Effects of Replacing Cottonseed Meal with Corn Dried Distillers’ Grain on Ruminal Parameters, Performance, and Enteric Methane Emissions in Young Nellore Bulls Reared in Tropical Pastures
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Area and Treatments
2.2. Pastures and Animal Management
2.3. Experiment 1: Ruminal Parameters, Nutrient Intake, and Digestibility
2.3.1. Ruminal Parameters
2.3.2. Nutrient Intake and Digestibility
2.4. Experiment 2: Animal Performance
2.4.1. Mass and Chemical Composition of Herbage
2.4.2. Animal Performance
2.4.3. Enteric CH4 Emissions
2.5. Statistical Analysis
3. Results
3.1. Experiment 1
3.1.1. Nutrient Intake and Digestibility
3.1.2. Ruminal Parameters
3.2. Experiment 2
Animal Performance and Enteric CH4 Emissions
4. Discussion
4.1. Nutrient Intake and Digestibility
4.2. Ruminal Parameters
4.3. Animal Performance
4.4. Enteric CH4 Emissions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ABIEC—Associação Brasileira das Indústrias Exportadoras de Carnes. Beef Report: Perfil da Pecurária no Brasil 2020. 2020. Available online: http://abiec.com.br/publicacoes/beef-report-2020/ (accessed on 15 March 2021).
- Cardoso, A.S.; Barbero, R.P.; Romanzini, E.P.; Teobaldo, R.W.; Ongaratto, F.; Fernandes, M.H.M.R.; Reis, R.A. Intensification: A key strategy to achieve great animal and environmental beef cattle production sustainability in Brachiaria grasslands. Sustainability 2020, 12, 6656. [Google Scholar] [CrossRef]
- Berça, A.S.; Romanzini, E.P.; Cardoso, A.S.; Ferreira, L.E.; D’Áurea, A.P.; Fernandes, L.B.; Reis, R.A. Advances in Pasture Management and Animal Nutrition to Optimize Beef Cattle Production in Grazing Systems. Veterinary Medicine and Science, 1st ed.; IntechOpen: London, UK, 2021; Volume 1, pp. 1–24. [Google Scholar]
- Ruggieri, A.C.; Cardoso, A.S.; Ongaratto, F.; Casagrande, D.R.; Barbero, R.P.; Brito, L.D.F.; Azenha, M.V.; Oliveira, A.A.; Koscheck, J.F.W.; Reis, R.A. Grazing Intensity Impacts on Herbage Mass, Sward Structure, Greenhouse Gas Emissions, and Animal Performance: Analysis of Brachiaria Pastureland. Agronomy 2020, 10, 1750. [Google Scholar] [CrossRef]
- Peixoto, P.V.; Malafaia, P.; Barbosa, J.D.; Tokarina, C.H. Princípios de suplementação mineral em ruminantes. Pesq. Vet. Bras. 2005, 25, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, A.; Berça, A.S.; Cardoso, A.D.S.; Fonseca, N.V.B.; Silva, M.L.C.; Leite, R.G.; Ruggieri, A.C.; Reis, R.A. Does the Effect of Replacing Cottonseed Meal with Dried Distiller’s Grains on Nellore Bulls Finishing Phase Vary between Pasture and Feedlot? Animals 2021, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- NRC—National Research Council. Nutrient Requeriments of Beef Cattle; National Research Council: Washington, DC, USA, 2001; p. 242.
