Midazolam Alters Acid-Base Status Less than Azaperone during the Capture and Transport of Southern White Rhinoceroses (Ceratotherium simum simum)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Capture
2.2. Transport
2.3. Sample Collection and Analysis
2.4. Calculated Variables
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Changes in Acid-Base Status during Capture and Transport
4.2. Difference in Acid-Base Status between the Groups
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Emslie, R. Ceratotherium simum ssp. simum. The IUCN Red List of Threatened Species 2020:e.T39317A45814320. Version 2020-1. 2020. Available online: https://dx.doi.org/10.2305/IUCN.UK.2020-1.RLTS.T39317A45814320.en (accessed on 23 July 2020).
- Emslie, R.; Milliken, T.; Talukdar, B.; Burgess, G.; Adcock, K.; Balfour, D.; Knight, M. African and Asian Rhinoceroses—Status, Conservation and Trade. Revisions to Resolution Conf. 9.14 (Rev. CoP17) on Conservation of and trade in African and Asian rhinoceroses, and associated decisions; CoP18 Doc. 83.2; Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). 2019, p. 13. Available online: https://cites.org/sites/default/files/eng/cop/18/doc/E-CoP18-083-02.pdf (accessed on 22 June 2020).
- Ferreira, S.M.; Bissett, C.; Cowell, C.R.; Gaylard, A.; Greaver, C.; Hayes, J.; Hofmeyr, M.; Moolman-van der Vyver, L.; Zimmermann, D. The status of rhinoceroses in South African National Parks. Koedoe 2017, 59, a1392. [Google Scholar] [CrossRef]
- Knight, M.H.; Emslie, R.H.; Smart, R.; Balfour, D. Biodiversity Management Plan for The White Rhinoceros (Ceratotherium simum) in South Africa 2015–2020; Department of Environmental Affairs: Pretoria, South Africa, 2015; p. 84. Available online: https://conservationaction.co.za/wp-content/uploads/2015/05/draftrhinoreport.pdf (accessed on 22 June 2020).
- Emslie, R.; Amin, R.; Kock, R. Guidelines for the in situ Re-introduction and Translocation of African and Asian Rhinoceros; Emslie, R.H., Amin, R., Kock, R., Eds.; IUCN: Gland, Switzerland, 2009; p. vi+115. [Google Scholar] [CrossRef] [Green Version]
- IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations. The Reintroduction and Invasive Species Specialist Groups’ Task Force on Moving Plants and Animals for Conservation Purposes; Version 1.0; IUCN Species Survival Commission: Gland, Switzerland, 2013; p. 57. Available online: https://portals.iucn.org/library/sites/library/files/documents/2013-009.pdf (accessed on 22 June 2020).
- Dickens, M.J.; Delehanty, D.J.; Romero, L.M. Stress: An inevitable component of animal translocation. Biol. Conserv. 2010, 143, 1329–1341. [Google Scholar] [CrossRef]
- Miller, M.; Kruger, M.; Kruger, M.; Olea-Popelka, F.; Buss, P. A scoring system to improve decision making and outcomes in the adaptation of recently captured white rhinoceroses (Ceratotherium simum) to captivity. J. Wildl. Dis. 2016, 52, S78–S85. [Google Scholar] [CrossRef] [PubMed]
- Hopper, K.; Haskins, S.C. A case-based review of a simplified quantitative approach to acid-base analysis. J. Vet. Emerg. Crit. Care 2008, 18, 467–476. [Google Scholar] [CrossRef]
- Mitchell, J.H.; Wildenthal, K.; Johnson, R.L. The effects of acid-base disturbances on cardiovascular and pulmonary function. Kidney Int. 1972, 1, 375–389. [Google Scholar] [CrossRef] [Green Version]
