Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook
Abstract
:Simple Summary
Abstract
1. Introduction
2. Role of Residual Yolk Sac
3. Growth and Development of the Gastrointestinal Tract
4. Maturation of Intestinal Mucosa
5. Gastric pH
6. Secretion of Bile and Digestive Enzymes
6.1. Biliary Secretions
6.2. Pancreatic Enzymes
6.3. Brush Border Enzymes
7. Digesta Passage Rate and Viscosity
8. Digestion and Utilization of Nutrients
Energy Utilization
9. Development of Skeletal System
10. Physiological Limitations in the Newly Hatched Chick: Summary
11. Potential Strategies to Overcome the Physiological Limitations
11.1. Strategies Prior to Hatching
11.1.1. Breeder Hen Nutrition
11.1.2. In Ovo Nutrition via Hatching Eggs
11.2. Strategies after the Hatching
11.2.1. Early Access to Feed
11.2.2. On-Farm Hatching
11.2.3. Special Pre-Starter Diets
11.2.4. Feed Additives
11.2.5. Early Programming
12. Final Thoughts
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Havenstein, G.B.; Ferket, P.R.; Qureshi, M.A. Growth, liveability and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 2003, 82, 1500–1508. [Google Scholar] [CrossRef]
- Zuidhof, M.J.; Schneider, B.L.; Carney, V.L.; Korver, D.R.; Robinson, F.E. Growth, efficiency, and yield of commercial broilers from 1957, 1978 and 2005. Poult. Sci. 2014, 93, 2970–2982. [Google Scholar] [CrossRef]
- Nitsan, Z.; Ben-Avraham, G.; Zoref, Z.; Nir, I. Growth and development of the digestive organs and some enzymes in broiler chicks after hatching. Br. Poult. Sci. 1991, 32, 515–523. [Google Scholar] [CrossRef]
- Nir, I.; Nitsan, Z.; Mahaga, M. Comparative growth and development of the digestive organs and of some enzymes in broiler and egg type chicks after hatching. Br. Poult. Sci. 1993, 34, 523–532. [Google Scholar] [CrossRef]
- Noy, Y.; Sklan, D. Posthatch development in poultry. J. Appl. Poult. Res. 1997, 6, 344–354. [Google Scholar] [CrossRef]
- Lilburn, M.S. Practical aspects of early nutrition for poultry. J. Appl. Poult. Res. 1998, 7, 420–424. [Google Scholar] [CrossRef]
- Sell, J.L. Physiological limitations and potential for improvements in gastrointestinal tract function of poultry. J. Appl. Poult. Res. 1996, 5, 96–101. [Google Scholar] [CrossRef]
- Jin, S.-H.; Corless, A.; Sell, J.L. Digestive system development in post-hatch poultry. Worlds Poult. Sci. J. 1998, 54, 335–345. [Google Scholar] [CrossRef]
- Sklan, D. Development of the digestive tract of poultry. Worlds Poult. Sci. J. 2001, 57, 415–428. [Google Scholar] [CrossRef]
- Dibner, J.J.; Richards, J.D. The digestive system: Challenges and opportunities. J. Appl. Poult. Res. 2004, 13, 86–93. [Google Scholar] [CrossRef]
- Uni, Z.; Ferket, R.P. Methods for early nutrition and their potential. Worlds Poult. Sci. J. 2004, 60, 101–111. [Google Scholar] [CrossRef]
- Wijtten, P.J.A.; Langhout, D.J.; Verstegen, M.W.A. Small intestine development in chicks after hatch and in pigs around the time of weaning and its relation with nutrition: A review. Acta Agric. Scand. Sect. A Anim. Sci. 2012, 62, 1–12. [Google Scholar] [CrossRef]
- Schat, K.A.; Myers, T.J. Avian intestinal immunity. Crit. Rev. Poult. Biol. 1993, 3, 19–34. [Google Scholar]
- Dibner, J.J.; Knight, C.D.; Kitchell, M.L.; Atwell, C.A.; Downs, A.C.; Ivey, F.J. Early feeding and development of the immune system in neonatal poultry. J. Appl. Poult. Res. 1998, 7, 425–436. [Google Scholar] [CrossRef]
- Panda, A.K.; Bhanja, S.K.; Sunder, G.S. Early post hatch nutrition on immune system development and function in broiler chickens. Worlds Poult. Sci. J. 2015, 71, 285–296. [Google Scholar] [CrossRef]
- Harrow, S.A.; Ravindran, V.; Butler, R.C.; Marshall, J.; Tannock, G.W. The influence of farming practices on ileal Lactobacillus salivarius populations of broiler chickens measured by real-time quantitative PCR. Appl. Environ. Microbiol. 2007, 73, 7123–7127. [Google Scholar] [CrossRef] [Green Version]
- Ewing, W.N.; Cole, D.J.A. The Living Gut—An Introduction to Microorganisms in Nutrition; Context: Galway, UK, 1994. [Google Scholar]
