651–678. [Google Scholar] [CrossRef]
- Rodríguez, F.; Forga, J.; Herráez, P.; Andrada, M.; Fernandez, A. Metastatic melanoma causing spinal cord compression in a horse. Vet. Rec. 1998, 142, 248–249. [Google Scholar] [CrossRef] [PubMed]
- Myrna, K.; Sheridan, C. Melanocytic ocular and periocular tumours of the horse. Equine Vet. Educ. 2019, 31, 410–412. [Google Scholar] [CrossRef]
- MacKay, R.J. Treatment Options for Melanoma of Gray Horses. Vet. Clin. N. Am. Equine Pract. 2019, 35, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Luís, A.; Ruela, M.; Perissinato, A.G.; Esselin, M.; Lino, D.S. Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz. J. Pharm. Sci. 2016, 52, 527–544. [Google Scholar] [CrossRef] [Green Version]
- Prausnitz, M.R.; Elias, P.M.; Franz, T.J.; Schmuth, M.; Tsai, J.-C.; Menon, G.K. Skin Barrier and Transdermal Drug Delivery. Med. Ther. 2012; 5, 2065–2073. [Google Scholar]
- Fulda, S. Betulinic Acid for Cancer Treatment and Prevention. Int. J. Mol. Sci. 2008, 9, 1096–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarek, J.; Kvasnica, M.; Vlk, M.; Urban, M.; Dzubak, P.; Hajduch, M. The Potential of Triterpenoids in the Treatment of Melanoma, Research on Melanoma—A Glimpse into Current Directions and Future Trends; InTech: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef] [Green Version]
- Ríos, J.L.; Máñez, S. New Pharmacological Opportunities for Betulinic Acid. Planta Med. 2018, 84, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Pisha, E.; Chai, H.; Lee, I.-S.; Chagwedera, T.E. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat. Med. 1995, 1, 1046–1051. [Google Scholar] [CrossRef]
- Ali-Seyed, M.; Jantan, I.; Vijayaraghavan, K.; Bukhari, S.N.A. Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy. Chem. Biol. Drug Des. 2016, 87, 517–536. [Google Scholar] [CrossRef] [PubMed]
- Fulda, S.; Kroemer, G. Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov. Today 2009, 14, 885–890. [Google Scholar] [CrossRef]
- Yang, C.; Li, Y.; Fu, L.; Jiang, T.; Meng, F. Betulinic acid induces apoptosis and inhibits metastasis of human renal carcinoma cells in vitro and in vivo. J. Cell. Biochem. 2018, 119, 8611–8622. [Google Scholar] [CrossRef]
- Chowdhury, R.A.; Mandal, S.; Mittra, B.; Sharma, S.; Mukhopadhyay, S.; Majumder, H.K. Betulinic acid, a potent inhibitor of eu-karyotic topoisomerase I: Identification of the inhibitory step, the major functional group responsible and development of more potent derivatives. Med. Sci. Monit. 2002, 8, 254–260. [Google Scholar]
- Dillon, L.W.; Pierce, L.C.T.; Lehman, C.E.; Nikiforov, Y.E.; Wang, Y.-H. DNA Topoisomerases Participate in Fragility of the Oncogene RET. PLoS ONE 2013, 8, e75741. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, A.; Das, B.; Roy, A.; Sen, N.; Dasgupta, S.B.; Mukhopadhayay, S.; Majumder, H.K. Betulinic Acid, a Catalytic Inhibitor of Topoisomerase I, Inhibits Reactive Oxygen Species Mediated Apoptotic Topoisomerase I DNA Cleavable Complex Formation in Prostate Cancer Cells but Does Not Affect the Process of Cell Death. Cancer Res. 2007, 67, 11848–11858. [Google Scholar] [CrossRef] [Green Version]
- Karna, E.; Szoka, L.; Palka, J.A. Betulinic acid inhibits the expression of hypoxia-inducible factor 1α and vascular endothelial growth factor in human endometrial adenocarcinoma cells. Mol. Cell. Biochem. 2010, 340, 15–20. [Google Scholar] [CrossRef]