- Hoffmann, A.; Cardoso, A.S.; Fonseca, N.V.B.; Romanzini, E.P.; Siniscalchi, D.; Berndt, A.; Ruggieri, A.C.; Reis, R.A. Effects of supplementation with corn distillers’ dried grains on animal performance, nitrogen balance, and enteric CH4 emissions of young Nellore bulls fed a high-tropical forage diet. Animal 2021, 15, 100155. [Google Scholar] [CrossRef]
- Freitas, S.M.; Miura, M. Situação Atual e Perspectivas da Produção Brasileira de Etanol de Milho. Análises E Indic. Do Agronegócio 2018, 15, 1–5. [Google Scholar]
- Omer, H.A.A.; Abel-Magid, S.S.; El-Nomeary, Y.A.A.; Nassar, S.A.; Nars, S.M.; Abou-Zeina, H.A. Nutritional impact of partial replacement of cotton seed meal with distillers dried grain with solubles (DDGS) on animal performance, digestion coefficients and some blood constituents in crossbred calves. World Appl. Sci. J. 2015, 33, 580–589. [Google Scholar]
- Blaxter, K.L.; Clapperton, J.L. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 1965, 19, 511–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbero, R.P.; Malheiros, E.B.; Araújo, T.L.R.; Nave, R.L.G.; Mulliniks, J.T.; Berchielli, T.T.; Ruggieri, A.C.; Reis, R.A. Combining Marandu grass grazing height and supplementation level to optimize growth and productivity of yearling bulls. Anim. Feed Sci. Technol. 2015, 209, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Koscheck, J.F.W.; Romanzini, E.P.; Barbero, R.P.; Delevatti, L.M.; Ferrari, A.C.; Mulliniks, J.T.; Berchieri, T.T.; Reis, R.A. How do animal performance and methane emissions vary with forage management intensification and supplementation? Anim. Prod. Sci. 2020, 60, 1201–1209. [Google Scholar] [CrossRef]
- McGinn, S.M.; Chung, Y.H.; Beauchemin, K.A.; Iwaasa, A.D.; Grainger, C. Use of corn distillers dried grains to reduce enteric methane loss from beef cattle. Can. J. Anim. Sci. 2009, 89, 409–413. [Google Scholar] [CrossRef]
- Hünerberg, M.; McGinn, S.M.; Beauchemin, K.A.; Okine, E.K.; Harstad, O.M.; McAllister, T.A. Effect of dried distillers’ grains with solubles on enteric methane emissions and nitrogen excretion from finishing beef cattle. Can. J. Anim. Sci. 2013, 93, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Mott, G.O.; Lucas, H.L. The design conduct and interpretation of grazing trials on cultivated and improved pastures. In International Grassland Congress; Pensylvania State College: State College, PA, USA, 1952; pp. 1380–1395. [Google Scholar]
- Pedreira, B.C.; Pedreira, C.G.S.; Da Silva, S.C. Estrutura do dossel e acúmulo de forragem de Brachiaria brizantha cv. Xaraés em resposta a estratégias de pastejo. Pesqui Agropecu Bras. 2007, 2, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Fenner, H. Method for determining total volatile bases in rumen fluid by stem distillation. J. Dairy Sci. 1965, 48, 249–251. [Google Scholar] [CrossRef]
- Serafim, J.A.; Silveira, R.F.; Vicente, E.F. Fast Determination of Short-Chain Fatty Acids and Glucose Simultaneously by Ultraviolet/Visible and Refraction Index Detectors via High-Performance Liquid Chromatography. Food Anal. Methods 2021, 14, 1387–1393. [Google Scholar] [CrossRef]
- Hopper, J.T.; Holloway, J.W.; Butts Jr., W. T. Animal variation in chromium sesquioxide excretion patterns of grazing cows. J. Anim. Sci. 1978, 46, 1098–1102. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.H.; David, D.J.; Iismaa, O. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J. Agric. Sci. 1962, 59, 381–385. [Google Scholar] [CrossRef]
- Le Du, Y.L.P.; Penning, P.D. Animal based techniques for estimating herbage intake. In Herbage Intake Handbook, 1st ed.; Penning, P.D., Ed.; The British Grassland Society: Reading, Dunston, UK, 1982; pp. 37–75. [Google Scholar]