- McBurney, W.; Tannock, G.; Ravindran, V. A culture-independent approach to the analysis of the gut microflora of broilers. Proc. Aust. Poult. Sci. Symp. 2003, 15, 131–134. [Google Scholar]
- Rinttila, T.; Apajalahti, J. Intestinal microbiota and metabolites—Implications for broiler chickens. J. Appl. Poult. Res. 2013, 22, 647–658. [Google Scholar] [CrossRef]
- Apajalahti, J.; Kettunen, A.; Graham, H. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. Worlds Poult. Sci. J. 2004, 60, 223–232. [Google Scholar] [CrossRef]
- Oviedo-Rondon, E.O. Molecular methods to evaluate effects of feed additives and nutrients in poultry gut microflora. Rev. Bras. Zootec. 2009, 38, 209–225. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Jha, R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 2019, 10, 2. [Google Scholar] [CrossRef]
- Noble, R.C.; Cocchi, M. Lipid metabolism and the neonatal chicken. Prog. Lipid Res. 1990, 29, 107–140. [Google Scholar] [CrossRef]
- Esteban, S.; Rayo, J.M.; Moreno, M.; Sastre, M.; Rial, R.V.; Tur, J.A. The role played by the vitelline diverticulum in the yolk sac reabsorption in young post hatched chickens. J. Comp. Physiol. B 1991, 160, 645–648. [Google Scholar] [CrossRef]
- Chamblee, T.N.; Brake, J.D.; Schultz, C.D.; Thaxton, J.P. Yolk sac absorption and initiation of growth in broilers. Poult. Sci. 1992, 71, 1811–1816. [Google Scholar] [CrossRef]
- Tur, J.A.; Rial, R.V.; Esteban, S.; Rayo, J.M. Ontogeny of the gastrointestinal motility in young broilers. Comp. Biochem. Physiol. 1986, 83A, 61–65. [Google Scholar] [CrossRef]
- Nitsan, Z.; Dunnington, E.A.; Siegel, P.B. Organ growth and digestive enzyme levels to fifteen days of age in lines of chickens differing in body weight. Poult. Sci. 1991, 70, 2040–2048. [Google Scholar] [CrossRef]
- Iji, P.A.; Saki, A.; Tivey, D.R. Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. Br. Poult. Sci. 2001, 42, 505–513. [Google Scholar] [CrossRef]
- Murakami, H.; Akiba, Y.; Horiguchi, M. Growth and utilization of nutrients in newly hatched chick with or without removal of residual yolk. Growth Dev. Ageing 1992, 56, 75–84. [Google Scholar]
- Noy, Y.; Sklan, D. Nutrient use in chicks during the first week posthatch. Poult. Sci. 2002, 81, 391–399. [Google Scholar] [CrossRef]
- Speake, B.K.; Murray, A.M.; Noble, R.C. Transport and transformations of yolk lipids during development of avian embryo. Prog. Lipid Res. 1998, 37, 1–32. [Google Scholar] [CrossRef]
- Dzoma, B.M.; Dorrestein, G.M. Yolk sac retention in the ostrich (Struthia camelus): Histopathologic, anatomic, and physiologic considerations. J. Avian Med. Surg. 2001, 15, 81–89. [Google Scholar] [CrossRef]
- Sato, M.; Tachibana, T.; Furuse, M. Heat production and lipid metabolism in broiler and layer chickens during embryonic development. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 143, 382–388. [Google Scholar] [CrossRef]
- Zelenka, J. Influence of the age of chickens on the metabolisable energy values of poultry diets. Br. Poult. Sci. 1968, 9, 135–142. [Google Scholar] [CrossRef]
- Thomas, D.V.; Ravindran, V.; Ravindran, G. Nutrient utilisation of diets based on wheat, sorghum or maize by the newly hatched broiler chick. Br. Poult. Sci. 2008, 49, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Van der Wagt, I.; de Jong, I.C.; Mitchell, M.A.; Molenaar, R.; van den Brand, H. A review on yolk sac utilization in poultry. Poult. Sci. 2020, 99, 2162–2175. [Google Scholar] [CrossRef] [PubMed]
- Katanbaf, M.N.; Dunnington, E.A.; Siegel, P.B. Allomorphic relationships from hatching to 56 days in parental lines and F1 crosses of chickens selected 27 generations for high or low body weight. Growth Dev. Ageing 1988, 52, 11–21. [Google Scholar]
- Uni, Z.; Ganot, S.; Sklan, D. Posthatch development of mucosal function in the broiler small intestine. Poult. Sci. 1998, 77, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Noy, Y.; Geyra, A.; Sklan, D. The effect of early feeding on growth and small intestinal development in the posthatch poult. Poult. Sci. 2001, 80, 912–919. [Google Scholar] [CrossRef]