- Ren, W.; Qin, L.; Xu, Y.; Cheng, N. Inhibition of betulinic acid to growth and angiogenesis of human colorectal cancer cell in nude mice. Chin.-German J. Clin. Oncol. 2010, 9, 153–157. [Google Scholar] [CrossRef]
- Melzig, M.F.; Bormann, H. Betulinic Acid Inhibits Aminopeptidase N Activity. Planta Med. 1998, 64, 655–657. [Google Scholar] [CrossRef]
- Kwon, H.J.; Shim, J.S.; Kim, J.H.; Cho, H.Y.; Na Yum, Y.; Kim, S.H.; Yu, J. Betulinic Acid Inhibits Growth Factor-induced in vitro Angiogenesis via the Modulation of Mitochondrial Function in Endothelial Cells. Jpn. J. Cancer Res. 2002, 93, 417–425. [Google Scholar] [CrossRef]
- Willmann, M.; Wacheck, V.; Buckley, J.; Nagy, K.; Thalhammer, J.; Paschke, R.; Triche, T.; Jansen, B.; Selzer, E. Characterization of NVX-207, a novel betulinic acid-derived anti-cancer compound. Eur. J. Clin. Investig. 2009, 39, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Csuk, R. Betulinic acid and its derivatives: A patent review (2008–2013). Expert Opin. Ther. Patents 2014, 24, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Liebscher, G.; Vanchangiri, K.; Mueller, T.; Feige, K.; Cavalleri, J.; Paschke, R. In vitro anticancer activity of Betulinic acid and derivatives thereof on equine melanoma cell lines from grey horses and invivo safety assessment of the compound NVX-207 in two horses. Chem. Interact. 2016, 246, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Weber, L.A.; Meißner, J.; Delarocque, J.; Kalbitz, J.; Feige, K.; Kietzmann, M.; Michaelis, A.; Paschke, R.; Michael, J.; Pratscher, B.; et al. Betulinic acid shows anticancer activity against equine melanoma cells and permeates isolated equine skin in vitro. BMC Vet. Res. 2020, 16, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Weber, L.A.; Funtan, A.; Paschke, R.; Delarocque, J.; Kalbitz, J.; Meißner, J.; Feige, K.; Kietzmann, M.; Cavalleri, J.-M.V. In vitro assessment of triterpenoids NVX-207 and betulinyl-bis-sulfamate as a topical treatment for equine skin cancer. PLoS ONE 2020, 15, e0241448. [Google Scholar] [CrossRef]
- Weber, L.A.; Puff, C.; Kalbitz, J.; Kietzmann, M.; Feige, K.; Bosse, K.; Rohn, K.; Cavalleri, J.V. Concentration profiles and safety of topically applied betulinic acid and NVX-207 in eight healthy horses—A randomized, blinded, placebo-controlled, crossover pilot study. J. Vet. Pharmacol. Ther. 2021, 44, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Kienzle, E.; Schramme, S.C. Body Condition Scoring and prediction of body weight in adult Warm blooded horses. Pferdeheilkunde Equine Med. 2004, 20, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Mählmann, K.; Feige, K.; Juhls, C.; Endmann, A.; Schuberth, H.-J.; Oswald, D.; Hellige, M.; Doherr, M.; Cavalleri, J. Local and systemic effect of transfection-reagent formulated DNA vectors on equine melanoma. BMC Vet. Res. 2015, 11, 132. [Google Scholar] [CrossRef] [Green Version]
- Faustino-Rocha, A.; Oliveira, P.A.; Pinho-Oliveira, J.; Teixeira-Guedes, C.; Soares-Maia, R.; Da Costa, R.G.; Colaço, B.; Pires, M.J.; Colaço, J.; Ferreira, R.; et al. Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab. Anim. 2013, 42, 217–224. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org (accessed on 4 October 2021).
