Use of Mediterranean By-Products to Produce Entire Male Large White Pig: Meat and Fat Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Supplements and Diet Ingredients
2.3. Experimental Design, Animals, and Diets
2.4. Slaughter and Sample Collections
2.5. Fatty Acid Profile Analysis
2.6. Sensory Analysis
2.7. Statistical Analyses
3. Results
3.1. Meat Quality
3.2. Fatty Acid Profile
3.3. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Eldesouky, A.; Mesias, F.J.; Escribano, M. Perception of Spanish Consumers towards Environmentally Friendly Labelling in Food. Int. J. Consum. Stud. 2020, 44, 64–76. [Google Scholar] [CrossRef]
- Christaki, E.; Giannenas, I.; Bonos, E.; Florou-Paneri, P. Innovative uses of aromatic plants as natural supplements in nutrition. In Feed Additives; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Academic Press: Cambridge, MA, USA, 2020; Chapter 2; pp. 19–34. ISBN 978-0-12-814700-9. [Google Scholar]
- Dou, Z.; Toth, J.D.; Westendorf, M.L. Food Waste for Livestock Feeding: Feasibility, Safety, and Sustainability Implications. Glob. Food Secur. 2018, 17, 154–161. [Google Scholar] [CrossRef]
- Liotta, L.; Chiofalo, V.; Lo Presti, V.; Chiofalo, B. In Vivo Performances, Carcass Traits, and Meat Quality of Pigs Fed Olive Cake Processing Waste. Animals 2019, 9, 1155. [Google Scholar] [CrossRef] [Green Version]
- Berbel, J.; Posadillo, A. Opportunities for the Bioeconomy of Olive Oil Byproducts. Biomed. J. Sci. Tech. Res. 2018, 2, 1–3. [Google Scholar]
- Amici, A.; Verna, M.; Martillotti, F. Olive By-Products in Animal Feeding: Improvement and Utilization. Options Méditerr. 1991, 16, 149–152. [Google Scholar]
- Chiofalo, V.; Liotta, L.; Lo Presti, V.; Gresta, F.; Di Rosa, A.R.; Chiofalo, B. Effect of Dietary Olive Cake Supplementation on Performance, Carcass Characteristics, and Meat Quality of Beef Cattle. Animals 2020, 10, 1176. [Google Scholar] [CrossRef]
- Truong, L.; Morash, D.; Liu, Y.; King, A. Food Waste in Animal Feed with a Focus on Use for Broilers. Int. J. Recycl. Org. Waste Agric. 2019, 8, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, C.J.; Martínez-Miró, S.; Ariza, J.J.; Madrid, J.; Orengo, J.; Aguinaga, M.A.; Baños, A.; Hernández, F. Effect of Alliaceae Extract Supplementation on Performance and Intestinal Microbiota of Growing-Finishing Pig. Animals 2020, 10, 1557. [Google Scholar] [CrossRef]
- Dávila-Ramírez, J.L.; Munguía-Acosta, L.L.; Morales-Coronado, J.G.; García-Salinas, A.D.; González-Ríos, H.; Celaya-Michel, H.; Sosa-Castañeda, J.; Sánchez-Villalba, E.; Anaya-Islas, J.; Barrera-Silva, M.A. Addition of a Mixture of Plant Extracts to Diets for Growing-Finishing Pigs on Growth Performance, Blood Metabolites, Carcass Traits, Organ Weight as a Percentage of Live Weight, Quality and Sensorial Analysis of Meat. Animals 2020, 10, 1229. [Google Scholar] [CrossRef] [PubMed]
- Melton, S.L. Effects of Feeds on Flavor of Red Meat: A Review. J. Anim. Sci. 1990, 68, 4421–4435. [Google Scholar] [CrossRef] [Green Version]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific PurposesText with EEA Relevance. 47. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32010L0063 (accessed on 30 July 2021).
- De Blas, C.; Gasa, J.; Mateos, G.G.; López-Bote, C.; Gorrachategui, M.; Aguilera, J.; Fructuoso, G. Necesidades Nutricionales Para Ganado Porcino Normas FEDNA, 2nd ed.; FEDNA: Madrid, Spain, 2013. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association Official Analytical Chemists, 18th ed.; Scientific Research: Atlanta, GA, USA, 2006. [Google Scholar]
- Grau, R.; Hamm, R. Über das Wasserbindungsvermögen des Säugetiermuskels. II. Mitteilung. Über die Bestimmung der Wasserbindung des Muskels. Z. Lebensm.-Unters. Forsch. 1957, 105, 446–460. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference Methods for the Assessment of Physical Characteristics of Meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Vergara, H.; Gallego, L.; García, A.; Landete-Castillejos, T. Conservation of Cervus Elaphus Meat in Modified Atmospheres. Meat Sci. 2003, 65, 779–783. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Cao, G.; Prior, R.L. Comparison of Different Analytical Methods for Assessing Total Antioxidant Capacity of Human Serum. Clin. Chem. 1998, 44, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
- UNE-EN ISO 5508:1996 Aceites y Grasas de Origen Animal y Vegetal. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0013536 (accessed on 20 May 2021).
