Host Diversity and Origin of Zoonoses: The Ancient and the New
Abstract
:Simple Summary
Abstract
1. Introduction
2. Zoonotic Diseases Host Diversity
Chagas Disease
3. Brucellosis and Mycobacterial Diseases: Examples of Ancient Bacterial Zoonoses
3.1. Brucellosis
3.2. Mycobacterial Zoonoses
3.2.1. Bovine Tuberculosis
3.2.2. Avian Tuberculosis
3.2.3. Leprosy
4. Wild Animals and Recent Viral Zoonoses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Morse, S.S.; Mazet, J.A.; Woolhouse, M.; Parrish, C.R.; Carroll, D.; Karesh, W.B.; Zambrana-Torrelio, C.; Lipkin, W.I.; Daszak, P. Prediction and prevention of the next pandemic zoonosis. Lancet (Lond.) 2012, 380, 1956–1965. [Google Scholar] [CrossRef]
- CDC. One Health. Available online: https://www.cdc.gov/onehealth/index.html (accessed on 27 April 2020).
- Salyer, S.J.; Silver, R.; Simone, K.; Barton Behravesh, C. Prioritizing Zoonoses for Global Health Capacity Building-Themes from One Health Zoonotic Disease Workshops in 7 Countries, 2014–2016. Emerg. Infect. Dis. 2017, 23, S55–S64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- One Health. Operational Framework for Strengthening Human, Animal and Environmental Public Health Systems at Their Interface; The World Bank: Washington, DC, USA, 2018; Available online: http://documents.worldbank.org/curated/en/961101524657708673/pdf/122980-REVISED-PUBLIC-World-Bank-One-Health-Framework-2018.pdf (accessed on 27 April 2020).
- UNIDO. Coronavirus: The Economic Impact. 2020. Available online: https://www.unido.org/stories/coronavirus-economic-impact (accessed on 23 May 2020).
- HHS. HHS FY 2018 Budget in Brief—CDC. Available online: https://www.hhs.gov/about/budget/fy2018/budget-in-brief/cdc/index.html#emerging (accessed on 27 April 2020).
- Natarajan, P.; Miller, A. Recreational Infections (Chapter 71). In Infectious Diseases; Cohen, J., Powderly, W.G., Opal, S.M., Eds.; Elsevier Health Sciences: London, UK, 2016. [Google Scholar]
- Karesh, W.B.; Dobson, A.; Lloyd-Smith, J.O.; Lubroth, J.; Dixon, M.A.; Bennett, M.; Aldrich, S.; Harrington, T.; Formenty, P.; Loh, E.H.; et al. Ecology of zoonoses: Natural and unnatural histories. Lancet 2012, 380, 1936–1945. [Google Scholar] [CrossRef]
- CDC. Antibiotic/Antimicrobial Resistance (AR/AMR): Biggest Threats and Data. 2019. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 27 April 2020).
- CDC. Drug-Resistant Nontyphoidal. Salmonella 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/nt-salmonella-508.pdf (accessed on 27 April 2020).
- CDC. Drug-Resistant. Campylobacter 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/campylobacter-508.pdf (accessed on 27 April 2020).
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals. 2017. Available online: https://www.who.int/foodsafety/publications/cia_guidelines/en/ (accessed on 27 April 2020).