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wood, S. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 2003, 65, 95–114. [Google Scholar] [CrossRef]
- Rose, N.L.; Yang, H.; Turner, S.; Simpson, G. An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochim. Cosmochim. Acta 2012, 82, 113–135. [Google Scholar] [CrossRef]
- Scott, D. Neoplastic Diseases. In Large Anim, Dermatology; Pedersen, D., Ed.; W.B. Saunders Company: Philadelphia, PA, USA, 1988; pp. 448–452. [Google Scholar]
- Kapałczyńska, M.; Kolenda, T.; Przybyła, W.; Zajączkowska, M.; Teresiak, A.; Filas, V.; Ibbs, M.; Bliźniak, R.; Łuczewski, L.; Lamperska, K. 2D and 3D cell cultures—A comparison of different types of cancer cell cultures. Arch. Med. Sci. 2016, 12, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Adega, F.; Chaves, R. The Importance of Cancer Cell Lines as in vitro Models in Cancer Methylome Analysis and Anticancer Drugs Testing. In Oncogenomics and Cancer Proteomics-Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer; IntechOpen: London, UK, 2013; pp. 139–166. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.K.; Martin, J.D.; Stylianopoulos, T. The Role of Mechanical Forces in Tumor Growth and Therapy. Annu. Rev. Biomed. Eng. 2014, 16, 321–346. [Google Scholar] [CrossRef] [Green Version]
- Peckary, R. Average Growth of Melanomas in Lipizzaner Horses and First Test Series for the Development of an ELISA for Detection of Antibodies Directed against Human Tyrosinase in with Human Tyrosinase Vaccinated Horses. Ph.D. Thesis, University of Veterinary Medicine Vienna, Vienna, Austria, 2019. [Google Scholar]
- Müller, J.-M.; Feige, K.; Wunderlin, P.; Hödl, A.; Meli, M.L.; Seltenhammer, M.; Grest, P.; Nicolson, L.; Schelling, C.; Heinzerling, L.M. Double-blind Placebo-controlled Study With Interleukin-18 and Interleukin-12-encoding Plasmid DNA Shows Antitumor Effect in Metastatic Melanoma in Gray Horses. J. Immunother. 2011, 34, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Azimi, F.; Scolyer, R.A.; Rumcheva, P.; Moncrieff, M.; Murali, R.; McCarthy, S.W. Tumor-Infiltrating Lymphocyte Grade Is an Independent Predictor of Sentinel Lymph Node Status and Survival in Patients With Cutaneous Melanoma. J. Clin. Oncol. 2012, 30, 2678–2683. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Chen, N.; Ge, C.; Li, R.; Li, Z.; Zeng, B.; Li, C.; Wang, Y.; Xue, Y.; Song, X.; et al. Prognostic value of tumor-infiltrating lymphocytes in melanoma: A systematic review and meta-analysis. OncoImmunology 2019, 8, e1593806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haspeslagh, M.; Garcia, M.J.; Vlaminck, L.E.M.; Martens, A.M. Topical use of 5% acyclovir cream for the treatment of occult and verrucous equine sarcoids: A double-blinded placebo-controlled study. BMC Vet. Res. 2017, 13, 296. [Google Scholar] [CrossRef] [Green Version]