- Bush, M.; Raath, J.P.; Grobler, D.; Klein, L. Severe hypoxaemia in field-anaesthetised white rhinoceros (Ceratotherium simum) and effects of using tracheal insufflation of oxygen. J. S. Afr. Vet. Assoc. 2004, 75, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Buss, P.; Olea-Popelka, F.; Meyer, L.; Hofmeyr, J.; Mathebula, N.; Kruger, M.; Brüns, A.; Martin, L.; Miller, M. Evaluation of Cardiorespiratory, Blood Gas, and Lactate Values during Extended Immobilization of White Rhinoceros (Ceratotherium Simum). J. Zoo Wildlife Med. 2015, 46, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.; Buss, P.; Joubert, J.; Mathebula, N.; Kruger, M.; Martin, L.; Hofmeyr, M.; Olea-Popelka, F. Use of butorphanol during immobilization of free-ranging White Rhinoceros (Ceratotherium simum). J. Zoo Wildlife Med. 2013, 44, 55–61. [Google Scholar] [CrossRef]
- Haw, A.; Hofmeyr, M.; Fuller, A.; Buss, P.; Miller, M.; Fleming, G.; Meyer, L. Butorphanol with oxygen insufflation corrects etorphine-induced hypoxaemia in chemically immobilized white rhinoceros (Ceratotherium simum). BMC Vet. Res. 2014, 10, 253. [Google Scholar] [CrossRef] [Green Version]
- Henderson, L.J. Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am. J. Physiol. 1908, 21, 173–179. [Google Scholar] [CrossRef]
- Hasselbalch, K.A. Die Berechnung der Wasserstoffzahl des Blutes aus der freien und gebundenen Kohlensäure desselben, und die Sauerstoffbindung des Blutes als Funktion der Wasserstoffzahl. Biochemische Zeitschrift 1916, 78, 112–144. (In German) [Google Scholar]
- Constable, P.D. Clinical Assessment of Acid-Base Status: Comparison of the Henderson-Hasselbalch and Strong Ion Approaches. Vet. Clin. Pathol. 2000, 29, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Boesch, J.M.; Gleed, R.D.; Buss, P.; Hofmeyr, M.; Tordiffe, A.; Zeiler, G.; Meyer, L. Effects of a Supplemental Etorphine Dose on Pulmonary Artery Pressure and Cardiac Output in Immobilized, Boma-Habituated White Rhinoceros (Ceratotherium simum): A Preliminary Study. J. Zoo Wildlife Med. 2018, 49, 849–855. [Google Scholar] [CrossRef]
- Buss, P.; Miller, M.; Fuller, A.; Haw, A.; Stout, E.; Olea-Popelka, F.; Meyer, L. Postinduction butorphanol administration alters oxygen consumption to improve blood gases in etorphine-immobilized white rhinoceros. Vet. Anaesth. Analg. 2018, 45, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Portas, T.J. A review of drugs and techniques used for sedation and anaesthesia in captive rhinoceros species. Aust. Vet. J. 2004, 82, 542–549. [Google Scholar] [CrossRef]
- Miller, M.A.; Buss, P.E. Rhinoceridae (Rhinoceroses). In Fowler’s Zoo and Wild Animal Medicine; Miller, R.E., Fowler, M.E., Eds.; W.B. Saunders: St. Louis, MO, USA, 2015; Volume 8, pp. 538–547. [Google Scholar] [CrossRef]
- van Zijll Langhout, M.; Caraguel, C.G.B.; Raath, J.P.; Boardman, W.S.J. Evaluation of etorphine and midazolam anesthesia, and the effect of intravenous butorphanol on cardiopulmonary parameters in game-ranched white rhinoceroses (Ceratotherium simum). J. Zoo Wildlife Med. 2016, 47, 827–833. [Google Scholar] [CrossRef]
- Tallman, J.F.; Paul, S.M.; Skolnick, P.; Gallager, D.W. Receptors for the Age of Anxiety: Pharmacology of the Benzodiazepines. Science 1980, 207, 274–281. [Google Scholar] [CrossRef]
- Meyer, L.C.R.; Fuller, A.; Hofmeyr, M.; Buss, P.; Miller, M.; Haw, A. Use of butorphanol and diprenorphine to counter respiratory impairment in the immobilised white rhinoceros (Ceratotherium simum). J. S. Afr. Vet. Assoc. 2018, 89, a1683. [Google Scholar] [CrossRef]
- Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). CITES guidelines for the non-air transport of live wild animals and plants. Conference of the Parties to CITES at its sixteenth meeting (CoP16). Bangkok. 2013. Available online: https://www.cites.org/eng/resources/transport/index.php (accessed on 22 June 2020).