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- ISO 8586:2012 Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/iso?c=045352 (accessed on 21 May 2021).
- 14:00–17:00 ISO 4121:2003. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/38/33817.html (accessed on 21 May 2021).
- UNE-EN ISO 8589:2010 Análisis Sensorial. Guía General Para el Diseño de Una Sala de Cata. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0045203 (accessed on 21 May 2021).
- UNE-ISO 8587:2010 Análisis Sensorial. Metodología. Ordenación. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0045392 (accessed on 21 May 2021).
- Sellier, P.; Maignel, L.; Bidanel, J.P. Genetic Parameters for Tissue and Fatty Acid Composition of Backfat, Perirenal Fat and Longissimus Muscle in Large White and Landrace Pigs. Animal 2010, 4, 497–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouba, M.; Sellier, P. A Review of the Factors Influencing the Development of Intermuscular Adipose Tissue in the Growing Pig. Meat Sci. 2011, 88, 213–220. [Google Scholar] [CrossRef]
- García-Casco, J.; Muñoz, M.; Caraballo, C.; Martínez-Torres, J.; López-García, A.; Fernández-Barroso, M.; González-Sánchez, E. Utilización de alperujo en la alimentación de cerdos Ibéricos de montanera durante el periodo de crecimiento. Sólo Cerdo Ibérico 2018, 39, 34–39. [Google Scholar] [CrossRef]
- Joven, M.; Pintos, E.; Latorre, M.A.; Suárez-Belloch, J.; Guada, J.A.; Fondevila, M. Effect of Replacing Barley by Increasing Levels of Olive Cake in the Diet of Finishing Pigs: Growth Performances, Digestibility, Carcass, Meat and Fat Quality. Anim. Feed Sci. Technol. 2014, 197, 185–193. [Google Scholar] [CrossRef]
- Park, J.C.; Kim, S.C.; Lee, S.D.; Jang, H.C.; Kim, N.K.; Lee, S.H.; Jung, H.J.; Kim, I.C.; Seong, H.H.; Choi, B.H. Effects of Dietary Fat Types on Growth Performance, Pork Quality, and Gene Expression in Growing-Finishing Pigs. Asian-Australas. J. Anim. Sci. 2012, 25, 1759–1767. [Google Scholar] [CrossRef] [Green Version]
- Janz, J.a.M.; Morel, P.C.H.; Wilkinson, B.H.P.; Purchas, R.W. Preliminary Investigation of the Effects of Low-Level Dietary Inclusion of Fragrant Essential Oils and Oleoresins on Pig Performance and Pork Quality. Meat Sci. 2007, 75, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Doyle, S.P.; Doyle, S.P.; Harrison, K.R.; Daley, C.A.; Hamilton, P.C.; Sinnott, D.K. Effects of feeding olive pomace on the fatty acid profile of pork. In Proceedings American Society of Animal Science Western Section; 2006; Volume 57, p. 216. [Google Scholar]
- Hernández Matamoros, A.; Paniagua Breña, M.; Izquierdo Cebrián, M.; Tejeda Sereno, J.F.; González Sánchez, E. Use of olive cake and tomato peel in the Iberian pig feed. In Proceedings of the Congresos y Jornadas, Serie Producción Animal-Asociación Interprofesional para el Desarrollo Agrario (España), AIDA, Badajoz, Spain, 17–18 May 2011; pp. 276–278. [Google Scholar]
- Food and Agriculture Organization at the United Nations (FAO). Fats and Fatty Acids in Human Nutrition. Report at an Expert Consultation; FAO Food and Nutrition Paper 91; FAO: Rome, Italy, 2010; Volume 91, pp. 11–66. [Google Scholar]
- Van Ba, H.; Hwang, I.; Jeong, D.; Touseef, A. Principle of Meat Aroma Flavors and Future Prospect. In Latest Research into Quality Control; Akyar, I., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 145–176. [Google Scholar]
