A Review of Bacterial Co-Infections in Farmed Catfish: Components, Diagnostics, and Treatment Directions
Abstract
:Simple Summary
Abstract
1. Catfish Culture in the Southern United States
2. Bacterial Pathogens Commonly Observed in Catfish Culture
2.1. Edwardsiella ictaluri
2.2. Virulent Aeromonas hydrophila
2.3. Flavobacterium columnare
Pathogen | Clinical Signs | Prevalence/Mortality | Antibiotic Therapies 1 | Vaccination |
---|---|---|---|---|
E. ictaluri | Hemorrhaging, exophthalmia, cranial ulcerations (hole-in-head), white nodules in liver tissue, change in swimming behavior, ascites build-up in the abdomen [10] | Up to 47% percent of catfish disease cases in MS and over USD 60 million in losses per year [9,10] | Florfenicol and Sulfadimethoxine–ormetoprim | Live-attenuated developed at Mississippi State University being used in the MS catfish industry [20] |
F. columnare | Gill, skin, and fin necrosis or lesions and systemic/acute variations [28] | 50–60% reported in commercial ponds, but higher mortality (90%) reported [9]. A total of 1.5–2.4 million pounds of losses in East MS and West Alabama [70] | Florfenicol | Recombinant [75] and live-attenuated in development [76] for catfish |
Virulent A. hydrophila | Hemorrhaging, exophthalmia, reddened fins, ulcerations, abdominal swelling [25,26,27] | Up to USD 35 million in economic losses in the U.S. since 2009 [9,35] | Oxytetracycline dihydrate | Live-attenuated [49,50] and recombinants [58,59,60,61,62] previously reported for catfish |
3. Bacterial Co-Infections
4. Diagnostic Summary of Recent Bacterial Co-Infections in Alabama and Mississippi
5. Future Directions for Bacterial Co-Infection Mitigation and Research
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO Fisheries & Aquaculture National Aquaculture Sector Overview—United States of America. Available online: http://www.fao.org/fishery/countrysector/naso_usa/en (accessed on 11 June 2021).
- National Agricultural Statistics Service Catfish Production 04/02/2019; United States Department of Agriculture: Stuttgart, AR, USA, 2019; p. 10.
- Wellborn, T.L. Channel Catfish: Life History and Biology. In Leaflet/Texas Agricultural Extension Service; Southern Regional Aquaculture Center: Stoneville, MS, USA, 1990. [Google Scholar]
- Steeby, J.; Avery, J. Channel Catfish Broodfish and Hatchery Management; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2005. [Google Scholar]
- Lucy Towers Producing Better Catfish the Hybrid Way. Available online: https://thefishsite.com/articles/producing-better-catfish-the-hybrid-way (accessed on 27 September 2021).
- Stone, N. Catfish Farming—Freshwater Aquaculture. Available online: https://freshwater-aquaculture.extension.org/catfish-farming/ (accessed on 27 September 2021).
- Dunham, R.A.; Elaswad, A. Catfish Biology and Farming. Annu. Rev. Anim. Biosci. 2018, 6, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.A.; Wise, D.J.; Khoo, L.H.; Terhune, J.S. The Epidemiology of Bacterial Diseases in Food-Size Channel Catfish. J. Aquat. Anim. Health 2002, 14, 263–272. [Google Scholar] [CrossRef]
- Zhou, T.; Yuan, Z.; Tan, S.; Jin, Y.; Yang, Y.; Shi, H.; Wang, W.; Niu, D.; Gao, L.; Jiang, W.; et al. A Review of Molecular Responses of Catfish to Bacterial Diseases and Abiotic Stresses. Front. Physiol. 2018, 9, 1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawke, J.P. Enteric Septicemia of Catfish; Southern Regional Aquaculture Center: Baton Rouge, LA, USA, 2015. [Google Scholar]
- Wise, D.J.; Greenway, T.E.; Byars, T.S.; Kumar, G.; Griffin, M.J.; Khoo, L.H.; Chesser, G.; Lowe, J. Validation of Edwardsiella ictaluri Oral Vaccination Platform in Experimental Pond Trials. J. World Aquac. Soc. 2020, 51, 346–363. [Google Scholar] [CrossRef]
- Meyer, F.P.; Bullock, G.L. Edwardsiella tarda, a New Pathogen of Channel Catfish (Ictalurus punctatus). Appl. Microbiol. 1973, 25, 155–156. [Google Scholar] [CrossRef]
- Griffin, M.J.; Ware, C.; Quiniou, S.M.; Steadman, J.M.; Gaunt, P.S.; Khoo, L.H.; Soto, E. Edwardsiella piscicida Identified in the Southeastern USA by GyrB Sequence, Species-Specific and Repetitive Sequence-Mediated PCR. Dis. Aquat. Organ. 2014, 108, 23–35. [Google Scholar] [CrossRef]
