Effects of Postpartum Supplemental Oral Ca for Dairy Cows Fed Prepartum Dietary Acidogenic Salts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Samples
2.2. Statistical Analyses
2.2.1. Prepartum Urinary pH
2.2.2. Prepartum Urinary Ca Excretion
2.2.3. Postpartum Time Course of Serum Ca and BHB
2.2.4. Postpartum Univariate Measures: Serum Ca Concentration, UCEdoc and Colostrum Production
3. Results
3.1. Urinary pH and Ca Excretion
3.2. Whole Blood BHB Concentrations
3.3. Time Course Serum Ca Concentrations
3.4. Univariate Serum Ca Concentrations
4. Discussion
4.1. General Approach
4.2. Serum Ca Concentrations
4.3. Whole Blood BHB Concentrations
4.4. Urinary Acidification and Ca Excretion
4.5. Colostrum Yield and Hypocalcemia
4.6. Oral Ca Supplementation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reinhardt, T.A.; Lippolis, J.D.; McCluskey, B.J.; Goff, J.P.; Horst, R.L. Prevalence of Subclinical Hypocalcemia in Dairy Herds. Vet. J. 2011, 188, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Arnold, L.M.; Stowe, C.J.; Harmon, R.J.; Bewley, J.M. Estimating US Dairy Clinical Disease Costs with a Stochastic Simulation Model. J. Dairy Sci. 2017, 100, 1472–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goff, J.P. The Monitoring, Prevention, and Treatment of Milk Fever and Subclinical Hypocalcemia in Dairy Cows. Vet. J. 2008, 176, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.; Chapinal, N.; LeBlanc, S.J.; Kelton, D.F.; Dubuc, J.; Duffield, T.F. Metabolic Parameters in Transition Cows as Indicators for Early-Lactation Culling Risk. J. Dairy Sci. 2012, 95, 3057–3063. [Google Scholar] [CrossRef]
- DeGaris, P.J.; Lean, I.J. Milk Fever in Dairy Cows: A Review of Pathophysiology and Control Principles. Vet. J. 2009, 176, 58–69. [Google Scholar] [CrossRef]
- Lean, I.J.; DeGaris, P.J.; McNeil, D.M.; Block, E. Hypocalcemia in Dairy Cows: Meta-Analysis and Dietary Cation Anion Difference Theory Revisited. J. Dairy Sci. 2006, 89, 669–684. [Google Scholar] [CrossRef] [Green Version]
- Charbonneau, E.; Pellerin, D.; Oetzel, G.R. Impact of Lowering Dietary Cation-Anion Difference in Nonlactating Dairy Cows: A Meta-Analysis. J. Dairy Sci. 2006, 89, 537–548. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.E.P.; Lean, I.J.; Golder, H.; Block, E. Meta-Analysis of the Effects of Prepartum Dietary Cation-Anion Difference on Performance and Health of Dairy Cows. J. Dairy Sci. 2019, 102, 2134–2154. [Google Scholar] [CrossRef]
- Ramberg, C.F.; Johnson, E.K.; Fargo, R.D.; Kronfeld, D.S. Calcium Homeostasis in Cows, with Special Reference to Parturient Hypocalcemia. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1984, 246, R698–R704. [Google Scholar] [CrossRef]
- Hove, K.; Horst, R.L.; Littledike, E.T. Effects of La-Hydroxyvitamin D3, 1,25-Dihydroxyvitamin D3, 1,24,25-Trihydroxyvitamin D3, and 1,25,26-Trihydroxyvitamin D3 on Mineral Metabolism and 1,25-Dihydroxyvitamin D Concentrations in Dairy Cows. J. Dairy Sci. 1983, 66, 59–66. [Google Scholar] [CrossRef]