- Kosowska, M.; Majcher, M.A.; Fortuna, T. Volatile compounds in meat and meat products. Food Sci. Technol. 2017, 37, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive Oil Volatile Compounds, Flavour Development and Quality: A Critical Review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Barton-Gade, P.A. Meat and Fat Quality in Boars, Castrates and Gilts. Livest. Prod. Sci. 1987, 16, 187–196. [Google Scholar] [CrossRef]
- Leong, J.; Morel, P.C.H.; Purchas, R.W.; Wilkinson, B.H.P. The Production of Pork with Garlic Flavour Notes Using Garlic Essential Oil. Meat Sci. 2010, 84, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Gipe, A.N. Effects of Dried Distillers Grains with Solubles on Pork Loin Quality and Sow Fat Quality. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2008. [Google Scholar]
- Nuernberg, K.; Fischer, K.; Nuernberg, G.; Kuechenmeister, U.; Klosowska, D.; Eliminowska-Wenda, G.; Fiedler, I.; Ender, K. Effects of Dietary Olive and Linseed Oil on Lipid Composition, Meat Quality, Sensory Characteristics and Muscle Structure in Pigs. Meat Sci. 2005, 70, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Felderhoff, C.; Lyford, C.; Malaga, J.; Polkinghorne, R.; Brooks, C.; Garmyn, A.; Miller, M. Beef Quality Preferences: Factors Driving Consumer Satisfaction. Foods 2020, 9, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullen, S.; Monahan, F.; Callan, J.; O’Doherty, J. The Effect of Dietary Garlic and Rosemary on Grower-Finisher Pig Performance and Sensory Characteristics of Pork. Ir. J. Agric. Food Res. 2005, 44, 57–67. [Google Scholar]
- Omojola, A.B.; Fagbuaro, S.S.; Ayeni, A.A. Cholesterol Content, Physical and Sensory Properties of Pork from Pigs Fed Varying Levels of Dietary Garlic (Allium sativum). World Appl. Sci. J. 2019, 6, 971–975. [Google Scholar]
- Miller, R. Drivers of Consumer Liking for Beef, Pork, and Lamb: A Review. Foods 2020, 9, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panea, B.; Ripoll, G. Plant-Derived Extracts Feed-Addition and Packaging Type Influence Consumer Sensory Perception of Pork. Nutrients 2019, 11, 2652. [Google Scholar] [CrossRef] [Green Version]
- Abad, P.; Arroyo-Manzanares, N.; Gil, L.; García-Campaña, A.M. Use of onion extract as a dairy cattle feed supplement: Monitoring propyl propane thiosulfonate as a marker of its effect on milk attributes. J. Agric. Food Chem. 2017, 65, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Abad, P.; Arroyo-Manzanares, N.; Ariza, J.J.; Baños, A.; García-Campaña, A.M. Effect of Allium Extract Supplementation on Egg Quality, Productivity, and Intestinal Microbiota of Laying Hens. Animals 2021, 11, 41. [Google Scholar] [CrossRef]
Ingredient (% of Feed) | CONTROL | ALLIUM | OLIVE | |||
---|---|---|---|---|---|---|
Growing | Finishing | Growing | Finishing | Growing | Finishing | |
Barley | 74.57 | 10.74 | 74.57 | 10.74 | - | 2.39 |
Corn | - | 41.19 | - | 41.19 | 40.00 | 47.43 |
Wheat | - | 15.00 | - | 15.00 | 21.99 | 15.00 |
Soybean meal | 17.72 | 15.55 | 17.72 | 15.55 | 20.68 | 17.76 |
Wheat bran | - | 10.00 | - | 10.00 | - | 10.00 |
Olive pulp | - | - | 10.00 | 10.00 | ||