- Ravindran, V.; Wu, Y.B.; Thomas, D.G.; Morel, P.C.H. Influence of whole wheat feeding on the development of digestive organs and performance of broiler chickens. Aust. J. Agric. Res. 2006, 57, 21–26. [Google Scholar] [CrossRef]
- Singh, Y.; Amerah, A.M.; Ravindran, V. Whole grain feeding: Methodologies and effects on performance, digestive tract development and nutrient utilisation of poultry. Anim. Feed Sci. Technol. 2014, 190, 1–18. [Google Scholar] [CrossRef]
- Pinchasov, Y. Early transition of the digestive system to exogenous nutrition in domestic post-hatch birds. Br. J. Nutr. 1995, 73, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Dibner, J.J.; Kitchell, M.L.; Atwell, C.A.; Ivey, F.J. The effect of dietary ingredients and age on the microscopic structure of the gastrointestinal tract in poultry. J. Appl. Poult. Res. 1996, 5, 70–77. [Google Scholar] [CrossRef]
- Uni, Z.; Noy, Y.; Sklan, D. Posthatch changes in morphology and function of the small intestines in heavy- and light-strain chicks. Poult. Sci. 1995, 74, 1622–1629. [Google Scholar] [CrossRef] [PubMed]
- Uni, Z.; Geyra, A.; Ben-Hur, H.; Sklan, D. Small intestinal development in the young chick: Crypt formation and enterocyte proliferation and migration. Br. Poult. Sci. 2000, 41, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Geyra, A.; Uni, Z.; Sklan, D. The effect of fasting at different ages on growth and tissue dynamics in the small intestine of the young chick. Br. J. Nutr. 2001, 86, 53–61. [Google Scholar] [CrossRef]
- Yamauchi, K.; Yutaka, I. Scanning electron microscopic observations on the intestinal villi in growing white leghorn and broiler chickens from 1 to 30 days of age. Br. Poult. Sci. 1991, 32, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, K. Review of chicken intestinal villus histological alterations related with intestinal function. J. Poult. Sci. 2002, 39, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Uni, Z.; Noy, Y.; Sklan, D. Development of the small intestine in heavy and light strain chicks before and after hatching. Br. Poult. Sci. 1996, 36, 63–71. [Google Scholar] [CrossRef]
- Dunnington, E.A.; Siegel, P.B. Enzyme activity and organ development in newly hatched chicks selected for high or low eight-week body weight. Poult. Sci. 1995, 74, 761–770. [Google Scholar] [CrossRef]
- Uni, Z.; Platin, R.; Sklan, D. Cell proliferation in chicken intestinal epithelium occurs in the crypt and along the villus. J. Comp. Physiol. B 1998, 168, 241–247. [Google Scholar] [CrossRef]
- Bohak, Z. Chicken pepsinogen and chicken pepsin. Methods Enzymol. 1970, 19, 347–358. [Google Scholar]
- Mahagna, M.; Nir, I. Comparative development of digestive organs, intestinal disaccharidases and some blood metabolites in broiler and layer-type chicks after hatching. Br. Poult. Sci. 1996, 37, 359–371. [Google Scholar] [CrossRef]
- Barua, M.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Girish, C.K.; Chrystal, P.V.; Ravindran, V. An investigation into the influence of age on the standardized amino acid digestibility of wheat and sorghum in broilers. Poult. Sci. 2021. [Google Scholar] [CrossRef]
- Guinotte, F.; Gautron, J.; Nys, Y. Calcium solubilization and retention in the gastrointestinal tract in chicks (Gallus domesticus) as a function of gastric acid secretion, inhibition and of calcium carbonate particle size. Br. J. Nutr. 1995, 73, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Buddington, R.K. Intestinal nutrient transport during ontogeny of vertebrates. Am. J. Physiol. 1992, 32, R503–R509. [Google Scholar] [CrossRef] [PubMed]
- Tako, E.; Ferket, P.R.; Uni, Z. Changes in chicken intestinal zinc exporter mRNA expression and small intestine functionality following intra-amniotic zinc-methionine administration. J. Nutr. Biochem. 2005, 16, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gilbert, E.R.; Zhang, Y.; Crasta, O.; Emmerson, D.; Webb, K.E.; Wong, E.A. Expression profiling of the solute carrier gene family in chicken intestine from the late embryonic to early post-hatch stages. Anim. Genet. 2008, 39, 407–424. [Google Scholar] [CrossRef] [PubMed]