- Vagnoni, D.B.; Oetzel, G.R. Effects of Dietary Cation-Anion Difference on the Acid-Base Status of Dry Cows. J. Dairy Sci. 1998, 81, 1643–1652. [Google Scholar] [CrossRef]
- Leno, B.M.; Ryan, C.M.; Stokol, T.; Kirk, D.; Zanzalari, K.P.; Chapman, J.D.; Overton, T.R. Effects of Prepartum Dietary Cation-Anion Difference on Aspects of Peripartum Mineral and Energy Metabolism and Performance of Multiparous Holstein Cows. J. Dairy Sci. 2017, 100, 4604–4622. [Google Scholar] [CrossRef]
- Schonewille, J.T.; Van’t Klooster, A.T.; Wouterse, H.; Beynen, A.C. Hypocalcemia Induced by Intravenous Administration of Disodium Ethylenediaminotetraacetate and Its Effects on Excretion of Calcium in Urine of Cows Fed a High Chloride Diet. J. Dairy Sci. 1999, 82, 1317–1324. [Google Scholar] [CrossRef]
- Oetzel, G.R.; Barmore, J.A. Intake of a Concentrate Mixture Containing Various Anionic Salts Fed to Pregnant, Nonlactating Dairy Cows. J. Dairy Sci. 1993, 76, 1617–1623. [Google Scholar] [CrossRef]
- Zimpel, R.; Poindexter, M.B.; Vieira-Neto, A.; Block, E.; Nelson, C.D.; Staples, C.R.; Thatcher, W.W.; Santos, J.E.P. Effect of Dietary Cation-Anion Difference on Acid-Base Status and Dry Matter Intake in Dry Pregnant Cows. J. Dairy Sci. 2018, 101, 8461–8475. [Google Scholar] [CrossRef]
- Blanc, C.D.; Van der List, M.; Aly, S.S.; Rossow, H.A.; Silva-del-Río, N. Blood Calcium Dynamics after Prophylactic Treatment of Subclinical Hypocalcemia with Oral or Intravenous Calcium. J. Dairy Sci. 2014, 97, 6901–6906. [Google Scholar] [CrossRef]
- Martinez, N.; Sinedino, L.D.P.; Bisinotto, R.S.; Daetz, R.; Lopera, C.; Risco, C.A.; Galvão, K.N.; Thatcher, W.W.; Santos, J.E.P. Effects of Oral Calcium Supplementation on Mineral and Acid-Base Status, Energy Metabolites, and Health of Postpartum Dairy Cows. J. Dairy Sci. 2016, 99, 8397–8416. [Google Scholar] [CrossRef] [Green Version]
- Valldecabres, A.; Pires, J.A.A.; Silva-del-Río, N. Effect of Prophylactic Oral Calcium Supplementation on Postpartum Mineral Status and Markers of Energy Balance of Multiparous Jersey Cows. J. Dairy Sci. 2018, 101, 4460–4472. [Google Scholar] [CrossRef] [Green Version]
- Martinez, N.; Sinedino, L.D.P.; Bisinotto, R.S.; Daetz, R.; Risco, C.A.; Galvão, K.N.; Thatcher, W.W.; Santos, J.E.P. Effects of Oral Calcium Supplementation on Productive and Reproductive Performance in Holstein Cows. J. Dairy Sci. 2016, 99, 8417–8430. [Google Scholar] [CrossRef] [Green Version]
- Oetzel, G.R.; Miller, B.E. Effect of Oral Calcium Bolus Supplementation on Early-Lactation Health and Milk Yield in Commercial Dairy Herds. J. Dairy Sci. 2012, 95, 7051–7065. [Google Scholar] [CrossRef] [Green Version]
- Domino, A.R.; Korzec, H.C.; McArt, J.A.A. Field Trial of 2 Calcium Supplements on Early Lactation Health and Production in Multiparous Holstein Cows. J. Dairy Sci. 2017, 100, 9681–9690. [Google Scholar] [CrossRef] [PubMed]
- Sampson, J.D.; Spain, J.N.; Jones, C.; Carstensen, L. Effects of Calcium Chloride and Calcium Sulfate in an Oral Bolus given as a Supplement to Postpartum Dairy Cows. Vet. Ther. 2009, 10, 131–139. [Google Scholar] [PubMed]