- Valente, T.N.P.; Detmann, E.; Valadares Filho, S.C.; Cunha, M.; Queiroz, A.C.; Sampaio, C.B. In situ estimation of indigestible compounds contents in cattle feed and feces using bags made from different textiles. Rev. Bras. Zootec. 2011, 40, 666–675. [Google Scholar] [CrossRef] [Green Version]
- Barthram, G.T. Experimental techniques: The HFRO sward stick. In Biennial Report of the Hill Farming Research Organization; Alcock, M.M., Ed.; Hill Farming Research Organization: Midlothian, UK, 1985; pp. 29–30. [Google Scholar]
- Gimenes, F.M.A.; Silva, S.C.; Fialho, C.A.; Gomes, M.B.; Berndt, A.; Gerdes, L.; Colozza, M.T. Ganho de peso e produtividade animal em capim Marandu sob pastejo rotativo e adubação nitrogenada. Pesqui Agropecu Bras. 2011, 46, 751–759. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Moore, J.E.; Allen, V.G.; Pedreira, C.G.S. Reporting forage allowance in grazing experiments. Crop. Sci. 2005, 45, 896–900. [Google Scholar] [CrossRef]
- Halls, L.K. The Approximation of Cattle Diet through Herbage Sampling. Rangel. Ecol. Manag./J. Range Manag. 1954, 7, 269–270. [Google Scholar] [CrossRef] [Green Version]
- AOAC. AOAC Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Snnifen, C.J.; O’connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: New York, NY, USA, 1994; 476p. [Google Scholar]
- Berndt, A.; Boland, M.H.; Deighton, J.I.; Gere, J.I.; Grainger, C.; Hegarty, R.S.; Martin, R.J. Guidelines for Use of Sulphur Hexafluoride (SF6) Tracer Technique to Measure Enteric Methane Emissions from Ruminants; Lambert, M.G., Ed.; New Zealand Agricultural Greenhouse Gas Research Centre: Palmerston Nort, New Zealand, 2014; pp. 1–166. [Google Scholar]
- Wilkerson, V.A.; Casper, D.P.; Mertens, D.R. The prediction of methane production of Holstein cows by several equations. J. Dairy Sci. 1995, 78, 2402–2414. [Google Scholar] [CrossRef]
- SAS. SAS/STAT® 9.3 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Poppi, D.P.; Hughes, T.P.; L’Huillier, P.J. Intake of pasture by grazing ruminants. Livestock feeding on pasture. Hamilt. N. Z. Soc. Anim. Prod. 1987, 7, 55–64. [Google Scholar]
- Galyean, M.L.; Gunter, S.A. Predicting forage intake in extensive grazing systems. J. Anim. Sci. 2016, 94, 26–43. [Google Scholar] [CrossRef] [Green Version]
- Dorea, J.R.R.; Gouvea, V.N.; Agostinho Neto, L.R.D.; Da Silva, S.C.; Brink, G.E.; Pires, A.V.; Santos, F.A.P. Beef cattle responses to pre-grazing sward height and low level of energy supplementation on tropical pastures. J. Anim. Sci. 2020, 98, 1–11. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, A.K.; Tedeschi, L.O.; De Resende, K.T.; Biagioli, B.; Cannas, A.; de Almeida Teixeira, I.A.M. Prediction of voluntary dry matter intake in stall fed growing goats. Livest. Sci. 2019, 219, 1–9. [Google Scholar] [CrossRef]
- Poppi, D.P.; McLennan, S.R. Protein and energy utilization by ruminants at pasture. J. Anim. Sci. 1995, 73, 278–290. [Google Scholar] [CrossRef]
- Alava, E.N.; Alava, E.I.; Welchons, C.A.; Yelich, J.V.; Hersom, M.J. Effect of increased inclusion of dried distillers grain supplement on adaptation, intake, digestibility, and rumen parameters in steers consuming bermudagrass round bale silage. Transl. Anim. Sci. 2019, 3, 29–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, V.C.; Ezequiel, J.M.B.; Morgado, E.S.; Homem Júnior, A.C.; Fávaro, V.R.; D’Aurea, A.P.; Barbosa, J.C. Influência de subprodutos de oleaginosas sobre parâmetros ruminais e a degradação da matéria seca e da proteína bruta. Arq. Bras. Med. Vet. Zootec. 2012, 64, 1284–1291. [Google Scholar] [CrossRef]
- Jasim, I.S. Effect of Protecting Proteins from Degradation in the Rumen on Rumen Fermentations of Al Awassi Lambs. Syst. Rev. Pharm. 2020, 11, 398–408. [Google Scholar]