- Abdelhamed, H.; Lawrence, M.L.; Karsi, A. The Role of TonB Gene in Edwardsiella ictaluri Virulence. Front. Physiol. 2017, 8, 1066. [Google Scholar] [CrossRef] [Green Version]
- Santander, J.; Martin, T.; Loh, A.; Pohlenz, C.; Gatlin, D.M.; Curtiss, R. Mechanisms of Intrinsic Resistance to Antimicrobial Peptides of Edwardsiella ictaluri and Its Influence on Fish Gut Inflammation and Virulence. Microbiology 2013, 159, 1471–1486. [Google Scholar] [CrossRef] [Green Version]
- Griffin, M.J.; Reichley, S.R.; Greenway, T.E.; Quiniou, S.M.; Ware, C.; Gao, D.X.; Gaunt, P.S.; Yanong, R.P.E.; Pouder, D.B.; Hawke, J.P.; et al. Comparison of Edwardsiella ictaluri Isolates from Different Hosts and Geographic Origins. J. Fish Dis. 2016, 39, 947–969. [Google Scholar] [CrossRef]
- Petrie-Hanson, L.; Jerald Ainsworth, A. Humoral Immune Responses of Channel Catfish (Ictalurus punctatus) Fry and Fingerlings Exposed to Edwardsiella ictaluri. Fish Shellfish Immunol. 1999, 9, 579–589. [Google Scholar] [CrossRef]
- Titball, R.W. Vaccines against Intracellular Bacterial Pathogens. Drug Discov. Today 2008, 13, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Klesius, P.H.; Shoemaker, C.A. Development and Use of Modified Live Edwardsiella ictaluri Vaccine against Enteric Septicemia of Catfish. Adv. Vet. Med. 1999, 41, 523–537. [Google Scholar] [CrossRef]
- Wise, D.J.; Greenway, T.E.; Byars, T.S.; Griffin, M.J.; Khoo, L.H. Oral Vaccination of Channel Catfish against Enteric Septicemia of Catfish Using a Live Attenuated Edwardsiella ictaluri Isolate. J. Aquat. Anim. Health 2015, 27, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Aarattuthodiyil, S.; Griffin, M.J.; Greenway, T.E.; Khoo, L.H.; Byars, T.S.; Lewis, M.; Steadman, J.; Wise, D.J. An Orally-Delivered, Live-Attenuated Edwardsiella ictaluri Vaccine Efficiently Protects Channel Catfish Fingerlings Against Multiple Edwardsiella ictaluri field isolates. J. World Aquacult. Soc. 2020, 51, 1354–1372. [Google Scholar] [CrossRef]
- Greenway, T.E.; Byars, T.S.; Elliot, R.B.; Jin, X.; Griffin, M.J.; Wise, D.J. Validation of Fermentation and Processing Procedures for the Commercial-Scale Production of a Live, Attenuated Edwardsiella ictaluri Vaccine for Use in Channel Catfish Aquaculture. J. Aquat. Anim. Health 2017, 29, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Vinitnantharat, S.; Plumb, J.A. Protection of Channel Catfish Ictalurus punctatus Following Natural Exposure to Edwardsiella ictaluri and Effects of Feeding Antigen on Antibody Titer. Dis. Aquat. Org. 1993, 15, 31–34. [Google Scholar] [CrossRef]
- LaFrentz, B.R.; Shoemaker, C.A.; Booth, N.J.; Peterson, B.C.; Ourth, D.D. Spleen Index and Mannose-Binding Lectin Levels in Four Channel Catfish Families Exhibiting Different Susceptibilities to Flavobacterium columnare and Edwardsiella ictaluri. J. Aquat. Anim. Health 2012, 24, 141–147. [Google Scholar] [CrossRef]
- Grizzle, J.M.; Kiryu, Y. Histopathology of Gill, Liver, and Pancreas, and Serum Enzyme Levels of Channel Catfish Infected with Aeromonas hydrophila Complex. J. Aquat. Anim. Health 1993, 5, 36–50. [Google Scholar] [CrossRef]
- Plumb, J.A. Health Maintenance and Principal Microbial Diseases of Cultured Fishes|Wiley. Available online: https://www.wiley.com/en-us/Health+Maintenance+and+Principal+Microbial+Diseases+of+Cultured+Fishes-p-9780813822983 (accessed on 24 September 2021).
- Hanson, L.A.; Liles, M.R.; Hossain, M.J.; Griffin, M.J.; Hemstreet, W.G. 1.2.9 Motile Aeromonas septicemia. In FHS Blue Book: Diagnostic Procedures for Finfish and Shellfish Pathogens; AFS-FHS (American Fisheries Society-Fish Health Section): Bethesda, MD, USA, 2014. [Google Scholar]
- Hawke, J.P.; Thune, R.L. Systemic Isolation and Antimicrobial Susceptibility of Cytophaga columnaris from Commercially Reared Channel Catfish. J. Aquat. Anim. Health 1992, 4, 109–113. [Google Scholar] [CrossRef]
- El-Son, M.A.M.; Nofal, M.I.; Abdel-Latif, H.M.R. Co-Infection of Aeromonas hydrophila and Vibrio parahaemolyticus Isolated from Diseased Farmed Striped Mullet (Mugil cephalus) in Manzala, Egypt—A Case Report. Aquaculture 2021, 530, 735738. [Google Scholar] [CrossRef]