- Farnia, S.A.; Rasooli, A.; Nouri, M.; Shahryari, A.; Khosravi Bakhtiary, M.; Constable, P.D. Effect of Postparturient Oral Calcium Administration on Serum Total Calcium Concentration in Holstein Cows Fed Diets of Different Dietary Cation-Anion Difference in Late Gestation. Res. Vet. Sci. 2018, 117, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Oser, B.L. Hawk’s Physiological Chemistry; McGraw-Hill: New York, NY, USA, 1965; Volume 14th. [Google Scholar]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; van ’t Riet, K. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [Green Version]
- Comets, E.; Lavenu, A.; Lavielle, M. Parameter Estimation in Nonlinear Mixed Effect Models Using Saemix, an R Implementation of the SAEM Algorithm. J. Stat. Softw. 2017, 80. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.S.; Yuan, M.; Yang, H.; Feng, Y.; Xu, J.; Pinheiro, J. Further Evaluation of Covariate Analysis Using Empirical Bayes Estimates in Population Pharmacokinetics: The Perception of Shrinkage and Likelihood Ratio Test. AAPS J. 2017, 19, 264–273. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; ISBN 3-900051-07-0. [Google Scholar]
- Goff, J.P.; Horst, R.L. Effects of the Addition of Potassium or Sodium, but Not Calcium, to Prepartum Rations on Milk Fever in Dairy Cows. J. Dairy Sci. 1997, 80, 176–186. [Google Scholar] [CrossRef]
- Megahed, A.A.; Hiew, M.W.H.; El Badawy, S.A.; Constable, P.D. Plasma Calcium Concentrations Are Decreased at Least 9 Hours before Parturition in Multiparous Holstein-Friesian Cattle in a Herd Fed an Acidogenic Diet during Late Gestation. J. Dairy Sci. 2018, 101, 1365–1378. [Google Scholar] [CrossRef] [Green Version]
- Suthar, V.S.; Canelas-Raposo, J.; Deniz, A.; Heuwieser, W. Prevalence of Subclinical Ketosis and Relationships with Postpartum Diseases in European Dairy Cows. J. Dairy Sci. 2013, 96, 2925–2938. [Google Scholar] [CrossRef] [Green Version]
- Brunner, N.; Groeger, S.; Canelas Raposo, J.; Bruckmaier, R.M.; Gross, J.J. Prevalence of Subclinical Ketosis and Production Diseases in Dairy Cows in Central and South America, Africa, Asia, Australia, New Zealand, and Eastern Europe. Transl. Anim. Sci. 2019, 3, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Lopera, C.; Zimpel, R.; Vieira-Neto, A.; Lopes, F.R.; Ortiz, W.; Poindexter, M.; Faria, B.N.; Gambarini, M.L.; Block, E.; Nelson, C.D.; et al. Effects of Level of Dietary Cation-Anion Difference and Duration of Prepartum Feeding on Performance and Metabolism of Dairy Cows. J. Dairy Sci. 2018, 101, 7907–7929. [Google Scholar] [CrossRef]
- Goff, J.P. Pathophysiology of Calcium and Phosphorus Disorders. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 319–337. [Google Scholar] [CrossRef]
- Goff, J.P.; Horst, R.L. Use of Hydrochloric Acid as a Source of Anions for Prevention of Milk Fever. J. Dairy Sci. 1998, 81, 2874–2880. [Google Scholar] [CrossRef]
- Gelfert, C.C.; Leonie Loeffler, S.; Frömer, S.; Engel, M.; Hartmann, H.; Männer, K.; Baumgartner, W.; Staufenbiel, R. The Impact of Dietary Cation Anion Difference (DCAD) on the Acid-Base Balance and Calcium Metabolism of Non-Lactating, Non-Pregnant Dairy Cows Fed Equal Amounts of Different Anionic Salts. J. Dairy Res. 2007, 74, 311–322. [Google Scholar] [CrossRef]