- Leng, R.A. Factors affecting the utilization of “poor-quality” forages by ruminants particularly under tropical conditions. Nutr. Res. Rev. 1990, 3, 277–303. [Google Scholar] [CrossRef]
- Firkins, J.L. Maximizing microbial protein synthesis on the rumen. J. Nutr. 1996, 126, 1347S–1354S. [Google Scholar] [CrossRef]
- Russel, J.B.; O’Connor, J.D.; Fox, D.J.; Van Soest, P.J.; Sniffen, C.J. A net carbohydrate and protein system for evaluating cattle diets: I ruminal fermentation. J. Anim. Sci. 1992, 70, 3551–3561. [Google Scholar] [CrossRef]
- Bach. A.; Calsamiglia, S.; Stern. M.D. Nitrogen metabolism in the rumen. J. Dairy Sci. 2005, 88, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Detmann, E.; Paulino, M.F.; Valadares Filho, S.C.; Huhtanen, P. Nutritional aspects applied to grazing cattle in the tropics: A review based on Brazilian results. Semin. Ciênc Agrár 2014, 35, 2829–2854. [Google Scholar] [CrossRef] [Green Version]
- Lazzarini, I.; Detmann, E.; Sampaio, C.B.; Paulino, M.F.; Valadares Filho, S.C.; Souzza, M.A.; Oliveira, F.A. Intake and digestibility in cattle fed low-quality tropical forage and supplemented with nitrogenous compounds. Braz. J. Anim. Sci. 2009, 38, 2021–2030. [Google Scholar] [CrossRef] [Green Version]
- Antunes, R.C.; Rodriguez, N.M.; Saliba, E.O.S. Metabolismo dos carboidratos não estruturais. In Nutrição de Ruminantes; Berchielli, T.T., Pires, A.V., Oliveira, S.G., Eds.; Funep: Jaboticabal, Brazil, 2006; Volume 2, pp. 239–260. [Google Scholar]
- Nogueira, R.G.S.; Perna Junior, F.; Pereira, A.S.C.; Cassiano, E.C.O.; Carvalho, R.F.; Rodrigues, P.H.M. Methane mitigation and ruminal fermentation changes in cows fed cottonseed and vitamin E. Sci. Agric. 2020, 77, e20180247. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef] [Green Version]
- Chibisa, G.E.; Beauchemin, K.A.; Koenig, K.M.; Penner, G.B. Optimum roughage proportion in barley-based feedlot cattle diets: Total tract nutrient digestibility, rumination, ruminal acidosis, short-chain fatty absorption, and gastrointestinal tract barrier function. J. Anim. Sci. 2020, 98, skaa160. [Google Scholar] [CrossRef]
- Reis, R.A.; Ruggieri, A.C.; Casagrande, D.R.; Páscoa, A.G. Suplementação da dieta de bovinos de corte como estratégia do manejo das pastagens. Rev. Bras. Zootec. 2008, 38, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, N.V.B.; Cardoso, A.S.; Hoffmann, A.; Leite, R.G.; Ferrari, A.C.; Fernandes, M.H.M.R.; Reis, R.A. Characterization and effects of DDG on the intake and digestibility of finishing bulls in feedlots. Acta Sci. 2020, 43, 51877. [Google Scholar]
- Beauchemin, K.A.; Kreuzer, M.; O’mara, F.; Mcallister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef] [Green Version]
- Haque, M. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018, 60, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berça, A.S.; Cardoso, A.S.; Longhini, V.Z.; Tedeschi, L.O.; Boddey, R.M.; Berndt, A.; Reis, R.A.; Ruggieri, A.C. Methane production and nitrogen balance of dairy heifers grazing palisade grass cv. Marandu alone or with forage peanut. J. Anim. Sci. 2019, 97, 4625–4634. [Google Scholar] [CrossRef] [PubMed]
- Boland, T.M.; Quinlan, C.; Pierce, K.M.; Lynch, M.B.; Kenny, D.A.; Kelly, A.K.; Purcell, P.J. The effect of pasture pre-grazing forage mass on methane emissions, ruminal fermentation, and average daily gain of grazing beef heifers. J. Anim. Sci. 2013, 8, 3867–3874. [Google Scholar] [CrossRef]
- USEPA—United States Environmental Protection Agency. Evaluating Ruminant Livestock Efficiency Projects and Programs; Peer Review Draft: Washington, DC, USA, 2000; 48p.