- Sakazaki, R.; Shimada, T. O-Serogrouping Scheme for Mesophilic Aeromonas Strains. JJMSB 1984, 37, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Algammal, A.M.; Mohamed, M.F.; Tawfiek, B.A.; Hozzein, W.N.; El Kazzaz, W.M.; Mabrok, M. Molecular Typing, Antibiogram and PCR-RFLP Based Detection of Aeromonas hydrophila Complex Isolated from Oreochromis niloticus. Pathogens 2020, 9, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Willmon, E.; Burgos, F.A.; Ray, C.L.; Hanson, T.; Arias, C.R. Biofilm and Sediment Are Major Reservoirs of Virulent Aeromonas hydrophila (VAh) in Catfish Production Ponds. J. Aquat. Anim. Health 2019, 31, 112–120. [Google Scholar] [CrossRef]
- Zhi-Hong, M.A.; Hui-Ying, C.; Wen, D. Study on the Pathogen of Epidemic Septicemia Occurred in Cyprinoid Fishes in Beijing, China. Biodiv. Sci. 1998, 6, 31. [Google Scholar] [CrossRef]
- Hemstreet, B. An Update on Aeromonas hydrophila from a Fish Health Specialist for Summer. Catfish J. 2010, 24, 4. [Google Scholar]
- Hossain, M.J.; Sun, D.; McGarey, D.J.; Wrenn, S.; Alexander, L.M.; Martino, M.E. An Asian Origin of Virulent Aeromonas hydrophila Responsible for Disease Epidemics in United States-farmed Catfish. mBio 2014, 5, e848-14. [Google Scholar] [CrossRef] [Green Version]
- Schachte, J. Immunization of Channel Catfish, Ictalurus punctatus, against Two Bacterial Diseases. Mar. Fish Rev. 1978, 40, 18–24. [Google Scholar]
- Nayak, D.K.; Asha, A.; Shankar, K.M.; Mohan, C.V. Evaluation of Biofilm of Aeromonas hydrophila for Oral Vaccination of Clarias batrachus—A Carnivore Model. Fish Shellfish Immunol. 2004, 16, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Harikrishnan, R.; Balasundaram, C.; Heo, M.-S. Effect of Chemotherapy, Vaccines and Immunostimulants on Innate Immunity of Goldfish Infected with Aeromonas hydrophila. Dis. Aquat. Organ. 2009, 88, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastardo, A.; Ravelo, C.; Castro, N.; Calheiros, J.; Romalde, J.L. Effectiveness of Bivalent Vaccines against Aeromonas hydrophila and Lactococcus garvieae Infections in Rainbow Trout Oncorhynchus mykiss (Walbaum). Fish Shellfish Immunol. 2012, 32, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Jun, J.W.; Giri, S.S.; Kim, H.J.; Chi, C.; Kim, S.G.; Kim, S.W.; Park, S.C. Efficacy of PLGA Microparticle-Encapsulated Formalin-Killed Aeromonas hydrophila Cells as a Single-Shot Vaccine against A. hydrophila Infection. Vaccine 2017, 35, 3959–3965. [Google Scholar] [CrossRef]
- Minor, P.D. Live Attenuated Vaccines: Historical Successes and Current Challenges. Virology 2015, 479–480, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Zhang, C.; Zhao, Y.; Kong, X.; Pei, C.; Li, L.; Nie, G.; Li, X. Immune Effects of the Vaccine of Live Attenuated Aeromonas hydrophila Screened by Rifampicin on Common Carp (Cyprinus carpio L). Vaccine 2016, 34, 3087–3092. [Google Scholar] [CrossRef]
- Karunasagar, I.; Rosalind, G.; Karunasagar, I. Immunological Response of the Indian Major Carps to Aeromonas hydrophila Vaccine. J. Fish Dis. 1991, 14, 413–417. [Google Scholar] [CrossRef]
- Dash, P.; Sahoo, P.K.; Gupta, P.K.; Garg, L.C.; Dixit, A. Immune Responses and Protective Efficacy of Recombinant Outer Membrane Protein R (ROmpR)-Based Vaccine of Aeromonas hydrophila with a Modified Adjuvant Formulation in Rohu (Labeo rohita). Fish Shellfish Immunol. 2014, 39, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Poobalane, S.; Thompson, K.D.; Ardó, L.; Verjan, N.; Han, H.-J.; Jeney, G.; Hirono, I.; Aoki, T.; Adams, A. Production and Efficacy of an Aeromonas hydrophila Recombinant S-Layer Protein Vaccine for Fish. Vaccine 2010, 28, 3540–3547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, D.-H.; Shoemaker, C. Experimental Induction of Motile Aeromonas Septicemia in Channel Catfish (Ictalurus punctatus) by Waterborne Challenge with Virulent Aeromonas hydrophila. Aquac. Rep. 2016, 3, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Heiss, C.; Wang, Z.; Thurlow, C.M.; Hossain, M.J.; Sun, D.; Liles, M.R.; Saper, M.A.; Azadi, P. Structure of the Capsule and Lipopolysaccharide O-Antigen from the Channel Catfish Pathogen, Aeromonas hydrophila. Carbohydr. Res. 2019, 486, 107858. [Google Scholar] [CrossRef]
- Thurlow, C.M.; Hossain, M.J.; Sun, D.; Barger, P.; Foshee, L.; Beck, B.H.; Newton, J.C.; Terhune, J.S.; Saper, M.A.; Liles, M.R. The Gfc Operon Is Involved in the Formation of the O Antigen Capsule in Aeromonas hydrophila and Contributes to Virulence in Channel Catfish. Aquaculture 2019, 512, 734334. [Google Scholar] [CrossRef]