Lard | 3.67 | 4.03 | 3.67 | 4.03 | 3.48 | 4.12 |
Calcium carbonate | 0.82 | 1.11 | 0.82 | 1.11 | 0.54 | 0.79 |
Monocalcium phosphate | 0.34 | 0.78 | 0.34 | 0.78 | 0.45 | 0.99 |
Salt | 0.50 | 0.41 | 0.50 | 0.41 | 0.50 | 0.40 |
DL-Methionine | 0.10 | 0.05 | 0.10 | 0.05 | 0.10 | 0.05 |
L-Lysine HCl | 0.33 | 0.28 | 0.33 | 0.28 | 0.31 | 0.21 |
L-Threonine | 0.12 | 0.06 | 0.12 | 0.06 | 0.11 | 0.05 |
Dextrose | 1 | 1 | 1 | |||
Garlicon ST® 1 | - | - | 0.5 | 0.5 | - | - |
Sepiolite | 0.50 | 0.50 | - | - | 0.50 | 0.50 |
Premix 2 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Fatty acid profile in fat (%) | ||||||
Capric acid [C10] | 0.05 | 0.06 | 0.06 | 0.07 | 0.05 | 0.07 |
Lauric acid [C12] | 0.09 | 0.07 | 0.09 | 0.10 | 0.07 | 0.08 |
Myristic acid [C14] | 0.95 | 0.83 | 1.01 | 0.76 | 0.67 | 0.79 |
Palmitic acid [C16] | 22.95 | 21.60 | 23.39 | 20.88 | 21.04 | 20.92 |
Palmitoleic acid [C16:1] | 1.47 | 1.42 | 1.53 | 1.35 | 1.20 | 1.48 |
Stearic acid [C18] | 9.56 | 8.86 | 9.47 | 8.69 | 8.94 | 8.75 |
Oleic acid [C18:1] | 34.71 | 35.64 | 34.28 | 38.42 | 40.79 | 42.20 |
Linoleic acid [C18:2] | 26.94 | 28.97 | 26.88 | 27.31 | 24.92 | 23.65 |
Linolenic acid [C18:3] | 2.41 | 1.78 | 2.43 | 1.66 | 1.60 | 1.38 |
Arachidic acid [C20] | 0.70 | 0.60 | 0.66 | 0.58 | 0.55 | 0.52 |
Arachidonic acid [C20:4] | 0.18 | 0.18 | 0.20 | 0.19 | 0.17 | 0.15 |
Attribute | Description | Scale |
---|---|---|
Color Intensity | Intensity of red color in fresh meat and grey in cooked meat. | 0 pink–10 red 0 white–10 grey |
Brightness | Reflection of light on the surface of the product. | 0 light–10 dark |
Marbling | Infiltrated visible fat in loin. | 0 not fat–10 high fat content |
Odor intensity | Characteristic odor of pork (metallic, farm, liver). | 0 low intensity–10 high intensity |
Off odor | Any odor that cannot be included in “meat odor”. | 0 not present–10 strong presence |
Flavor intensity | Intensity of the perception of the characteristic flavor of pork. | 0 low intensity–10 high intensity |
Off flavor | Any flavor that cannot be included in “meat flavor”. | 0 not present–10 strong presence |
Juiciness | Parameter that measures the amount of water released by the product in the first bites. | 0 not juicy–5 juiciness of commercial product–10 high juicy |
Hardness | Force necessary to deform the product between the molars at the first bite. | 0 tender–5 commercial sample–10 hard |
Chewiness | Number of chews required to swallow a product. | 0 less chews–5 number of chews needed for commercial product–10 more chews |
CONTROL | ALLIUM | OLIVE | SEM | p-Value | |
---|---|---|---|---|---|
Intramuscular fat (% w/w) | 1.02 | 1.04 | 1.18 | 0.057 | 0.496 |
pH | 5.58 | 5.60 | 5.66 | 0.025 | 0.403 |
WHC (%) | 67.98 a | 70.22 b | 71.89 b | 0.350 | 0.000 |
Cooking loss (%) | 33.88 | 32.97 | 32.67 | 0.292 | 0.252 |
Drip loss (%) | 3.37 | 3.37 | 3.46 | 0.144 | 0.841 |
L* | 54.47 | 54.24 | 54.16 | 0.208 | 0.885 |
a* | 5.49 | 5.34 | 5.59 | 0.121 | 0.634 |
b* | 2.95 | 2.86 | 2.66 | 0.069 | 0.309 |
ORAC (micro mols TE/Kg) | 61.24 | 50.83 | 55.42 | 2.211 | 0.236 |
CONTROL | ALLIUM | OLIVE | SEM | p-Value | ||
---|---|---|---|---|---|---|
Capric acid | [C10:0] | 0.11 | 0.11 | 0.12 | 0.004 | 0.616 |
Lauric acid | [C12:0] | 0.11 | 0.11 | 0.13 | 0.006 | 0.094 |