- Gelfert, C.C.; Loeffler, L.M.; Frömer, S.; Engel, M.; Männer, K.; Staufenbiel, R. Comparison of the Impact of Different Anionic Salts on the Acid–Base Status and Calcium Metabolism in Non-Lactating, Non-Pregnant Dairy Cows. Vet. J. 2010, 185, 305–309. [Google Scholar] [CrossRef]
- Weich, W.; Block, E.; Litherland, N.B. Extended Negative Dietary Cation-Anion Difference Feeding Does Not Negatively Affect Postpartum Performance of Multiparous Dairy Cows. J. Dairy Sci. 2013, 96, 5780–5792. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Bernard, J.K.; Zanzalari, K.P.; Chapman, J.D. Effect of Feeding a Negative Dietary Cation-Anion Difference Diet for an Extended Time Prepartum on Postpartum Serum and Urine Metabolites and Performance. J. Dairy Sci. 2014, 97, 7133–7143. [Google Scholar] [CrossRef] [Green Version]
- Degaris, P.; Lean, I.; Rabiee, A.; Heuer, C. Effects of Increasing Days of Exposure to Prepartum Transition Diets on Milk Production and Milk Composition in Dairy Cows. Aust. Vet. J. 2008, 86, 341–351. [Google Scholar] [CrossRef]
- von Keyserlingk, M.A.G.; Olenick, D.; Weary, D.M. Acute Behavioral Effects of Regrouping Dairy Cows. J. Dairy Sci. 2008, 91, 1011–1016. [Google Scholar] [CrossRef]
- Mann, S.; Leal Yepes, F.A.; Overton, T.R.; Lock, A.L.; Lamb, S.V.; Wakshlag, J.J.; Nydam, D.V. Effect of Dry Period Dietary Energy Level in Dairy Cattle on Volume, Concentrations of Immunoglobulin G, Insulin, and Fatty Acid Composition of Colostrum. J. Dairy Sci. 2016, 99, 1515–1526. [Google Scholar] [CrossRef] [Green Version]
- Gavin, K.; Neibergs, H.; Hoffman, A.; Kiser, J.N.; Cornmesser, M.A.; Haredasht, S.A.; Martínez-López, B.; Wenz, J.R.; Moore, D.A. Low Colostrum Yield in Jersey Cattle and Potential Risk Factors. J. Dairy Sci. 2018, 101, 6388–6398. [Google Scholar] [CrossRef] [Green Version]
- Silva-del-Río, N.; Rolle, D.; García-Muñoz, A.; Rodríguez-Jiménez, S.; Valldecabres, A.; Lago, A.; Pandey, P. Colostrum Immunoglobulin G Concentration of Multiparous Jersey Cows at First and Second Milking Is Associated with Parity, Colostrum Yield, and Time of First Milking, and Can Be Estimated with Brix Refractometry. J. Dairy Sci. 2017, 100, 5774–5781. [Google Scholar] [CrossRef]
- Horst, R.L.; Goff, J.P.; Reinhardt, T.A. Adapting to the Transition Between Gestation and Lactation: Differences Between Rat, Human and Dairy Cow. J. Mammary Gland Biol. Neoplasia 2005, 10, 141–156. [Google Scholar] [CrossRef]
- Goff, J.P.; Kimura, K.; Horst, R.L. Effect of Mastectomy on Milk Fever, Energy, and Vitamins A, E, and β-Carotene Status at Parturition. J. Dairy Sci. 2002, 85, 1427–1436. [Google Scholar] [CrossRef]
- Nurmio, P. On Plasma Calcium Regulation in Paresis Puerperalis Hypocalcemica in Cattle. Acta Vet. Scand. Suppl. 1968, 26, 1–100. [Google Scholar]
- Hibbs, J.W. Milk Fever (Parturient Paresis) in Dairy Cows—A Review. J. Dairy Sci. 1950, 33, 758–789. [Google Scholar] [CrossRef]