- Pridgeon, J.W.; Klesius, P.H. Development and Efficacy of Novobiocin and Rifampicin-Resistant Aeromonas hydrophila as Novel Vaccines in Channel Catfish and Nile Tilapia. Vaccine 2011, 29, 7896–7904. [Google Scholar] [CrossRef]
- Mu, X.; Pridgeon, J.W.; Klesius, P.H. Transcriptional Profiles of Multiple Genes in the Anterior Kidney of Channel Catfish Vaccinated with an Attenuated Aeromonas hydrophila. Fish Shellfish Immunol. 2011, 31, 1162–1172. [Google Scholar] [CrossRef]
- Li, J.; Ma, S.; Li, Z.; Yu, W.; Zhou, P.; Ye, X.; Islam, M.S.; Zhang, Y.-A.; Zhou, Y.; Li, J. Construction and Characterization of an Aeromonas hydrophila Multi-Gene Deletion Strain and Evaluation of Its Potential as a Live-Attenuated Vaccine in Grass Carp. Vaccines 2021, 9, 451. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, D.-H.; Beck, B. Analysis of Agglutinants Elicited by Antiserum of Channel Catfish Immunized with Extracellular Proteins of Virulent Aeromonas hydrophila. Fish Shellfish Immunol. 2019, 86, 223–229. [Google Scholar] [CrossRef]
- Zhang, D.; Pridgeon, J.W.; Klesius, P.H. Vaccination of Channel Catfish with Extracellular Products of Aeromonas hydrophila Provides Protection against Infection by the Pathogen. Fish Shellfish Immunol. 2014, 36, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Pridgeon, J.W.; Klesius, P.H. Apolipoprotein A1 in Channel Catfish: Transcriptional Analysis, Antimicrobial Activity, and Efficacy as Plasmid DNA Immunostimulant against Aeromonas hydrophila Infection. Fish Shellfish Immunol. 2013, 35, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Pridgeon, J.W.; Klesius, P.H.; Dominowski, P.J.; Yancey, R.J.; Kievit, M.S. Chicken-Type Lysozyme in Channel Catfish: Expression Analysis, Lysozyme Activity, and Efficacy as Immunostimulant against Aeromonas hydrophila Infection. Fish Shellfish Immunol. 2013, 35, 680–688. [Google Scholar] [CrossRef]
- Pridgeon, J.W.; Klesius, P.H. G-Protein Coupled Receptor 18 (GPR18) in Channel Catfish: Expression Analysis and Efficacy as Immunostimulant against Aeromonas hydrophila Infection. Fish Shellfish Immunol. 2013, 35, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Pridgeon, J.W.; Klesius, P.H.; Dominowski, P.J.; Yancey, R.J.; Kievit, M.S. Recombinant Goose-Type Lysozyme in Channel Catfish: Lysozyme Activity and Efficacy as Plasmid DNA Immunostimulant against Aeromonas hydrophila Infection. Fish Shellfish Immunol. 2013, 35, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, D.-H.; Shoemaker, C. Immunization with Recombinant Aerolysin and Haemolysin Protected Channel Catfish against Virulent Aeromonas hydrophila. Aquac. Res. 2015, 48, 875–882. [Google Scholar] [CrossRef]
- Abdelhamed, H.; Banes, M.; Karsi, A.; Lawrence, M.L. Recombinant ATPase of Virulent Aeromonas hydrophila Protects Channel Catfish Against Motile Aeromonas Septicemia. Front. Immunol. 2019, 10, 1641. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamed, H.; Nho, S.W.; Turaga, G.; Banes, M.M.; Karsi, A.; Lawrence, M.L. Protective Efficacy of Four Recombinant Fimbrial Proteins of Virulent Aeromonas hydrophila Strain ML09-119 in Channel Catfish. Vet. Microbiol. 2016, 197, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Yang, Z.; Zang, M.; Liu, Y.; Lu, C. Identification of Omp38 by Immunoproteomic Analysis and Evaluation as a Potential Vaccine Antigen against Aeromonas hydrophila in Chinese Breams. Fish Shellfish Immunol. 2013, 34, 74–81. [Google Scholar] [CrossRef]
- Gong, Y.-X.; Zhu, B.; Liu, G.-L.; Liu, L.; Ling, F.; Wang, G.-X.; Xu, X.-G. Single-Walled Carbon Nanotubes as Delivery Vehicles Enhance the Immunoprotective Effects of a Recombinant Vaccine against Aeromonas hydrophila. Fish Shellfish Immunol. 2015, 42, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.S. A New Bacterial Disease of Fresh-Water Fishes; Bulletin of the United States Bureau of Fisheries: Washington, DC, USA, 1922; Volume 38, pp. 261–280. [Google Scholar]
- Ordal, E.J.; Rucker, R.R. Pathogenic Myxobacteria. Exp. Biol. Med. 1944, 56, 15–18. [Google Scholar] [CrossRef]