- Obst, B.S.; Diamond, J. Ontogenesis of intestinal nutrient transport in domestic chicken (Gallus gallus) and its relation to growth. Auk 1992, 109, 451–464. [Google Scholar]
- Croom, W.J.; Brake, J.; Coles, B.A.; Havenstein, G.B.; Christensen, V.L.; McBride, B.W.; Peebles, E.D.; Taylor, I.L. Intestinal absorption capacity rate-limiting for performance in Poultry? J. Appl. Poult. Res. 1999, 8, 242–252. [Google Scholar] [CrossRef]
- Uni, Z.; Tako, E.; Gal-Garber, O.; Sklan, D. Morphological, molecular, and functional changes in the chicken small intestine of the late-term embryo. Poult. Sci. 2003, 82, 1747–1754. [Google Scholar] [CrossRef]
- Sulistiyanto, Y.; Akiba, Y.; Sato, K. Energy utilisation of carbohydrate, fat and protein sources in newly hatched broiler chicks. Br. Poult. Sci. 1999, 40, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Sklan, D. Fat and carbohydrate use in posthatch chicks. Poult. Sci. 2003, 82, 117–122. [Google Scholar] [CrossRef]
- Krogdahl, A. Digestion and absorption of lipid in poultry. J. Nutr. 1985, 115, 675–685. [Google Scholar] [CrossRef]
- Tancharoenrat, P.; Ravindran, V.; Zaefarian, Z.; Ravindran, G. Digestion of fat and fatty acids along the gastrointestinal tract of broiler chickens. Poult. Sci. 2014, 93, 412–419. [Google Scholar] [CrossRef]
- Noy, Y.; Sklan, D. Digestion and absorption in the young chick. Poult. Sci. 1995, 74, 366–373. [Google Scholar] [CrossRef]
- Tancharoenrat, P.; Ravindran, V.; Zaefarian, F.; Ravindran, G. Apparent metabolisable energy and total tract fat digestibility of different fat sources for broiler chickens. Anim. Feed Sci. Technol. 2013, 186, 186–192. [Google Scholar] [CrossRef]
- Moran, E.T., Jr. Digestion and absorption of carbohydrates in fowl and events through perinatal development. J. Nutr. 1985, 115, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Iji, P.A.; Saki, A.; Tivey, D.R. Body and intestinal growth of broiler chicks on a commercial starter diet. 2. Development and characteristics of intestinal enzymes. Br. Poult. Sci. 2001, 42, 514–522. [Google Scholar] [CrossRef]
- Duke, G.E. Gastrointestinal motility and its regulation. Poult. Sci. 1982, 61, 1245–1256. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.; Ravindran, V.; Lentle, R.G. Feed particle size: Implications on the digestion and performance in poultry. Worlds Poult. Sci. J. 2007, 63, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, M.R.; Zaefarian, F.; Ravindran, V. Feed intake response of broilers: Impact of feed processing. Anim. Feed Sci. Technol. 2018, 237, 154–165. [Google Scholar] [CrossRef]
- Ravindran, V.; Bryden, W.L. Amino acid availability in poultry—In vitro and in vivo measurements. Aust. J. Agric. Res. 1999, 50, 889–908. [Google Scholar] [CrossRef] [Green Version]
- Moran, E.T., Jr. Starch digestion in fowl. Poult. Sci. 1982, 61, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Svihus, B. Starch digestion capacity of poultry. Poult. Sci. 2014, 93, 2394–2399. [Google Scholar] [CrossRef]
- Zelenka, J.; Ceresnakova, Z. Effect of age on digestibility of starch in chickens with different growth rate. Czech J. Anim. Sci. 2005, 50, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Reisenfeld, G.; Sklan, D.; Bar, A.; Eisner, U.; Hurwitz, S. Glucose absorption and starch digestion in the intestine of the chicken. J. Nutr. 1980, 110, 117–121. [Google Scholar] [CrossRef]
- Zelenka, J.; Fajmonová, E.; Blažková, E. Apparent digestibility of fat and nitrogen retention in young chicks. Czech J. Anim. Sci. 2000, 45, 457–462. [Google Scholar]
- Carew, L.B., Jr.; Machemer, R.H., Jr.; Sharp, R.W.; Foss, D.C. Fat absorption in the very young chick. Poult. Sci. 1972, 51, 738–742. [Google Scholar] [CrossRef]
- Ravindran, V.; Tancharoenrat, P.; Zaefarian, F.; Ravindran, G. Fats in poultry nutrition: Digestive physiology and factors influencing their utilisation. Anim. Feed Sci. Technol. 2016, 213, 1–21. [Google Scholar] [CrossRef]
- Tarvid, I. The development of protein digestion in poultry. Avian Poult. Biol. Rev. 1995, 6, 35–54. [Google Scholar]
- Batal, A.B.; Parsons, C.M. Effects of age on nutrient digestibility in chicks fed different diets. Poult. Sci. 2002, 81, 400–407. [Google Scholar] [CrossRef]