- Wilson, D.E.; Reeder, D.M. Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2005. [Google Scholar]
- Luis, A.D.; Hayman, D.T.; O’Shea, T.J.; Cryan, P.M.; Gilbert, A.T.; Pulliam, J.R.; Mills, J.N.; Timonin, M.E.; Willis, C.K.; Cunningham, A.A.; et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? Proc. Biol. Sci. 2013, 280, 20122753. [Google Scholar] [CrossRef] [Green Version]
- Mollentze, N.; Streicker, D.G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. USA 2020, 117, 9423–9430. [Google Scholar] [CrossRef] [Green Version]
- Mohammadpour, R.; Champour, M.; Tuteja, F.; Mostafavi, E. Zoonotic implications of camel diseases in Iran. Vet. Med. Sci. 2020. [Google Scholar] [CrossRef]
- Leslie, T.; Whitehouse, C.A.; Yingst, S.; Baldwin, C.; Kakar, F.; Mofleh, J.; Hami, A.S.; Mustafa, L.; Omar, F.; Ayazi, E.; et al. Outbreak of gastroenteritis caused by Yersinia pestis in Afghanistan. Epidemiol. Infect. 2011, 139, 728–735. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, H.; Wang, W.; Wang, Y.; Han, G.Z.; Chen, H.; Wang, X.A. Unique feature of swine ANP32A provides susceptibility to avian influenza virus infection in pigs. PLoS Pathog. 2020, 16, e1008330. [Google Scholar] [CrossRef] [Green Version]
- Reed, K.D.; Meece, J.K.; Henkel, J.S.; Shukla, S.K. Birds, migration and emerging zoonoses: West Nile virus, lyme disease, influenza A and enteropathogens. Clin. Med. Res. 2003, 1, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Sparagano, O.; George, D.; Giangaspero, A.; Špitalská, E. Arthropods and associated arthropod-borne diseases transmitted by migrating birds. The case of ticks and tick-borne pathogens. Vet. Parasitol. 2015, 213, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Doughty, C.E.; Prys-Jones, T.O.; Faurby, S.; Abraham, A.J.; Hepp, C.; Leshyk, V.; Fofanov, V.Y.; Nieto, N.C.; Svenning, J.-C.; Galetti, M. Megafauna decline have reduced pathogen dispersal which may have increased emergent infectious diseases. Ecography 2020. [Google Scholar] [CrossRef]
- Urdaneta-Morales, S. Chagas’ disease: An emergent urban zoonosis. The caracas valley (Venezuela) as an epidemiological model. Front. Public Health 2014, 2, 265. [Google Scholar] [CrossRef] [Green Version]
- Jansen, A.M.; Xavier, S.C.D.C.; Roque, A.L.R. Trypanosoma cruzi transmission in the wild and its most important reservoir hosts in Brazil. Parasit. Vectors 2018, 11, 502. [Google Scholar] [CrossRef]
- Coura, J.R. Chagas disease: What is known and what is needed—A background article. Mem. Inst. Oswaldo Cruz. 2007, 102, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Barrias, E.S.; de Carvalho, T.M.U.; De Souza, W. Trypanosoma cruzi: Entry into Mammalian Host Cells and Parasitophorous Vacuole Formation. Front. Immunol. 2013, 4, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spickler, A.R. Zoonotic Diseases. In Merck Veterinary Manual; Merck & Co. Inc: Kenilworth, NJ, USA, 2020; Available online: https://www.merckvetmanual.com/public-health/zoonoses/zoonotic-diseases (accessed on 27 April 2020).
- GOV.UK. List of Zoonotic Diseases. 2019. Available online: https://www.gov.uk/government/publications/list-of-zoonotic-diseases (accessed on 27 April 2020).
- Corbel, M.J. Brucellosis in Humans and Animals; FAO: Rome, Italy; OIE: Paris, France; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Biet, F.; Boschiroli, M.L.; Thorel, M.F.; Guilloteau, L.A. Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (MAC). Vet. Res. 2005, 36, 411–436. [Google Scholar] [CrossRef] [Green Version]
- Erazo, D.; Gottdenker, N.L.; Gonzalez, C.; Guhl, F.; Cuellar, M.; Kieran, T.J.; Glenn, T.C.; Umaña, J.D.; Cordovez, J. Generalist host species drive Trypanosoma cruzi vector infection in oil palm plantations in the Orinoco region, Colombia. Parasit. Vectors. 2019, 12, 274. [Google Scholar] [CrossRef] [Green Version]