- Garnjobst, L. Cytophaga columnaris (Davis) in Pure Culture: A Myxobacterium Pathogenic to Fish 1. J. Bacteriol. 1945, 49, 113–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardet, J.-F.; Grimont, P.A.D. Deoxyribonucleic Acid Relatedness and Phenotypic Characterization of Flexibacter columnaris sp. Nov., Nom. Rev., Flexibacter psychrophilus sp. Nov., Nom. Rev., and Flexibacter maritimus Wakabayashi, Hikida, and Masumura 1986. Int. J. Syst. Bacteriol. 1989, 39, 346–354. [Google Scholar] [CrossRef]
- Bernardet, J.-F.; Segers, P.; Vancanneyt, M.; Berthe, F.; Kersters, K.; Vandamme, P. Cutting a Gordian Knot: Emended Classification and Description of the Genus Flavobacterium, Emended Description of the Family Flavobacteriaceae, and Proposal of Flavobacterium hydatis Nom. Nov. (Basonym, Cytophaga Aquatilis Strohl and Tait 1978). Int. J. Syst. Bacteriol. 1996, 46, 128–148. [Google Scholar] [CrossRef]
- LaFrentz, B.R.; García, J.C.; Waldbieser, G.C.; Evenhuis, J.P.; Loch, T.P.; Liles, M.R.; Wong, F.S.; Chang, S.F. Identification of Four Distinct Phylogenetic Groups in Flavobacterium columnare With Fish Host Associations. Front. Microbiol. 2018, 9, 452. [Google Scholar] [CrossRef] [Green Version]
- LaFrentz, B.R.; García, J.C.; Shelley, J.P. Multiplex PCR for Genotyping Flavobacterium columnare. J. Fish Dis. 2019, 42, 1531–1542. [Google Scholar] [CrossRef]
- Peterman, M.A.; Posadas, B.C. Direct Economic Impact of Fish Diseases on the East Mississippi Catfish Industry. N. Am. J. Aquac. 2019, 81, 222–229. [Google Scholar] [CrossRef]
- Moore, A.A.; Eimers, M.E.; Cardella, M.A. Attempts to Control Flexibacter columnaris Epizootics in Pond-Reared Channel Catfish by Vaccination. J. Aquat. Anim. Health 1990, 2, 109–111. [Google Scholar] [CrossRef]
- Shoemaker, C.A.; Klesius, P.H.; Drennan, J.D.; Evans, J.J. Efficacy of a Modified Live Flavobacterium columnare Vaccine in Fish. Fish Shellfish Immunol. 2011, 30, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Bebak, J.; Wagner, B. Use of Vaccination against Enteric Septicemia of Catfish and Columnaris Disease by the US Catfish Industry. J. Aquat. Anim. Health 2012, 24, 30–36. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Malick, R.C.; Mondal, N.; Patra, P.; Pal, B.B.; Patra, B.C.; Kumar Das, B. Computational Characterization of Epitopic Region within the Outer Membrane Protein Candidate in Flavobacterium columnare for Vaccine Development. J. Biomol. Struct. Dyn. 2020, 38, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.D.; Abernathy, J.; Farmer, B.D. Evaluation of a Recombinant Flavobacterium columnare DnaK Protein Vaccine as a Means of Protection Against Columnaris Disease in Channel Catfish (Ictalurus punctatus). Front. Immunol. 2019, 10, 1175. [Google Scholar] [CrossRef]
- Malecki, J.K.; Roy, L.A.; Arias, C.R.; Nhat Truong, T.; Hanson, T.R.; Lange, M.D.; Shoemaker, C.A.; Beck, B.H. Bioeconomic Analysis of Flavobacterium columnare Vaccine Pond Trials with Channel Catfish. N. Am. J. Aquac. 2021, 83, 207–217. [Google Scholar] [CrossRef]
- Kotob, M.H.; Menanteau-Ledouble, S.; Kumar, G.; Abdelzaher, M.; El-Matbouli, M. The Impact of Co-Infections on Fish: A Review. Vet. Res. 2016, 47, 98. [Google Scholar] [CrossRef] [Green Version]
- Sulumane Ramachandra, K.S.; Dube, P.N.; Pandikkadan Sundaran, S.; Kalappurakkal Gopalan, M.; Mangottil Ayyappan, P.; Nandiath Karayi, S. Coinfection with Two Strains of Photobacterium damselae Subsp. damselae and Vibrio harveyi in Cage Farmed Cobia, Rachycentron canadum (Linnaeus, 1766). Aquac. Res. 2021, 52, 1525–1537. [Google Scholar] [CrossRef]
- Bruce, T.J.; Ma, J.; Knupp, C.; Loch, T.P.; Faisal, M.; Cain, K.D. Cross-Protection of a Live-Attenuated Flavobacterium psychrophilum Immersion Vaccine against Novel Flavobacterium spp. and Chryseobacterium spp. Strains. J. Fish Dis. 2020, 43, 915–928. [Google Scholar] [CrossRef]
- Erfanmanesh, A.; Beikzadeh, B.; Aziz Mohseni, F.; Nikaein, D.; Mohajerfar, T. Ulcerative Dermatitis in Barramundi Due to Co-infection with Streptococcus iniae and Shewanella algae. Dis. Aquat. Organ. 2019, 134, 89–97. [Google Scholar] [CrossRef]
- Dinçtürk, E.; Tanrıkul, T.T. Yersinia ruckeri and Pseudomonas fluorescens Co-Infection in Rainbow Trout (Oncorhynchus mykiss Walbaum, 1792). Aquac. Res. 2021, 52, 4858–4866. [Google Scholar] [CrossRef]