- Batal, A.B.; Parsons, C.M. Effect of fasting versus feeding oasis after hatching on nutrient utilization in chicks. Poult. Sci. 2002, 81, 853–859. [Google Scholar] [CrossRef]
- Batal, A.B.; Parsons, C.M. Utilization of different soy products as affected by age in chicks. Poult. Sci. 2003, 82, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Barua, M.; Abdollahi, M.R.; Zaefarian, F.; Wester, T.J.; Girish, C.K.; Chrystal, P.V.; Ravindran, V. Basal ileal endogenous amino acid flow in broiler chickens as influenced by age. Poult. Sci. 2021, 100, 101269. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.V.; Ravindran, V. Mineral retention in newly hatched broiler chicks fed diets based on wheat, sorghum or maize. Asian-Australas. J. Anim. Sci. 2010, 23, 68–73. [Google Scholar] [CrossRef]
- David, L.S.; Abdollahi, M.R.; Bedford, M.R.; Ravindran, V. Effect of age and dietary crude protein content on the apparent ileal calcium digestibility of limestone in broiler chickens. Anim. Feed Sci. Technol. 2020, 263, 114468. [Google Scholar] [CrossRef]
- Khalil, M.M.; Abdollahi, M.R.; Zaefarian, F.; Chrystal, P.V.; Ravindran, V. Apparent metabolizable energy of cereal grains for broiler chickens is influenced by age. Poult. Sci. 2021, 100, 101288. [Google Scholar] [CrossRef]
- Torok, V.A.; Allison, G.E.; Percy, N.J.; Ophel-Keller, K.; Hughes, R.J. Influence of antimicrobial feed additives on broiler commensal posthatch gut microbiota development and performance. Appl. Environ. Microbiol. 2011, 77, 3380–3390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, E.T., Jr. Nutrition of the developing embryo and hatchling. Poult. Sci. 2007, 86, 1043–1049. [Google Scholar] [CrossRef]
- Skinner, J.T.; Waldroup, P. Allometric bone development in floor-reared broilers. J. Appl. Poult. Res. 1995, 4, 265–270. [Google Scholar] [CrossRef]
- Surai, P.F.; Sparks, N.H.C. Designer eggs: From improvement of egg composition to functional food. Trends Food Sci. Technol. 2001, 12, 7–16. [Google Scholar] [CrossRef]
- Kidd, M.T. A treatise on chicken dam nutrition that impacts on progeny. Worlds Poult. Sci. J. 2003, 59, 475–494. [Google Scholar] [CrossRef]
- Calini, F.; Sirri, F. Breeder nutrition and offspring performance. Braz. J. Poult. Sci. 2007, 9, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Cherian, G. Nutrition and metabolism in poultry: Role of lipids in early diet. J. Anim. Sci. Biotechnol. 2015, 6, 28–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surai, P.F. Selenium-enriched eggs and meat. In Selenium in Poultry Nutrition and Health; Surai, P.F., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; pp. 279–307. [Google Scholar]
- Cherian, G. Essential fatty acids and early life programming in meat-type birds. Worlds Poult. Sci. J. 2011, 67, 599–614. [Google Scholar] [CrossRef] [Green Version]
- Romanoff, A.L. The Avian Embryo: Structural and Functional Development; Macmillan: New York, NY, USA, 1960. [Google Scholar]
- Smirnov, A.; Tako, E.; Ferket, P.R.; Uni, Z. Mucin gene expression and mucin content in the chicken intestinal goblet cells are affected by in ovo feeding of carbohydrates. Poult. Sci. 2006, 85, 669–673. [Google Scholar] [CrossRef]
- Tako, E.; Ferket, P.R.; Uni, Z. Effects of in ovo feeding of carbohydrates and beta-hydroxybutryate—beta-methylbutryate on the development of chicken intestine. Poult. Sci. 2004, 83, 2023–2028. [Google Scholar] [CrossRef] [PubMed]
- Foye, O.T.; Ferket, P.R.; Uni, Z. The effects of in ovo feeding arginine, B-hydroxy-B- methyl-butyrate, and protein on jejunal digestive and absorption activity in embryonic and neonatal turkey poults. Poult. Sci. 2007, 86, 2343–2349. [Google Scholar] [CrossRef]
- Zubair, A.K.; Leeson, S. Compensatory growth in the broiler chicken: A review. Worlds Poult. Sci. J. 1996, 52, 189–201. [Google Scholar] [CrossRef]
- Noy, Y.; Uni, Z.; Sklan, D. Utilisation of yolk in the newly-hatched chick. Br. Poult. Sci. 1996, 37, 987–996. [Google Scholar] [CrossRef]