- Morkel, P.; Kennedy-Benson, A. Translocating Black Rhino. Current Techniques for Capture, Transport, Boma Care, Release and Post-Release Monitoring; IUCN SSC, 2007; p. 85. Available online: http://www.rhinoresourcecenter.com/pdf_files/119/1193229746.pdf (accessed on 22 June 2020).
- Stewart, P.A. Modern quantitative acid–base chemistry. Can. J. Physiol. Pharmacol. 1983, 61, 1444–1461. [Google Scholar] [CrossRef]
- Constable, P.D. A simplified strong ion model for acid-base equilibria: Application to horse plasma. J. Appl. Physiol. 1997, 83, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Wellman, M.L.; DiBartola, S.P.; Kohn, C.W. Applied Physiology of Body Fluids in Dogs and Cats. In Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice, 4th ed.; DiBartola, S.P., Ed.; W.B. Saunders: Saint Louis, MO, USA, 2012; pp. 2–25. [Google Scholar] [CrossRef]
- DiBartola, S.P. Applied Renal Physiology. In Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice, 4th ed.; DiBartola, S.P., Ed.; W.B. Saunders: Saint Louis, MO, USA, 2012; pp. 26–43. [Google Scholar] [CrossRef]
- Hooijberg, E.H.; Steenkamp, G.; Buss, P.; Goddard, A. Method comparison and generation of plasma biochemistry RIs for the White rhinoceros on a point-of-care and wet chemistry analyzer. Vet. Clin. Pathol. 2017, 46, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Seal, U.S.; Barton, R.; Mather, L.; Gray, C.W. Baseline laboratory data for the white rhinoceros (Ceratotherium simum). J. Zoo Anim. Med. 1976, 7, 11–16. [Google Scholar]
- Citino, S.B.; Bush, M. Reference cardiopulmonary physiologic parameters for standing, unrestrained white rhinoceroses (Ceratotherium simum). J. Zoo Wildlife Med. 2007, 38, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Mathebula, N.; Miller, M.; Buss, P.; Joubert, J.; Martin, L.; Kruger, M.; Hofmeyr, M.; Olea-Popelka, F. Biochemical values in free-ranging white rhinoceros (Ceratotherium simum) in Kruger National Park, South Africa. J. Zoo Wildlife Med. 2012, 43, 530–538. [Google Scholar] [CrossRef]
- Cole, G.C.; Tordiffe, A.S.W.; Steenkamp, G. Assessment of a portable lactate meter for field use in the white rhinoceros (Ceratotherium simum). Onderstepoort J. Vet. Res. 2017, 84, e1–e10. [Google Scholar] [CrossRef] [Green Version]
- Navarro, M.; Monreal, L.; Segura, D.; Armengou, L.; Añor, S. A Comparison of Traditional and Quantitative Analysis of Acid-Base and Electrolyte Imbalances in Horses with Gastrointestinal Disorders. J. Vet. Intern. Med. 2005, 19, 871–877. [Google Scholar] [CrossRef]
- Viu, J.; Jose-Cunilleras, E.; Armengou, L.; Cesarini, C.; TarancÓN, I.; Rios, J.; Monreal, L. Acid-base imbalances during a 120 kmdurance race compared by traditional and simplified strong ion difference methods. Equine Vet. J. 2010, 42, 76–82. [Google Scholar] [CrossRef]
- R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria, 2019. Available online: http://www.R-project.org (accessed on 23 July 2020).