- Roegner, A.F.; Daniels, M.E.; Smith, W.A.; Gottdenker, N.; Schwartz, L.M.; Liu, J.; Campbell, A.; Fiorello, C.V. Giardia Infection and Trypanosoma Cruzi Exposure in Dogs in the Bosawás Biosphere Reserve, Nicaragua. EcoHealth 2019, 16, 512–522. [Google Scholar] [CrossRef]
- Pinto, C.M.; Ocaña-Mayorga, S.; Tapia, E.E.; Lobos, S.E.; Zurita, A.P.; Aguirre-Villacís, F.; MacDonald, A.; Villacís, A.G.; Lima, L.; Teixeira, M.M.; et al. Bats, Trypanosomes, and Triatomines in Ecuador: New Insights into the Diversity, Transmission, and Origins of Trypanosoma cruzi and Chagas Disease. PLoS ONE 2015, 10, e0139999. [Google Scholar] [CrossRef]
- Ramírez, J.D.; Hernández, C.; Montilla, M.; Zambrano, P.; Flórez, A.C.; Parra, E.; Cucunubá, Z.M. First report of human Trypanosoma cruzi infection attributed to TcBat genotype. Zoonoses Public Health 2014, 61, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Halliday, J.; Carugati, M.; Snavely, M.E.; Allan, K.J.; Beamesderfer, J.; Ladbury, G.; Hoyle, D.V.; Holland, P.; Crump, J.A.; Cleaveland, S.; et al. Zoonotic causes of febrile illness in malaria endemic countries: A systematic review. Lancet Infect. Dis. 2020, 20, e27–e37. [Google Scholar] [CrossRef] [PubMed]
- Ortner, D.J. Human skeletal paleopathology. Int. J. Paleopathol. 2011, 1, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Kay, G.L.; Sergeant, M.J.; Giuffra, V.; Bandiera, P.; Milanese, M.; Bramanti, B.; Bianucci, R.; Pallen, M.J. Recovery of a Medieval Brucella melitensis Genome Using Shotgun Metagenomics. mBio 2014, 5, e01337-14. [Google Scholar] [CrossRef] [Green Version]
- Zou, D.; Zhou, J.; Jiang, X. Diagnosis and management of spinal tuberculosis combined with brucellosis: A case report and literature review. Exp. Ther. Med. 2018, 15, 3455–3458. [Google Scholar] [CrossRef] [Green Version]
- Sathyanarayanan, V.; Razak, A.; Saravu, K.; Ananthakrishna, S.B.; Mukhyprana Prabhu, M.; Vandana, K.E. Clinical profile of brucellosis from a tertiary care center in southern India. Asian Pac. J. Trop. Med. 2011, 4, 397–400. [Google Scholar] [CrossRef] [Green Version]
- Cross, A.R.; Baldwin, V.M.; Roy, S.; Essex-Lopresti, A.E.; Prior, J.L.; Harmer, N.J. Zoonoses under our noses. Microbes Infect. 2019, 21, 10–19. [Google Scholar] [CrossRef]
- McDermott, J.; Grace, D.; Zinsstag, J. Economics of brucellosis impact and control in low-income countries. Rev. Sci. Tech. 2013, 32, 249–261. [Google Scholar] [CrossRef] [Green Version]
- FAO. The Monetary Impact of Zoonotic Diseases on Society Evidence from Three Zoonoses in Kenya; FAO: Nairobi, Kenya, 2018; Available online: http://www.fao.org/3/i8968en/I8968EN.pdf (accessed on 23 May 2020).
- D’Anastasio, R.; Zipfel, B.; Moggi-Cecchi, J.; Stanyon, R.; Capasso, L. Possible brucellosis in an early hominin skeleton from sterkfontein, South Africa. PLoS ONE 2009, 4, e6439. [Google Scholar] [CrossRef]
- D’Anastasio, R.; Staniscia, T.; Milia, M.L.; Manzoli, L.; Capasso, L. Origin, evolution and paleoepidemiology of brucellosis. Epidemiol. Infect. 2011, 139, 149–156. [Google Scholar] [CrossRef]
- Bendrey, R.; Cassidy, J.P.; Fournié, G.; Merrett, D.C.; Oakes, R.H.A.; Taylor, G.M. Approaching ancient disease from a One Health perspective: Interdisciplinary review for the investigation of zoonotic brucellosis. Int. J. Osteoarchaeol. 2020, 30, 99–108. [Google Scholar] [CrossRef]
- Forbes, B.A.; Hall, G.S.; Miller, M.B.; Novak, S.M.; Rowlinson, M.-C.; Salfinger, M.; Somoskövi, A.; Warshauer, D.M.; Wilson, M.L. Practice Guidelines for Clinical Microbiology Laboratories: Mycobacteria. Clin. Microbiol. Rev. 2018, 31, e00038-17. [Google Scholar] [CrossRef] [Green Version]
- WHO. Global Tuberculosis Report 2019. Available online: https://www.who.int/tb/publications/global_report/en/ (accessed on 23 May 2020).