- IPCC—Intergovernmental Panel on Climate Change. Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Genebra, Switzerland, 2006. [Google Scholar]
Item | Treatment | |||
---|---|---|---|---|
CMS | 50DDG | 100DDG | MS | |
Ingredients (g/kg DM) | ||||
Cottonseed meal | 322 | 165 | - | - |
Citrus pulp | 562 | 496 | 402 | - |
DDG | - | 215 | 446 | - |
Salt | 36 | 36 | 36 | - |
Urea | 31.5 | 31.5 | 31.5 | - |
Limestone | 31 | 38 | 44 | - |
Monocalcium phosphate | 14.9 | 17.3 | 19.5 | - |
Sulfur | 2.0 | - | 19.3 | - |
Mineral premix 1 | 0.9 | 0.9 | 0.9 | - |
Monensin 200 | 0.4 | 0.4 | 0.4 | - |
Mineral salt 2 | - | - | - | 1000 |
Chemical composition of supplements (g/kg DM) | ||||
apNDF | 310 | 312 | 372 | - |
ADF | 179 | 232 | 267 | - |
CP | 226 | 229 | 213 | - |
EE | 15 | 26 | 30 | - |
Starch concentration | 18 | 17 | 16 | - |
TDN | 607 | 625 | 630 | - |
GE (MJ/day) | 182 | 164 | 151 | - |
Item | DDG | Cottonseed Meal |
---|---|---|
CP (g/kg DM) | 288.50 | 389.92 |
NDF (g/kg DM) | 659.31 | 368.07 |
ADF (g/kg DM) | 243.89 | 228.65 |
EE (g/kg DM) | 30.97 | 14.12 |
Carbohydrate fractions (g/kg DM) | ||
A + B1 | 148.60 | 453.20 |
B2 | 754.80 | 220.84 |
B3 | 96.60 | 325.96 |
Nitrogen fractions (g/kg CP) | ||
A | 89.00 | 52.62 |
B1 | 78.50 | 144.73 |
B2 | 576.30 | 611.40 |
B3 | 74.90 | 106.54 |
C | 181.30 | 84.73 |
RDP (g/kg DM) | 486.00 | 742.73 |
RUP (g/kg DM) | 514.00 | 257.27 |
Variable | Treatment | |||
---|---|---|---|---|
MS | CMS | 50DDG | 100DDG | |
Herbage mass (kg DM/ha) | 5660 | 5052 | 4897 | 4870 |
Leaf (g/kg DM) | 330 | 350 | 380 | 340 |
Stem + sheath (g/kg DM) | 380 | 350 | 350 | 340 |
Dead material (g/kg DM) | 290 | 300 | 270 | 320 |
Leaf:stem ratio | 0.80 | 1.0 | 1.1 | 1.0 |
Forage allowance (kg DM/kg BW) | 2.09 | 2.16 | 2.10 | 2.13 |
Chemical composition (g/kg DM) | ||||
OM | 924 | 922 | 911 | 910 |
ApNDF | 599 | 608 | 604 | 607 |
Indf | 110 | 110 | 115 | 114 |
pdNDF | 489 | 498 | 489 | 493 |
ADF | 289 | 289 | 289 | 287 |
NFC | 204 | 203 | 206 | 206 |
CP | 126.7 | 128.1 | 125.3 | 126.7 |
Protein fraction (% CP) | ||||
Fraction A | 31.4 | 32.6 | 32.2 | 31.8 |
Fraction B1+B2 | 34.3 | 34.9 | 33.2 | 33.7 |
Fraction B3 | 27.8 | 26.7 | 27.5 | 27.8 |
Fraction C | 6.5 | 5.8 | 7.1 | 6.7 |
Variable | Treatment | SEM | Contrast p-Value | |||||