- Noy, Y.; Sklan, D. Metabolic responses to early nutrition. J. Appl. Poult. Res. 1998, 7, 437–451. [Google Scholar] [CrossRef]
- Noy, Y.; Sklan, D. Different types of early feeding and performance in chicks and poults. J. Appl. Poult. Res. 1999, 8, 16–24. [Google Scholar] [CrossRef]
- Halevy, O.; Geyra, A.; Barak, M.; Uni, Z.; Sklan, D. Early posthatch starvation decreases satellite cell proliferation and skeletal muscle growth in chicks. J. Nutr. 2000, 130, 858–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juul-Madsen, H.R.; Su, G.; Sorensen, P. Influence of early or late start of first feeding on growth and immune phenotype of broilers. Br. Poult. Sci. 2004, 45, 210–222. [Google Scholar] [CrossRef]
- Willemsen, H.; Debonne, M.; Swennen, Q.; Everaert, N.; Careghi, C.; Han, H.; Bruggeman, V.; Tona, K.; Decuypere, E. Delay in feed access and spread of hatch: Importance of early nutrition. Worlds Poult. Sci. J. 2010, 66, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Sklan, D.; Noy, Y.; Hoyzman, A.; Rozenboim, I. Decreasing weight loss in the hatchery by feeding chicks and poults in hatching trays. J. Appl. Poult. Res. 2000, 9, 142–148. [Google Scholar] [CrossRef]
- Deines, J.R.; Clark, F.D.; Yoho, D.E.; Bramwell, R.K.; Rochell, S.J. Effects of hatch window and nutrient access in the hatcher on performance and processing yields of broilers reared with equal hatch window representation. Animals 2021, 11, 1228. [Google Scholar] [CrossRef]
- Van de Laar, W. The first seven days of a broiler’s life—Starting off in a high care facility. Int. Poult. Prod. 2011, 17, 7–9. [Google Scholar]
- De Jong, I.C.; van Hartum, T.; van Riel, J.W.; De Baere, K.; Kempen, I.; Cardinaels, S.; Gunnik, H. Effects of on-farm and traditional hatching on welfare, health and performance of broiler chickens. Poult. Sci. 2020, 99, 4662–4671. [Google Scholar] [CrossRef]
- Zentek, J.; Goodarzi Boroojeni, F. (Bio)Technological processing of poultry and pig feed: Impact on the composition, digestibility, anti-nutritional factors and hygiene. Anim. Feed Sci. Technol. 2020, 268, 114576. [Google Scholar] [CrossRef]
- Noy, Y.; Klan, D. Energy utilization in newly hatched chicks. Poult. Sci. 1999, 78, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity. Anim. Feed Sci. Technol. 2012, 73, 134–158. [Google Scholar] [CrossRef]
- Barekatain, M.R.; Swick, R.A. Composition of more specialised pre-starter and starter diets for young broiler chickens: A review. Anim. Prod. Sci. 2016, 56, 1239–1247. [Google Scholar] [CrossRef]
- Mozdziak, P.E.; Walsh, T.J.; McCoy, D.W. The effect of early posthatch nutrition on satellite cell mitotic activity. Poult. Sci. 2002, 81, 1703–1708. [Google Scholar] [CrossRef]
- Bhuiyan, M.M.; Gao, F.; Chee, S.H.; Iji, P.A. Minimising weight loss in new broiler hatchlings through early feeding of simple sugars. Anim. Prod. Sci. 2011, 51, 1002–1007. [Google Scholar] [CrossRef]
- Bedford, M.R.; Partridge, G.G. (Eds.) Enzymes in Farm: Animal Nutrition; CAB International: Wallingford, UK, 2010. [Google Scholar]
- Selle, P.H.; Ravindran, V. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 2007, 135, 1–41. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Nyachoti, C.M. Review: Supplementation of phytase and carbohydrases to diets for poultry. Can. J. Anim. Sci. 2011, 91, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Cowieson, A.J.; Schliffka, W.; Knap, I.; Roos, F.F.; Schoop, R.; Wilson, J.W. Meta-analysis of effect of a mono-component xylanase on the nutritional value of wheat supplemented with exogenous phytase for broiler chickens. Anim. Prod. Sci. 2015, 56, 2014–2022. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Roos, F.F. Toward optimal value creation through the application of exogenous mono-component protease in the diets of non-ruminants. Anim. Feed Sci. Technol. 2016, 221, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef]
- Bryden, W.L.; Li, X.; Ravindran, G.; Hew, L.I.; Ravindran, V. Ileal Digestible Amino Acid Values in Feedstuffs for Poultry; Rural Industries Research and Development Corporation: Canberra, Australia, 2009; p. 76. ISBN 1-741151-870-9.