- Stadler, S.; Kainzbauer, C.; Haralambus, R.; Brehm, W.; Hainisch, E.; Brandt, S. Successful treatment of equine sarcoids by topical aciclovir application. Vet. Rec. 2011, 168, 187. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, S.A.F.; Torres, S.M.F.; Malone, E.; Diaz, S.F.; Jessen, C.; Gilbert, S. Efficacy of imiquimod 5% cream in the treatment of equine sarcoids: A pilot study. Vet. Dermatol. 2006, 17, 259–265. [Google Scholar] [CrossRef]
- Pettersson, C.M.; Broström, H.; Humblot, P.; Bergvall, K.E. Topical treatment of equine sarcoids with imiquimod 5% cream or Sanguinaria canadensis and zinc chloride—An open prospective study. Vet. Dermatol. 2020, 31, 471-e126. [Google Scholar] [CrossRef]
- Moore, J.S. A Translational Study Evaluating the Uses of Diagnostic and Therapeutic Practices Established in Human Malig-nant Melanoma in Equine Malignant Melanoma. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2013. [Google Scholar]
- Scott, D.W.; Miller, W.H. Equine Dermatology, 2nd ed.; Penny Rudolph: Maryland Heights, MO, USA, 2011. [Google Scholar]
- Galgon, T.; Wohlrab, W.; Drager, B. Betulinic acid induces apoptosis in skin cancer cells and differentiation in normal human keratinocytes. Exp. Dermatol. 2005, 14, 736–743. [Google Scholar] [CrossRef]
- Selzer, E.; Pimentel, E.; Wacheck, V.; Schlegel, W.; Pehamberger, H.; Jansen, B.; Kodym, R. Effects of Betulinic Acid Alone and in Combination with Irradiation in Human Melanoma Cells. J. Investig. Dermatol. 2000, 114, 935–940. [Google Scholar] [CrossRef] [Green Version]
- Surowiak, P.; Drag, M.; Materna, V.; Dietel, M.; Lage, H. Betulinic acid exhibits stronger cytotoxic activity on the normal melanocyte NHEM-neo cell line than on drug-resistant and drug-sensitive MeWo melanoma cell lines. Mol. Med. Rep. 2009, 2, 543–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, E.L.; Sullins, K.E. Excision as treatment of dermal melanomatosis in horses: 11 cases (1994–2000). J. Am. Vet. Med. Assoc. 2004, 225, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Groom, L.M.; Sullins, K.E. Surgical excision of large melanocytic tumours in grey horses: 38 cases (2001–2013). Equine Vet. Educ. 2017, 30, 438–443. [Google Scholar] [CrossRef]
- Bradley, W.M.; Schilpp, D.; Khatibzadeh, S.M. Electronic brachytherapy used for the successful treatment of three different types of equine tumours. Equine Vet. Educ. 2017, 29, 293–298. [Google Scholar] [CrossRef]
- Henson, F.M.D.; Dobson, J.M. Use of radiation therapy in the treatment of equine neoplasia. Equine Vet. Educ. 2010, 16, 315–318. [Google Scholar] [CrossRef]
- Théon, A.P.; Wilson, W.D.; Magdesian, K.G.; Pusterla, N.; Snyder, J.R.; Galuppo, L.D. Long-term outcome associated with intratumoral chemotherapy with cisplatin for cutaneous tumors in equidae: 573 cases (1995–2004). J. Am. Vet. Med. Assoc. 2007, 230, 1506–1513. [Google Scholar] [CrossRef]
- Hewes, C.A.; Sullins, K.E. Use of cisplatin-containing biodegradable beads for treatment of cutaneous neoplasia in equidae: 59 cases (2000–2004). J. Am. Vet. Med. Assoc. 2006, 229, 1617–1622. [Google Scholar] [CrossRef] [Green Version]
- Spugnini, E.P.; Alterio, G.L.D.; Dotsinsky, I.; Mudrov, T.; Dragonetti, E.; Murace, R.; Citro, G.; Baldi, A. Electrochemotherapy for the Treatment of Multiple Melanomas in a Horse. J. Equine Vet. Sci. 2011, 31, 430–433. [Google Scholar] [CrossRef]