---|---|---|---|---|---|---|---|---|
MS | CMS | 50DDG | 100DDG | MS vs. (CMS, 50DDG, 100DDG) | CMS vs. (50DDG, 100DDG) | 50DDG vs. 100DDG | ||
TDMI (kg/day) | 9.5 | 9.0 | 10.1 | 8.4 | 0.64 | 0.620 | 0.694 | 0.033 |
Forage intake (kg/day) | 8.3 | 7.8 | 8.9 | 7.2 | 0.60 | 0.564 | 0.735 | 0.035 |
Forage intake (%BW) | 2.5 | 2.3 | 2.7 | 2.1 | 0.10 | 0.103 | 0.405 | 0.498 |
OMI (kg/day) | 7.3 | 7.0 | 7.9 | 6.5 | 0.53 | 0.795 | 0.670 | 0.050 |
DOMI (kg/day) | 5.9 | 6.3 | 6.7 | 5.5 | 0.65 | 0.503 | 0.575 | 0.031 |
CPI (kg/day) | 1.5 | 1.7 | 1.7 | 1.9 | 0.20 | 0.240 | 0.593 | 0.417 |
TDNI (kg/day) | 6.5 | 6.1 | 6.9 | 5.8 | 0.92 | 0.092 | 0.075 | 0.027 |
OMD (g/kg) | 624 | 704 | 666 | 668 | 53.2 | 0.108 | 0.301 | 0.960 |
g CP/kg DOM | 254.2 | 269.8 | 253.7 | 345.5 | 32.32 | 0.477 | 0.583 | 0.386 |
Variable | Treatment | Contrast p-Value | ||||||
---|---|---|---|---|---|---|---|---|
MS | CMS | 50DDG | 100DDG | SEM | MS vs. (CMS, 50DDG, 100DDG) | CMS vs. (50DDG, 100DDG) | 50DDG vs. 100DDG | |
pH | 6.51 | 6.46 | 6.40 | 6.43 | 0.051 | <0.001 | 0.073 | 0.225 |
Acetate (mmol/L) | 71.50 | 70.66 | 70.81 | 71.48 | 0.503 | 0.049 | 0.177 | 0.155 |
Propionate (mmol/L) | 17.81 | 18.51 | 18.42 | 17.79 | 0.382 | 0.013 | 0.027 | 0.003 |
Butyrate (mmol/L) | 10.69 | 10.64 | 10.59 | 10.87 | 0.353 | 0.952 | 0.705 | 0.313 |
Acetate:propionate | 4.04 | 3.85 | 3.87 | 4.02 | 0.104 | 0.006 | 0.044 | 0.007 |
Hours after Supplementation (h) | pH | Acetate (mmol/L) | Propionate (mmol/L) | Butyrate (mmol/L) | Acetate:Propionate |
---|---|---|---|---|---|
0 | 6.61 a | 72.59 a | 17.11 b | 10.30 b | 4.27 a |
2 | 6.60 a | 71.64 a | 18.16 ab | 10.20 b | 3.97 ab |
4 | 6.40 b | 70.64 ab | 18.61 a | 10.74 b | 3.81 b |
6 | 6.41 b | 70.89 ab | 18.34 a | 10.77 b | 3.88 b |
8 | 6.22 c | 69.62 b | 18.44 a | 11.47 a | 3.78 b |
SEM | 0.06 | 0.26 | 0.47 | 0.12 | 0.12 |
Variable | Treatment | SEM | Contrast p-Value | |||||
---|---|---|---|---|---|---|---|---|
MS | CMS | 50DDG | 100DDG | MS vs. (CMS, 50DDG, 100DDG) | CMS vs. (50DDG, 100DDG) | 50DDG vs. 100DDG | ||
IBW (kg) | 334 | 351 | 344 | 352 | 5.11 | 0.137 | 0.590 | 0.280 |
FBW (kg) | 410 | 439 | 431 | 449 | 7.90 | 0.011 | 0.930 | 0.140 |
ADG (kg/d) | 0.90 | 1.04 | 1.04 | 1.15 | 0.06 | 0.042 | 0.480 | 0.240 |
Stocking rate (AU/ha) | 6.54 | 6.07 | 5.76 | 6.00 | 0.36 | 0.190 | 0.700 | 0.700 |