- Bartosiewicz, L.; Gal, E. Chapter 9: Inflammatory diseases and bone. In Shuffling Nags Lame Ducks: The Archaeology of Animal Disease; Oxbow Books Limited: Oxford, UK, 2013. [Google Scholar]
- Buzic, I.; Giuffra, V. The paleopathological evidence on the origins of human tuberculosis: A review. J. Prev. Med. Hyg. 2020, 61 (Suppl. 1), E3–E8. [Google Scholar] [CrossRef] [PubMed]
- Bos, K.I.; Harkins, K.M.; Herbig, A.; Coscolla, M.; Weber, N.; Comas, I.; Forrest, S.A.; Bryant, J.M.; Harris, S.R.; Schuenemann, V.J.; et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 2014, 514, 494–497. [Google Scholar] [CrossRef] [PubMed]
- CDC. Mycobacterium bovis (Bovine Tuberculosis) in Humans. 2011. Available online: https://www.cdc.gov/tb/publications/factsheets/general/mbovis.pdf (accessed on 23 May 2020).
- OIE. Bovine Tuberculosis (World Organisation for Animal Health). 2020. Available online: https://www.oie.int/en/animal-health-in-the-world/animal-diseases/Bovine-tuberculosis/ (accessed on 23 May 2020).
- Thoen, C.O.; LoBue, P.A.; de Kantor, I. Why has zoonotic tuberculosis not received much attention? Int. J. Tuberc. Lung Dis. 2010, 14, 1073–1074. [Google Scholar] [PubMed]
- Thoen, C.; Lobue, P.; de Kantor, I. The importance of Mycobacterium bovis as a zoonosis. Vet. Microbiol. 2006, 112, 339–345. [Google Scholar] [CrossRef]
- Olea-Popelka, F.; Muwonge, A.; Perera, A.; Dean, A.S.; Mumford, E.; Erlacher-Vindel, E.; Forcella, S.; Silk, B.J.; Ditiu, L.; El Idrissi, A.; et al. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis-a call for action. Lancet Infect. Dis. 2017, 17, e21–e25. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, M.J.; Meyerson, J.; Bartlett, P.C.; Spieldenner, S.L.; Berry, D.E.; Mosher, L.B.; Kaneene, J.B.; Robinson-Dunn, B.; Stobierski, M.G.; Boulton, M.L. Human Mycobacterium bovis infection and bovine tuberculosis outbreak, Michigan, 1994–2007. Emerg. Infect. Dis. 2008, 14, 657–660. [Google Scholar] [CrossRef]
- Byrom, A.E.; Caley, P.; Paterson, B.M.; Nugent, G. Feral ferrets (Mustela furo) as hosts and sentinels of tuberculosis in New Zealand. N. Z. Vet. J. 2015, 63, 42–53. [Google Scholar] [CrossRef]
- Eslami, M.; Shafiei, M.; Ghasemian, A.; Valizadeh, S.; Al-Marzoqi, A.H.; Shokouhi Mostafavi, S.K.; Nojoomi, F.; Mirforughi, S.A. Mycobacterium avium paratuberculosis and Mycobacterium avium complex and related subspecies as causative agents of zoonotic and occupational diseases. J. Cell. Physiol. 2019, 234, 12415–12421. [Google Scholar] [CrossRef]
- Truman, R. Leprosy in wild armadillos. Lepr. Rev. 2005, 76, 198–208. [Google Scholar] [PubMed]
- Truman, R.W.; Shannon, E.J.; Hagstad, H.V.; Hugh-Jones, M.E.; Wolff, A.; Hastings, R.C. Evaluation of the origin of Mycobacterium leprae infections in the wild armadillo, Dasypus novemcinctus. Am. J. Trop. Med. Hyg. 1986, 35, 588–593. [Google Scholar] [CrossRef]