- Murray, R.D.; Horsfield, J.E.; McCormick, W.D.; Williams, H.J.; Ward, D. Historical and Current Perspectives on the Treatment, Control and Pathogenesis of Milk Fever in Dairy Cattle. Vet. Rec. 2008, 163, 561–565. [Google Scholar] [CrossRef]
- Leno, B.M.; Neves, R.C.; Louge, I.M.; Curler, M.D.; Thomas, M.J.; Overton, T.R.; McArt, J.A.A. Differential Effects of a Single Dose of Oral Calcium Based on Postpartum Plasma Calcium Concentration in Holstein Cows. J. Dairy Sci. 2018, 101, 3285–3302. [Google Scholar] [CrossRef]
Parameter | Estimate | SE | p-Value |
---|---|---|---|
BL, mol Ca:mol creatinine | 0.368 | 0.068 | |
A, mol Ca:mol creatinine | 1.80 | 0.35 | |
Covariate | |||
Breed | 0.698 | 0.303 | 0.011 |
Parity group | −0.089 | 0.297 | 0.38 |
Breed × parity group | 0.576 | 0.293 | 0.025 |
Centered mean equivalents of Cl/day | 0.605 | 0.215 | 0.002 |
λ1, days | 2.83 | 0.42 | |
μ1, days−1 | 0.738 | 0.099 | |
λ2, days | 26.8 | 1.88 | |
μ2, days−1 | 0.197 | 0.050 | |
Model RMSE | 0.39 |
Holsteins | Jerseys | |||||||
---|---|---|---|---|---|---|---|---|
Parity = 2 | Parity ≥ 3 | Parity = 2 | Parity ≥ 3 | |||||
Covariate | CON | CaOS | CON | CaOS | CON | CaOS | CON | CaOS |
Serum Ca immediately postpartum (Ca0) 2 | ||||||||
UpHdoc a | −0.120 ± 0. 052 c | −0.120 ± 0. 052 c | −0.120 ± 0. 052 c | −0.120 ± 0. 052 c | ||||
UCEdoc, mol:mol a | 0.100 ± 0. 044 c | 0.100 ± 0. 044 c | 0.100 ± 0. 044 c | 0.100 ± 0. 044 c | ||||
Colostrum, kg | 0.034 ± 0. 036 | −0.049 ± 0. 030 | 0.015 ± 0. 029 | −0.190 ± 0. 055 c | ||||
Minimum serum Ca (CaMin) 3 | ||||||||
UpHdoc | −0.0722 ± 0.049 | −0.0722 ± 0.049 | −0.0722 ± 0.049 | −0.0722 ±0.049 | −0.0722 ± 0.049 | −0.0722 ± 0.049 | −0.0722 ± 0.049 | −0.0722 ± 0.049 |
UCEdoc, mol:mol b | 0.115 ± 0.0753 | 0.115 ± 0.0753 | 0.0412 ± 0.0624 | 0.0412 ± 0.0624 | −0.0482 ±0.0878 | −0.0482 ±0.0878 | 0.293 ± 0.0716 c | 0.293 ± 0.0716 c |
Colostrum, kg | −0.040 ± 0.062 | 0.0524 ± 0.0742 | −0.0374 ± 0.040 | −0.0729 ± 0.128 | 0.0016 ± 0.0428 | 0.0016 ± 0.0627 | −0.293 ± 0.142 c | −0.0309 ± 0.050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vagnoni, D.B.; Davidson, M.; Rubio, L.; Oetzel, G.R.; Comets, E. Effects of Postpartum Supplemental Oral Ca for Dairy Cows Fed Prepartum Dietary Acidogenic Salts. Animals 2021, 11, 3131. https://doi.org/10.3390/ani11113131
Vagnoni DB, Davidson M, Rubio L, Oetzel GR, Comets E. Effects of Postpartum Supplemental Oral Ca for Dairy Cows Fed Prepartum Dietary Acidogenic Salts. Animals. 2021; 11(11):3131. https://doi.org/10.3390/ani11113131
Chicago/Turabian StyleVagnoni, David B., Michayla Davidson, Livia Rubio, Garrett R. Oetzel, and Emmanuelle Comets. 2021. "Effects of Postpartum Supplemental Oral Ca for Dairy Cows Fed Prepartum Dietary Acidogenic Salts" Animals 11, no. 11: 3131. https://doi.org/10.3390/ani11113131
APA StyleVagnoni, D. B., Davidson, M., Rubio, L., Oetzel, G. R., & Comets, E. (2021). Effects of Postpartum Supplemental Oral Ca for Dairy Cows Fed Prepartum Dietary Acidogenic Salts. Animals, 11(11), 3131. https://doi.org/10.3390/ani11113131