- Phillips, J.C.; Lembcke, L.M.; Noltenius, C.E.; Newman, S.J.; Blackford, J.T.; Grosenbaugh, D.A.; Leard, A.T. Evaluation of tyrosinase expression in canine and equine melanocytic tumors. Am. J. Vet. Res. 2012, 73, 272–278. [Google Scholar] [CrossRef]
- Heinzerling, L.M.; Feige, K.; Rieder, S.; Akens, M.K.; Dummer, R.; Stranzinger, G.; Moelling, K. Tumor regression induced by intratumoral injection of DNA coding for human interleukin 12 into melanoma metastases in gray horses. J. Mol. Med. 2001, 78, 692–702. [Google Scholar] [CrossRef] [PubMed]
Horse ID | Treatment | Age (Years) | Color | Melanoma Stage 1 | Number of Melanomas in Total | Number of Melanomas Treated | Localization of the Melanomas Treated |
---|---|---|---|---|---|---|---|
1 | Placebo | 19 | white | 2 | >10 | 2 | ventral tail |
2 | Placebo | 14 | white | 2 | 5 | 1 | ventral tail |
5 | Placebo | 19 | white | 2 | 2 | 1 | between tail root and anus |
10 | Placebo | 9 | dappled | 2 | >10 | 1 | between tail root and anus |
15 | Placebo | 9 | flea-bitten | 2 | 9 | 1 | ventral tail |
18 | Placebo | 28 | white | 2 | >10 | 2 | ventral tail |
4 | BA | 17 | white | 2 | 3 | 2 | ventral tail |
6 | BA | 11 | white | 2 | 5 | 2 | ventral tail |
9 | BA | 12 | flea-bitten | 2 | 3 | 2 | ventral tail |
12 | BA | 18 | white | 2 | 4 | 2 | ventral tail |
13 | BA | 15 | flea-bitten | 2 | >10 | 2 | ventral tail |
17 | BA | 27 | white | 2 | >10 | 2 | ventral tail |
3 | NVX-207 | 24 | flea-bitten | 2 | >10 | 2 | ventral tail |
7 | NVX-207 | 20 | grey | 2 | >10 | 2 | ventral tail |
8 | NVX-207 | 12 | flea-bitten | 2 | 3 | 2 | ventral tail |
11 | NVX-207 | 14 | grey | 2 | 2 | 1 | ventral tail |
14 | NVX-207 | 6 | grey | 2 | >10 | 2 | ventral tail + between tail root and anus |
16 | NVX-207 | 9 | grey | 2 | >10 | 1 | ventral tail |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, L.A.; Delarocque, J.; Feige, K.; Kietzmann, M.; Kalbitz, J.; Meißner, J.; Paschke, R.; Cavalleri, J.-M.V. Effects of Topically Applied Betulinic Acid and NVX-207 on Melanocytic Tumors in 18 Horses. Animals 2021, 11, 3250. https://doi.org/10.3390/ani11113250
Weber LA, Delarocque J, Feige K, Kietzmann M, Kalbitz J, Meißner J, Paschke R, Cavalleri J-MV. Effects of Topically Applied Betulinic Acid and NVX-207 on Melanocytic Tumors in 18 Horses. Animals. 2021; 11(11):3250. https://doi.org/10.3390/ani11113250
Chicago/Turabian StyleWeber, Lisa A., Julien Delarocque, Karsten Feige, Manfred Kietzmann, Jutta Kalbitz, Jessica Meißner, Reinhard Paschke, and Jessika-M. V. Cavalleri. 2021. "Effects of Topically Applied Betulinic Acid and NVX-207 on Melanocytic Tumors in 18 Horses" Animals 11, no. 11: 3250. https://doi.org/10.3390/ani11113250
APA StyleWeber, L. A., Delarocque, J., Feige, K., Kietzmann, M., Kalbitz, J., Meißner, J., Paschke, R., & Cavalleri, J.-M. V. (2021). Effects of Topically Applied Betulinic Acid and NVX-207 on Melanocytic Tumors in 18 Horses. Animals, 11(11), 3250. https://doi.org/10.3390/ani11113250