- Baker, D.H. Advances in amino acid nutrition and metabolism of swine and poultry. In Nutrient Management of Food Animals to Enhance and Protect the Environment; Kornegay, E.T., Ed.; Lewis Publishers: New York, NY, USA, 1996; pp. 41–53. [Google Scholar]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Wu, G. Amino Acids: Biochemistry and Nutrition; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Wu, G.; Wu, Z.L.; Dai, Z.L. Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 2013, 44, 1107–1113. [Google Scholar] [CrossRef]
- Tzschentke, B.; Plagemann, A. Imprinting and critical periods in early development. Worlds Poult. Sci. J. 2006, 62, 626–637. [Google Scholar] [CrossRef]
- Dibner, J.J.; Richards, J.D.; Knight, C.D. Microbial imprinting in gut development and health. J. Appl. Poult. Res. 2008, 17, 174–178. [Google Scholar] [CrossRef]
- Dixon, L.M.; Sparks, N.H.C.; Rutherford, K.M.D. Early experiences matter: A review of the effects of prenatal environment on offspring characteristics in poultry. Poult. Sci. 2016, 95, 489–499. [Google Scholar] [CrossRef]
- Yan, F.R.; Angel, C.; Ashwell, C.; Mitchell, A.; Christman, M. Evaluation of broiler’s ability to adapt to an early moderate deficiency of phosphorus and calcium. Poult. Sci. 2005, 84, 1232–1241. [Google Scholar] [CrossRef]
- Mwangi, S.; Timmons, J.; Ao, T.; Paul, M.; Macalintal, L.; Pescatore, A.; Canton, A.; Ford, M.; Dawson, K.A. Effect of zinc imprinting and replacing inorganic zinc with organic zinc on early performance of broiler chicks. Poult. Sci. 2017, 96, 861–868. [Google Scholar] [CrossRef]
- Rousseau, X.; Valable, A.S.; L’Etourneau-Montminy, P.; Meme, N.; Godet, E.; Magnin, M.; Nys, Y.; Duclos, M.J.; Narcy, A. Adaptive response of broilers to dietary phosphorus and calcium restrictions. Poult. Sci. 2016, 95, 2849–2960. [Google Scholar] [CrossRef]
- Rubio, L.A. Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poult. Sci. 2019, 98, 695–706. [Google Scholar] [CrossRef]
- Jurburg, S.D.; Brouwer, M.S.M.; Ceccarelli, D.; van der Goot, J.; Jansman, A.J.M.; Bossers, A. Patterns of community assembly in the developing chicken microbiome reveal rapid primary succession. Microbiology 2019, 8, e821. [Google Scholar] [CrossRef]
- Zoetendal, E.G.; Collier, C.T.; Koike, S.; Mackie, R.I.; Gaskins, H.R. Molecular ecological analysis of the gastrointestinal microbiota: A review. J. Nutr. 2004, 134, 465–472. [Google Scholar] [CrossRef]
- Shang, Y.; Kumar, S.; Oakley, B.; Kim, W.K. Chicken gut microbiota: Importance and detection technology. Front. Vet. Sci. 2018, 5, 254. [Google Scholar] [CrossRef]
Age (Days) | Fat Digestibility, % | |
---|---|---|
Tallow | 7 | 36.8 |
14 | 65.3 | |
21 | 73.6 | |
Soybean oil | 7 | 59.1 |
14 | 89.8 | |
21 | 96.5 | |
Poultry fat | 7 | 60.0 |
14 | 84.5 | |
21 | 92.8 |
Day | |||||
---|---|---|---|---|---|
3 | 5 | 7 | 9 | 14 | |
Calcium | 43 | 45 | 40 | 42 | 40 |
Phosphorus * | 60 | 55 | 47 | 49 | 49 |
Potassium * | 49 | 38 | 34 | 35 | 30 |
Sodium * | 95 | 68 | 66 | 63 | 68 |
Magnesium * | 39 | 29 | 26 | 27 | 23 |
Iron * | 34 | 20 | 21 | 24 | 21 |
Manganese * | 25 | 13 | 11 | 17 | 11 |
Zinc * | 28 | 13 | 10 | 13 | 0 |
Copper * | 23 | 12 | 8 | 9 | 4 |
Day | |||||||
---|---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 10 | 14 | 21 | |