GPH (kg BW/ha) | 584 | 622 | 599 | 682 | 36.7 | 0.260 | 0.690 | 0.150 |
Variable | Treatment | Contrast p-Value | ||||||
---|---|---|---|---|---|---|---|---|
MS | CMS | 50DDG | 100DDG | SEM | MS vs. (CMS, 50DDG, 100DDG) | CMS vs. (50DDG, 100DDG) | 50DDG vs. 100DDG | |
CH4 (g/d) | 110.2 | 124.4 | 152.4 | 159.4 | 19.0 | 0.126 | 0.260 | 0.790 |
CH4 (kg/kg weight gain) | 129.3 | 123.8 | 145.6 | 138.2 | 23.6 | 0.950 | 0.530 | 0.790 |
CH4 (g/kg DMI) | 14.9 | 13.8 | 18.5 | 16.8 | 3.3 | 0.680 | 0.352 | 0.692 |
CH4 (g/kg OMI) | 24.3 | 22.9 | 28.4 | 29.4 | 5.8 | 0.690 | 0.430 | 0.880 |
Ym (%) | 4.10 | 4.17 | 5.05 | 6.39 | 0.691 | 0.126 | 0.260 | 0.790 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araújo, T.L.D.R.; da Silva, W.L.; Berça, A.S.; Cardoso, A.d.S.; Barbero, R.P.; Romanzini, E.P.; Reis, R.A. Effects of Replacing Cottonseed Meal with Corn Dried Distillers’ Grain on Ruminal Parameters, Performance, and Enteric Methane Emissions in Young Nellore Bulls Reared in Tropical Pastures. Animals 2021, 11, 2959. https://doi.org/10.3390/ani11102959
de Araújo TLDR, da Silva WL, Berça AS, Cardoso AdS, Barbero RP, Romanzini EP, Reis RA. Effects of Replacing Cottonseed Meal with Corn Dried Distillers’ Grain on Ruminal Parameters, Performance, and Enteric Methane Emissions in Young Nellore Bulls Reared in Tropical Pastures. Animals. 2021; 11(10):2959. https://doi.org/10.3390/ani11102959
Chicago/Turabian Stylede Araújo, Tiago Luís Da Ros, Wilton Ladeira da Silva, Andressa Scholz Berça, Abmael da Silva Cardoso, Rondineli Pavezzi Barbero, Eliéder Prates Romanzini, and Ricardo Andrade Reis. 2021. "Effects of Replacing Cottonseed Meal with Corn Dried Distillers’ Grain on Ruminal Parameters, Performance, and Enteric Methane Emissions in Young Nellore Bulls Reared in Tropical Pastures" Animals 11, no. 10: 2959. https://doi.org/10.3390/ani11102959
APA Stylede Araújo, T. L. D. R., da Silva, W. L., Berça, A. S., Cardoso, A. d. S., Barbero, R. P., Romanzini, E. P., & Reis, R. A. (2021). Effects of Replacing Cottonseed Meal with Corn Dried Distillers’ Grain on Ruminal Parameters, Performance, and Enteric Methane Emissions in Young Nellore Bulls Reared in Tropical Pastures. Animals, 11(10), 2959. https://doi.org/10.3390/ani11102959