- Han, Z.; Sun, J.; Jiang, B.; Hu, X.; Lv, A.; Chen, L.; Guo, Y. Concurrent Infections of Aeromonas veronii and Vibrio cholerae in Koi Carp (Cyprinus carpio Var. Koi). Aquaculture 2021, 535, 736395. [Google Scholar] [CrossRef]
- Chandrarathna, H.P.S.U.; Nikapitiya, C.; Dananjaya, S.H.S.; Wijerathne, C.U.B.; Wimalasena, S.H.M.P.; Kwun, H.J.; Heo, G.-J.; Lee, J.; De Zoysa, M. Outcome of Co-Infection with Opportunistic and Multidrug Resistant Aeromonas hydrophila and A. veronii in Zebrafish: Identification, Characterization, Pathogenicity and Immune Responses. Fish Shellfish Immunol. 2018, 80, 573–581. [Google Scholar] [CrossRef]
- Dong, H.T.; Nguyen, V.V.; Phiwsaiya, K.; Gangnonngiw, W.; Withyachumnarnkul, B.; Rodkhum, C.; Senapin, S. Concurrent Infections of Flavobacterium columnare and Edwardsiella ictaluri in Striped Catfish, Pangasianodon hypophthalmus in Thailand. Aquaculture 2015, 448, 142–150. [Google Scholar] [CrossRef]
- Crumlish, M.; Thanh, P.C.; Koesling, J.; Tung, V.T.; Gravningen, K. Experimental Challenge Studies in Vietnamese Catfish, Pangasianodon hypophthalmus (Sauvage), Exposed to Edwardsiella ictaluri and Aeromonas hydrophila. J. Fish Dis. 2010, 33, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Nofal, M.I.; Abdel-Latif, H.M.R. Ectoparasites and Bacterial Coinfections Causing Summer Mortalities among Cultured Fishes at Al-Manzala with Special Reference to Water Quality Parameters. Life Sci. J. 2017, 14, 72–83. [Google Scholar]
- Mohammed, H.H.; Peatman, E. Winter Kill in Intensively Stocked Channel Catfish (Ictalurus punctatus): Coinfection with Aeromonas veronii, Streptococcus parauberis and Shewanella putrefaciens. J. Fish Dis. 2018, 41, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Labrie, L.; Komar, C.; Terhune, J.; Camus, A.; Wise, D. Effect of Sublethal Exposure to the Trematode Bolbophorus spp. on the Severity of Enteric Septicemia of Catfish in Channel Catfish Fingerlings. J. Aquat. Anim. Health 2004, 16, 231–237. [Google Scholar] [CrossRef]
- Wise, D.J.; Griffin, M.J.; Terhune, J.S.; Pote, L.M.; Khoo, L.H. Induction and Evaluation of Proliferative Gill Disease in Channel Catfish Fingerlings. J. Aquat. Anim. Health 2008, 20, 236–244. [Google Scholar] [CrossRef]
- Ksepka, S.P.; Bullard, S.A. Morphology, Phylogenetics and Pathology of “Red Sore Disease” (Co-infection by Epistylis Cf. Wuhanensis and Aeromonas hydrophila) on Sportfishes from Reservoirs in the South-Eastern United States. J. Fish Dis. 2021, 44, 541–551. [Google Scholar] [CrossRef]
- Xu, D.-H.; Shoemaker, C.A.; Klesius, P.H. Ichthyophthirius multifiliis as a Potential Vector of Edwardsiella ictaluri in Channel Catfish. FEMS Microbiol. Lett. 2012, 329, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Yusoff, S.F.M.; Christianus, A.; Matori, F.U.A.D.; Talba, M.A.; Hamid, N.H.; Hamdan, R.H.; Bakar, S.N.A. The Impact of Natural Co-Infection of Dactylogyrus spp. and Aeromonas hydrophila on Behavioural, Clinical, and Histopathological Changes of Striped Catfish, Pangasianodon hypophthalmus (Sauvage, 1878): A Case Study. J. Sustain. Sci. Manag. 2020. [Google Scholar] [CrossRef]
- Cutuli, M.T.; Gibello, A.; Rodriguez-Bertos, A.; Blanco, M.M.; Villarroel, M.; Giraldo, A.; Guarro, J. Skin and Subcutaneous Mycoses in Tilapia (Oreochromis niloticus) caused by Fusarium oxysporum in coinfection with Aeromonas hydrophila. Med. Mycol. Case Rep. 2015, 9, 7–11. [Google Scholar] [CrossRef]
- Kusdarwati, R.; Kurniawan, H.; Prayogi, Y.T. Isolation and Identification of Aeromonas hydrophila and Saprolegnia sp. on Catfish (Clarias gariepinus) in Floating Cages in Bozem Moro Krembangan Surabaya. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bali, Indonesia, 25–27 October 2016. [Google Scholar]
- Li, C.; Wang, R.; Su, B.; Luo, Y.; Terhune, J.; Beck, B.; Peatman, E. Evasion of Mucosal Defenses during Aeromonas hydrophila Infection of Channel Catfish (Ictalurus punctatus) Skin. Dev. Comp. Immunol. 2013, 39, 447–455. [Google Scholar] [CrossRef]
- Ren, Y.; Zhao, H.; Su, B.; Peatman, E.; Li, C. Expression Profiling Analysis of Immune-Related Genes in Channel Catfish (Ictalurus punctatus) Skin Mucus Following Flavobacterium columnare Challenge. Fish Shellfish Immunol. 2015, 46, 537–542. [Google Scholar] [CrossRef]