Myristic acid | [C14:0] | 1.20 | 1.34 | 1.24 | 0.032 | 0.229 |
Palmitic acid | [C16:0] | 25.0 | 24.8 | 24.6 | 0.105 | 0.186 |
Palmitoleic acid | [C16:1] | 2.61 | 2.83 | 2.75 | 0.054 | 0.272 |
Margaric acid | [C17:0] | 0.70 ab | 1.08 a | 0.41 b | 0.056 | 0.000 |
Stearic acid | [C18:0] | 12.2 a | 12.0 a | 11.4 b | 0.089 | 0.002 |
Oleic acid | [C18:1] | 41.9 | 42.2 | 43.7 | 0.324 | 0.076 |
Linoleic acid | [C18:2] | 12.6 | 12.2 | 12.1 | 0.344 | 0.818 |
Linolenic | [C18:3] | 0.72 a | 0.54 b | 0.73 a | 0.017 | 0.000 |
Arachidic acid | [C20:0] | 0.31 | 0.32 | 0.30 | 0.010 | 0.693 |
Arachidonic acid | [C20:4] | 2.18 | 2.28 | 2.30 | 0.127 | 0.932 |
Saturated (SFA) | 39.8 a | 39.8 a | 38.2 b | 0.160 | 0.000 | |
Monounsaturated | 44.5 | 45.1 | 46.4 | 0.364 | 0.108 | |
Polyunsaturated | 15.5 | 15.0 | 15.2 | 0.409 | 0.858 | |
Unsaturated (UFA) | 60.1 b | 60.1 b | 61.7 a | 0.160 | 0.000 | |
Index of atherogenic | 0.56 | 0.56 | 0.53 | 0.007 | 0.331 | |
Index of thrombogenic | 1.2 a | 1.2 a | 1.1 b | 0.009 | 0.001 | |
UFA/SFA | 1.5 a | 1.5 a | 1.6 b | 0.012 | 0.000 |
CONTROL | ALLIUM | OLIVE | SEM | p-Value | |
---|---|---|---|---|---|
Color intensity | 7.06 | 7.46 | 7.57 | 0.120 | 0.198 |
Brightness | 8.62 a | 9.27 b | 9.45 b | 0.086 | 0.000 |
Marbling | 0.74 | 0.64 | 1.03 | 0.083 | 0.144 |
Odor intensity | 8.77 a | 9.85 c | 9.21 b | 0.089 | 0.000 |
CONTROL | ALLIUM | OLIVE | SEM | p-Value | |
---|---|---|---|---|---|
Meat color | 9.74 | 9.88 | 9.74 | 0.051 | 0.076 |
Color intensity | 4.85 | 5.01 | 5.00 | 0.092 | 0.184 |
Odor intensity | 8.49 | 8.84 | 8.50 | 0.085 | 0.215 |
Off odor | 0.76 | 0.84 | 0.64 | 0.092 | 0.542 |
Flavor intensity | 8.13 | 8.43 | 7.99 | 0.111 | 0.430 |
Off flavor | 0.74 | 1.02 | 0.60 | 0.117 | 0.207 |
Hardness | 7.18 a | 6.29 b | 6.73 b | 0.121 | 0.039 |
Juiciness | 4.17 | 4.44 | 4.42 | 0.173 | 0.120 |
Chewiness | 6.84 | 6.27 | 6.78 | 0.112 | 0.592 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egea, M.; Peñaranda, I.; Garrido, M.D.; Linares, M.B.; Sánchez, C.J.; Madrid, J.; Orengo, J.; Hernández, F.; Aguinaga Casañas, M.A.; Baños, A.; et al. Use of Mediterranean By-Products to Produce Entire Male Large White Pig: Meat and Fat Quality. Animals 2021, 11, 3128. https://doi.org/10.3390/ani11113128
Egea M, Peñaranda I, Garrido MD, Linares MB, Sánchez CJ, Madrid J, Orengo J, Hernández F, Aguinaga Casañas MA, Baños A, et al. Use of Mediterranean By-Products to Produce Entire Male Large White Pig: Meat and Fat Quality. Animals. 2021; 11(11):3128. https://doi.org/10.3390/ani11113128
Chicago/Turabian StyleEgea, Macarena, Irene Peñaranda, María Dolores Garrido, María Belén Linares, Cristian Jesus Sánchez, Josefa Madrid, Juan Orengo, Fuensanta Hernández, María Arantzazu Aguinaga Casañas, Alberto Baños, and et al. 2021. "Use of Mediterranean By-Products to Produce Entire Male Large White Pig: Meat and Fat Quality" Animals 11, no. 11: 3128. https://doi.org/10.3390/ani11113128
APA StyleEgea, M., Peñaranda, I., Garrido, M. D., Linares, M. B., Sánchez, C. J., Madrid, J., Orengo, J., Hernández, F., Aguinaga Casañas, M. A., Baños, A., Barrero Domínguez, B., López Feria, S., & Martínez Miró, S. (2021). Use of Mediterranean By-Products to Produce Entire Male Large White Pig: Meat and Fat Quality. Animals, 11(11), 3128. https://doi.org/10.3390/ani11113128