Nitrogen-corrected AME | 14.46 a | 12.91 b | 11.93 c | 12.09 c | 12.11 c | 13.22 b | 13.08 b |
Nitrogen retention | 0.821 a | 0.717 b | 0.699 b | 0.635 c | 0.578 d | 0.638 c | 0.625 cd |
Starch digestibility | - | 96.2 a | - | 93.6 b | - | 97.5 a | - |
Fat digestibility | - | 68.7 b | - | 65.1 b | - | 77.5 a | - |
Age (Days) | Fat-Free Tibia Ash. % |
---|---|
1 | 28.7 ± 3.90 |
7 | 42.3 ± 2.67 |
14 | 51.3 ± 2.69 |
21 | 50.0 ± 3.56 |
28 | 49.1 ± 2.94 |
35 | 51.5 ± 2.63 |
42 | 49.3 ± 2.75 1 |
High-quality and highly digestible protein sources |
Good-quality raw materials, with minimal deleterious factors |
Higher than recommended amino acid densities |
No saturated fats |
Good fat quality |
Fish oil to boost immunity |
Optimum feed particle size to promote gizzard development High-quality mini-pellets or crumbles (low fine particles) to minimize selective feeding and promote feed intake Biotechnological processing (microbial fermentation and enzymatic pre-digestion) of feed ingredients to eliminate anti-nutritional factors [113] |
Feed additives that promote commensal gut flora, e.g., probiotics |
Feed additives that improve nutrient digestion or ameliorate the adverse effects of antinutrients, e.g., emulsifiers, exogenous enzymes |
Increased sodium level to promote feed intake and nutrient absorption [114] |
Minimal use of ingredients that cause inflammation |
Higher levels of specific AA, e.g., glutamine, glycine + serine |
Higher levels of specific trace minerals, e.g., zinc |
Additive | Examples | Reasons for Use |
---|---|---|
Enzymes | Xylanases, β-glucanases, phytase, protease | To overcome the anti-nutritional effects of arabinoxylans (in wheat and triticale), β-glucans (in barley), or phytate (in all plant feedstuffs) and to improve the overall nutrient availability and feed value |
Emulsifiers/biosurfactants | Lysophosphatidyl choline | Emulsification and improved lipid digestion |
Antibiotic replacers 1 | ||
| Probiotics | Provision of beneficial bacterial species such as lactobacilli and streptococci |
| Fructo-oligosaccharides (FOS), mannan oligosaccharides (MOS) | Binding of harmful bacteria |
| Propionic acid, diformate | Lowering of gut pH and prevention of the growth of harmful bacteria |
| Herbs, spices, plant extracts, essential oils | Prevention of the growth of harmful bacteria |
| Lysozyme, lactacin F, lactoferrin, α-lactalbumin | Prevention of the growth of harmful bacteria |
Synthetic AA | DL-methionine, L-lysine, L-threonine | Diet formulation based on digestible AA and ideal protein concept |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravindran, V.; Abdollahi, M.R. Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook. Animals 2021, 11, 2795. https://doi.org/10.3390/ani11102795
Ravindran V, Abdollahi MR. Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook. Animals. 2021; 11(10):2795. https://doi.org/10.3390/ani11102795
Chicago/Turabian StyleRavindran, Velmurugu, and M. Reza Abdollahi. 2021. "Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook" Animals 11, no. 10: 2795. https://doi.org/10.3390/ani11102795
APA StyleRavindran, V., & Abdollahi, M. R. (2021). Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook. Animals, 11(10), 2795. https://doi.org/10.3390/ani11102795