- Griffin, M.J.; Reichley, S.R.; Baumgartner, W.A.; Aarattuthodiyil, S.; Ware, C.; Steadman, J.M.; Lewis, M.; Gaunt, P.S.; Khoo, L.H.; Wise, D.J. Emergence of Edwardsiella piscicida in Farmed Channel ♀, Ictalurus punctatus × Blue ♂, Ictalurus furcatus, Hybrid Catfish Cultured in Mississippi. J. World Aquacult. Soc. 2019, 50, 420–432. [Google Scholar] [CrossRef]
- Wolters, W.R.; Wise, D.J.; Klesius, P.H. Survival and Antibody Response of Channel Catfish, Blue Catfish, and Channel Catfish Female × Blue Catfish Male Hybrids after Exposure to Edwardsiella ictaluri. J. Aquat. Anim. Health 1996, 8, 249–254. [Google Scholar] [CrossRef]
- Arias, C.R.; Cai, W.; Peatman, E.; Bullard, S.A. Catfish Hybrid Ictalurus punctatus × I. furcatus Exhibits Higher Resistance to Columnaris Disease than the Parental Species. Dis. Aquat. Organ 2012, 100, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Quiniou, S.A.; Bigler, S.; Clem, L.W.; Bly, J.E. Effects of Water Temperature on Mucous Cell Distribution in Channel Catfish Epidermis: A Factor in Winter Saprolegniasis. Fish Shellfish Immunol. 1998, 8, 1–11. [Google Scholar] [CrossRef]
- Danley, M.L.; Goodwin, A.E.; Killian, H.S. Epizootics in Farm-Raised Channel Catfish, Ictalurus punctatus (Rafinesque), Caused by the Enteric Redmouth Bacterium Yersinia ruckeri. J. Fish Dis. 1999, 22, 451–456. [Google Scholar] [CrossRef]
Fish Species | Pathogens | Co-Infection Mortality | Reference |
---|---|---|---|
Rachycentron canadum | Vibrio harveyi/Photobacterium. damselae | 100% | Ramachandra et al. [78] |
Lates calcarifer | Streptococcus iniae/Shewanella algae | ~10% | Erfanmanesh et al. [80] |
Oncorhynchus mykiss | Flavobacterium spp./Chryseobacterium spp. | 36% | Bruce et al. [79] |
Yersinia ruckeri/Pseudomonas fluorescens | <40% | Dinçtürk et al. [81] | |
Cyprinus carpio | Aeromonas veronii/Vibrio cholerae | 50–100% | Han et al. [82] |
Danio rerio | Aeromonas hydrophila/Aeromonas veronii | 72.5% | Chandrarathna et al. [83] |
Pangasianodon hypophthalmus | Edwardsiella ictaluri/Flavobacterium columnare | 86.7–100% | Dong et al. [84] |
Edwardsiella ictaluri/Aeromonas hydrophila | 95% | Crumlish et al. [85] | |
Ictalurus punctatus | Aeromonas hydrophila/Acinetobacter spp./Plesiomonas spp./Pseudomonas spp. | N/A | Grizzle and Kiryu. [25] |
Aeromonas veronii/Shewanella purefaciens/Shewanella parauberis | 80% | Mohammed and Peatman [87] | |
Clarias garipenus | Vibrio spp./Aeromonas hydrophila/Edwardsiella tarda | N/A | Nofal and Abdel-Latif [86] |
Disease | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total | % | CH | HY | BL | OS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 Polymicrobial Diagnostic Cases (N = 763) | ||||||||||||||||||
F. columnare; A. hydrophila | 1 | 1 | 0.13 | 1 | ||||||||||||||
F. columnare; Aeromonas sp. | 2 | 2 | 0.26 | 2 | ||||||||||||||
E. piscicida: F. columnare | 6 | 5 | 2 | 1 | 14 | 1.83 | 2 | 12 | ||||||||||
E. ictaluri; A. hydrophila | 1 | 1 | 0.13 | 1 | ||||||||||||||
E. ictaluri; F. columnare | 2 | 11 | 11 | 11 | 4 | 67 | 45 | 7 | 2 | 160 | 20.97 | 118 | 42 | |||||
E. ictaluri; F. columnare; Aeromonas sp. | 1 | 1 | 0.13 | 1 | ||||||||||||||
2019 Polymicrobial Diagnostic Cases (N = 721) | ||||||||||||||||||
F. columnare, A. hydrophila | 1 | 1 | 0.14 | 1 | ||||||||||||||
F. columnare, Aeromonas sp. | 2 | 1 | 3 | 0.42 | 3 | |||||||||||||
E. piscicida, F. columnare | 2 | 2 | 1 | 2 | 7 | 0.97 | 1 | 5 | 1 | |||||||||
E. ictaluri, F. columnare | 10 | 8 | 22 | 26 | 27 | 17 | 110 | 15.26 | 84 | 26 | ||||||||
2018 Polymicrobial Diagnostic Cases (N = 660) | ||||||||||||||||||
F. columnare, Aeromonas sp. | 1 | 1 | 0.2 | 1 | ||||||||||||||
E. piscicida, F. columnare | 2 | 1 | 3 | 0.5 | 3 | |||||||||||||
E. ictaluri, Aeromonas sp. | 1 | 1 | 0.2 | 1 | ||||||||||||||
E. ictaluri, F. columnare | 1 | 6 | 2 | 8 | 41 | 14 | 13 | 1 | 86 | 13.0 | 70 | 16 | ||||||
2017 Polymicrobial Diagnostic Cases (N = 861) | ||||||||||||||||||
F. columnare, Aeromonas sp. | 2 | 1 | 3 | 0.3 | 3 | |||||||||||||
E. piscicida, F. columnare | 1 | 1 | 1 | 2 | 1 | 4 | 1 | 11 | 1.3 | 1 | 10 | |||||||
E. ictaluri, F. columnare | 1 | 19 | 28 | 16 | 51 | 44 | 25 | 1 | 1 | 186 | 21.6 | 155 | 31 | |||||
E. ictaluri, E. piscicida | 1 | 1 | 0.1 | 1 | ||||||||||||||
Y. ruckeri, F. columnare | 1 | 1 | 0.1 | 1 | ||||||||||||||