- Truman, R.W.; Singh, P.; Sharma, R.; Busso, P.; Rougemont, J.; Paniz-Mondolfi, A.; Kapopoulou, A.; Brisse, S.; Scollard, D.M.; Gillis, T.P.; et al. Probable zoonotic leprosy in the southern United States. N. Engl. J. Med. 2011, 364, 1626–1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, I.V.P.D.M.; Deps, P.D.; Antunes, J.M.A.D.P. Armadillos and leprosy: From infection to biological model. Rev. Inst. Med. Trop. Sao Paulo 2019, 61, e44. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.B.; Portela, J.M.; Li, W.; Jackson, M.; Gonzalez-Juarrero, M.; Hidalgo, A.S.; Belisle, J.T.; Bouth, R.C.; Gobbo, A.R.; Barreto, J.G.; et al. Evidence of zoonotic leprosy in Para, Brazilian Amazon, and risks associated with human contact or consumption of armadillos. PLoS Negl. Trop. Dis. 2018, 12, e0006532. [Google Scholar] [CrossRef]
- Avanzi, C.; Del-Pozo, J.; Benjak, A.; Stevenson, K.; Simpson, V.R.; Busso, P.; McLuckie, J.; Loiseau, C.; Lawton, C.; Schoening, J.; et al. Red squirrels in the British Isles are infected with leprosy bacilli. Science 2016, 354, 744–747. [Google Scholar] [CrossRef] [Green Version]
- Schuenemann, V.J.; Avanzi, C.; Krause-Kyora, B.; Seitz, A.; Herbig, A.; Inskip, S.; Bonazzi, M.; Reiter, E.; Urban, C.; Dangvard Pedersen, D.; et al. Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathog. 2018, 14, e1006997. [Google Scholar] [CrossRef]
- Schuenemann, V.J.; Singh, P.; Mendum, T.A.; Krause-Kyora, B.; Jager, G.; Bos, K.I.; Herbig, A.; Economou, C.; Benjak, A.; Busso, P.; et al. Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 2013, 341, 179–183. [Google Scholar] [CrossRef]
- Honap, T.P.; Pfister, L.A.; Housman, G.; Mills, S.; Tarara, R.P.; Suzuki, K.; Cuozzo, F.P.; Sauther, M.L.; Rosenberg, M.S.; Stone, A.C. Mycobacterium leprae genomes from naturally infected nonhuman primates. PLoS Negl. Trop. Dis. 2018, 12, e0006190. [Google Scholar] [CrossRef] [Green Version]
- Housman, G.; Malukiewicz, J.; Boere, V.; Grativol, A.D.; Pereira, L.C.; Silva Ide, O.; Ruiz-Miranda, C.R.; Truman, R.; Stone, A.C. Validation of qPCR Methods for the Detection of Mycobacterium in New World Animal Reservoirs. PLoS Negl. Trop. Dis. 2015, 9, e0004198. [Google Scholar] [CrossRef]
- Hahn, B.H.; Shaw, G.M.; De Cock, K.M.; Sharp, P.M. AIDS as a zoonosis: Scientific and public health implications. Science 2000, 287, 607–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouquet, P.; Froment, J.M.; Bermejo, M.; Kilbourn, A.; Karesh, W.; Reed, P.; Kumulungui, B.; Yaba, P.; Délicat, A.; Rollin, P.E.; et al. Wild animal mortality monitoring and human Ebola outbreaks, Gabon and Republic of Congo, 2001–2003. Emerg. Infect. Dis. 2005, 11, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, M.; Rodriguez-Teijeiro, J.D.; Illera, G.; Barroso, A.; Vila, C.; Walsh, P.D. Ebola outbreak killed 5000 gorillas. Science 2006, 314, 1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volpato, G.; Fontefrancesco, M.F.; Gruppuso, P.; Zocchi, D.M.; Pieroni, A. Baby pangolins on my plate: Possible lessons to learn from the COVID-19 pandemic. J. Ethnobiol. Ethnomed. 2020, 16, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahase, E. Coronavirus: Covid-19 has killed more people than SARS and MERS combined, despite lower case fatality rate. BMJ 2020, 368, m641. [Google Scholar] [CrossRef] [Green Version]
- Worldometer. 2020. Available online: https://www.worldometers.info/coronavirus/ (accessed on 4 July 2020).
- Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Boni, M.F.; Lemey, P.; Jiang, X.; Lam, T.T.-Y.; Perry, B.W.; Castoe, T.A.; Rambaut, A.; Robertson, D.L. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 2020. [Google Scholar] [CrossRef]
- Almeida, M.A.B.; Cardoso, J.D.C.; Dos Santos, E.; da Fonseca, D.F.; Cruz, L.L.; Faraco, F.J.C.; Rambaut, A.; Robertson, D.L. Surveillance for yellow Fever virus in non-human primates in southern Brazil, 2001–2011: A tool for prioritizing human populations for vaccination. PLoS Negl. Trop. Dis. 2014, 8, e2741. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, N.C.C.D.A.; Cunha, M.S.; Guerra, J.M.; Réssio, R.A.; Cirqueira, C.D.S.; Iglezias, S.D.A.; de Carvalho, J.; Araujo, E.L.L.; Catão-Dias, J.L.; Díaz-Delgado, J. Outbreak of Yellow Fever among Nonhuman Primates, Espirito Santo, Brazil, 2017. Emerg. Infect. Dis. 2017, 23, 2038–2041. [Google Scholar] [CrossRef] [Green Version]
- Allen, T.; Murray, K.A.; Zambrana-Torrelio, C.; Morse, S.S.; Rondinini, C.; Di Marco, M.; Breit, N.; Olival, K.J.; Daszak, P. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 2017, 8, 1124. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- The Lancet. Zoonoses: Beyond the human-animal-environment interface. Lancet 2020, 396, 1. [Google Scholar] [CrossRef]
Disease | Causative Pathogen | Region | Main Reservoirs | Mode of Transmission to Humans |
---|---|---|---|---|
Chagas disease | Trypanosoma cruzi | Southern USA, Central and South America | Opossums, rodents, armadillos, dogs, cats, and other mammals including monkeys (7 orders of mammals) | Contact with the fecal material of Triatominae bug, ingestion of contaminated food; blood transfusion |
Brucellosis | Brucella spp. (B. abortus, B. melitensis, B. suis, B. canis, B. pinnipedialis, and B. ceti | Worldwide | Cattle, bison, water buffalo, African buffalo, elk, deer, sheep, goats, camels, swine, and wild pigs (B. suis); dogs and wild canids (B. canis); marine mammals (B. pinnipedialis and B. ceti) | Ingestion of unpasteurized dairy products or undercooked meat, contact with mucous membranes, and broken skin |
Tuberculosis (bovine) | Mycobacterium bovis | Previously worldwide, now mostly eradicated or rare (Africa and Southeast Asia) | Cattle, bison, African buffalo, cervids, brushtail possums, badgers, kudu can be reservoirs | Ingestion (unpasteurized dairy products, undercooked meat including bushmeat), inhalation, contamination of breaks in the skin |
Disease | Causative Pathogen | Region | Main Reservoirs ** | Mode of Transmission to Humans |
---|---|---|---|---|
Severe acute respiratory syndrome (SARS) | SARS-CoV coronavirus | China origin in 2002, with spread to southeast Asia | Civet | Direct and indirect contact, respiratory droplets |
Middle East Respiratory Syndrome (MERS) | MERS-CoV coronavirus | Middle East (Arabian Peninsula, origin in Saudi Arabia in 2012) with some travel spreading to other countries | Dromedary camels | Probably direct and indirect contact |
COVID-19 | SARS-CoV-2 coronavirus | China origin in 2019, gradually spreading globally in early 2020 | Undetermined, probably wild animals sold at the market | Probably direct and indirect contact |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recht, J.; Schuenemann, V.J.; Sánchez-Villagra, M.R. Host Diversity and Origin of Zoonoses: The Ancient and the New. Animals 2020, 10, 1672. https://doi.org/10.3390/ani10091672
Recht J, Schuenemann VJ, Sánchez-Villagra MR. Host Diversity and Origin of Zoonoses: The Ancient and the New. Animals. 2020; 10(9):1672. https://doi.org/10.3390/ani10091672
Chicago/Turabian StyleRecht, Judith, Verena J. Schuenemann, and Marcelo R. Sánchez-Villagra. 2020. "Host Diversity and Origin of Zoonoses: The Ancient and the New" Animals 10, no. 9: 1672. https://doi.org/10.3390/ani10091672
APA StyleRecht, J., Schuenemann, V. J., & Sánchez-Villagra, M. R. (2020). Host Diversity and Origin of Zoonoses: The Ancient and the New. Animals, 10(9), 1672. https://doi.org/10.3390/ani10091672