2016 Polymicrobial Diagnostic Cases (N = 744) | ||||||||||||||||||
F. columnare, Aeromonas spp. | 1 | 1 | 1 | 3 | 0.4 | 1 | 2 | |||||||||||
E. piscicida, F. columnare | 1 | 1 | 2 | 1 | 3 | 2 | 2 | 12 | 1.6 | 1 | 11 | |||||||
E. piscicida, F. columnare, A. hydrophila | 1 | 1 | 0.1 | 1 | ||||||||||||||
E. ictaluri, A. hydrophila | 1 | 1 | 0.1 | 1 | ||||||||||||||
E. ictaluri, F. columnare | 2 | 13 | 10 | 11 | 21 | 28 | 23 | 1 | 109 | 14.7 | 79 | 30 |
Disease | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total | % | CH | HY | BL | OS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 Polymicrobial Diagnostic Cases (N = 306) | ||||||||||||||||||
F. columnare; A. hydrophila | 2 | 4 | 2 | 2 | 8 | 2 | 3 | 2 | 25 | 8.4 | 22 | 3 | ||||||
F. columnare; Aeromonas sp. | 2 | 5 | 3 | 2 | 12 | 4 | 11 | 1 | ||||||||||
E. piscicida: F. columnare | 1 | 1 | 0.3 | 1 | ||||||||||||||
E. ictaluri; A. hydrophila | 1 | 1 | 0.3 | 1 | ||||||||||||||
E. ictaluri; F. columnare | 5 | 4 | 3 | 4 | 1 | 1 | 3 | 21 | 7 | 17 | 4 | |||||||
2019 Polymicrobial Diagnostic Cases (N = 287) | ||||||||||||||||||
F. columnare, A. hydrophila | 2 | 7 | 5 | 4 | 5 | 5 | 28 | 9.8 | 23 | 5 | ||||||||
F. columnare, Aeromonas sp. | 5 | 10 | 1 | 1 | 4 | 21 | 7.3 | 14 | 7 | |||||||||
E. piscicida, F. columnare | 1 | 1 | 0.3 | 1 | ||||||||||||||
E. piscicida, Aeromonas spp | 1 | 1 | 0.3 | 1 | ||||||||||||||
E. ictaluri, A. hydrophila | 3 | 3 | 1 | 6 | ||||||||||||||
E. ictaluri, Aeromonas spp. | 10 | 10 | 3.5 | 4 | 2 | 5 | ||||||||||||
E. ictaluri, F. columnare | 6 | 4 | 1 | 11 | 3.8 | 8 | 3 | |||||||||||
2018 Polymicrobial Diagnostic Cases (N = 296) | ||||||||||||||||||
F. columnare, A. hydrophila | 1 | 2 | 1 | 1 | 5 | 1.7 | 3 | 2 | ||||||||||
F. columnare, Aeromonas sp. | 4 | 10 | 1 | 5 | 20 | 6.8 | 10 | 10 | ||||||||||
E. piscicida, F. columnare | 3 | 2 | 5 | 1.7 | 1 | 4 | ||||||||||||
E. ictaluri, A. hydrophila | 0 | 0 | ||||||||||||||||
E. ictaluri, Aeromonas sp. | 0 | 0 | ||||||||||||||||
E. ictaluri, F. columnare | 1 | 1 | 2 | 0.7 | 2 | |||||||||||||
F. columnare, Pleisiomonas spp. | 1 | 1 | 0.3 | 1 | ||||||||||||||
2017 Polymicrobial Diagnostic Cases (N = 352) | ||||||||||||||||||
F. columnare, A. hydrophila | 1 | 1 | 1 | 1 | 4 | 8 | 2.3 | 5 | 3 | |||||||||
F. columnare, Aeromonas sp. | 2 | 6 | 2 | 6 | 16 | 4.5 | 10 | 6 | ||||||||||
E. piscicida, F. columnare | 1 | 1 | 0.3 | 1 | ||||||||||||||
E. ictaluri, A. hydrophila | 0 | 0 | ||||||||||||||||
E. ictaluri, F. columnare | 1 | 3 | 1 | 5 | 1.4 | 5 | ||||||||||||
2016 Polymicrobial Diagnostic Cases (N = 460) | ||||||||||||||||||
F. columnare, A. hydrophila | 1 | 5 | 3 | 3 | 1 | 13 | 2.8 | 6 | 7 | |||||||||
F. columnare, Aeromonas spp. | 3 | 8 | 4 | 1 | 2 | 18 | 3.9 | 16 | 2 | |||||||||
E. piscicida, F. columnare | 0 | 0 | ||||||||||||||||
E. ictaluri, A. hydrophila | 1 | 1 | 2 | 0.4 | 2 | |||||||||||||
E. ictaluri, F. columnare | 1 | 1 | 1 | 1 | 11 | 1 | 16 | 3.5 | 13 | 3 | ||||||||
E. ictaluri, Aeromonas spp. | 2 | 0 | 2 | |||||||||||||||
Streptococcus spp., A. hydrophila | 1 | 0 | 1 | |||||||||||||||
F. columnare, Pleisiomonas spp. | 1 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wise, A.L.; LaFrentz, B.R.; Kelly, A.M.; Khoo, L.H.; Xu, T.; Liles, M.R.; Bruce, T.J. A Review of Bacterial Co-Infections in Farmed Catfish: Components, Diagnostics, and Treatment Directions. Animals 2021, 11, 3240. https://doi.org/10.3390/ani11113240
Wise AL, LaFrentz BR, Kelly AM, Khoo LH, Xu T, Liles MR, Bruce TJ. A Review of Bacterial Co-Infections in Farmed Catfish: Components, Diagnostics, and Treatment Directions. Animals. 2021; 11(11):3240. https://doi.org/10.3390/ani11113240
Chicago/Turabian StyleWise, Allison L., Benjamin R. LaFrentz, Anita M. Kelly, Lester H. Khoo, Tingbi Xu, Mark R. Liles, and Timothy J. Bruce. 2021. "A Review of Bacterial Co-Infections in Farmed Catfish: Components, Diagnostics, and Treatment Directions" Animals 11, no. 11: 3240. https://doi.org/10.3390/ani11113240
APA StyleWise, A. L., LaFrentz, B. R., Kelly, A. M., Khoo, L. H., Xu, T., Liles, M. R., & Bruce, T. J. (2021). A Review of Bacterial Co-Infections in Farmed Catfish: Components, Diagnostics, and Treatment Directions. Animals, 11(11), 3240. https://doi.org/10.3390/ani11113240