- McCrimmon, D.R.; Alheid, G.F. On the opiate trail of respiratory depression. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R1274–R1275. [Google Scholar] [CrossRef] [Green Version]
- Heard, D.J.; Olsen, J.H.; Stover, J. Cardiopulmonary changes associated with chemical immobilization and recumbency in a white rhinoceros (Ceratotherium simum). J. Zoo Wildlife Med. 1992, 23, 197–200. Available online: www.jstor.org/stable/20095208 (accessed on 22 June 2020).
- DiBartola, S.P. Introduction to Acid-Base Disorders. In Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice, 4th ed.; DiBartola, S.P., Ed.; W.B. Saunders: Saint Louis, MO, USA, 2012; pp. 231–252. [Google Scholar] [CrossRef]
- de Morais, H.A.; Constable, P.D. Strong Ion Approach to Acid-Base Disorders. In Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice, 4th ed.; DiBartola, S.P., Ed.; W.B. Saunders: Saint Louis, MO, USA, 2012; pp. 316–329. [Google Scholar] [CrossRef]
- Phypers, B.; Pierce, J.M.T. Lactate physiology in health and disease. Contin. Educ. Anaesth. Crit. Care Pain 2006, 6, 128–132. [Google Scholar] [CrossRef]
- Austin, A.W.; Patterson, S.M.; von Känel, R. Hemoconcentration and Hemostasis During Acute Stress: Interacting and Independent Effects. Ann. Behav. Med. 2011, 42, 153–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marik, P.E.; Bellomo, R. Stress hyperglycemia: An essential survival response! Crit. Care Med. 2013, 17, 305. [Google Scholar] [CrossRef] [PubMed]
- Rastegar, A.; Soleimani, M. Hypokalaemia and hyperkalaemia. Postgrad. Med. J. 2001, 77, 759–764. [Google Scholar] [CrossRef]
- Dugdale, A. Veterinary Anaesthesia. Principles to practice; Wiley-Blackwell: Oxford, UK, 2010; p. 400. [Google Scholar]
- Malatesha, G.; Singh, N.K.; Bharija, A.; Rehani, B.; Goel, A. Comparison of arterial and venous pH, bicarbonate, Pco2 and Po2 in initial emergency department assessment. Emerg. Med. J. 2007, 24, 569–571. [Google Scholar] [CrossRef] [Green Version]
- Miller, M. Effect of venipuncture site and anticoagulant on selected hematologic values in black rhinoceros (Diceros bicornis). J. Zoo Wildlife Med. 2003, 34, 59–64. [Google Scholar] [CrossRef]
Variable (Unit) | Group | Time | ||||
---|---|---|---|---|---|---|
TC | T0 | T2 | T4 | T6 | ||
pH | A | 7.109 ± 0.099 | 7.441 ± 0.035 | 7.443 ± 0.04 | 7.479 ± 0.055 | 7.474 ± 0.068 |
M | 7.196 ± 0.111 | 7.430 ± 0.057 | 7.463 ± 0.037 | 7.469 ± 0.046 | 7.474 ± 0.056 | |
Traditional (Henderson-Hasselbalch) blood acid-base variables | ||||||
PCO2 | A | 73.3 ± 9.9 | 49.6 ± 0.1 | 51.2 ± 6.6 | 46.1 ±7.1 | 45.9 ± 8.9 |
(mmHg) | M | 65.4 ± 10.3 | 48.7 ± 7.4 | 47.6 ± 6.6 | 46.6 ± 6.9 | 46.7 ± 8.0 |
HCO3− | A | 23.7 ± 5.3 | 33.9 ± 2.0 | 34.8 ± 2.1 | 33.9 ± 1.7 | 33.1 ± 2.2 |
(mmol/L) | M | 25.9 ± 5.8 | 32.5 ± 4.6 | 33.8 ± 3.0 | 33.6 ± 2.6 | 33.9 ± 3.0 |
BE | A | −5.8 ± 6.7 | 9.7 ± 1.8 | 10.7 ± 2.3 | 10.4 ± 1.2 | 9.5 ± 2.0 |
(mmol/L) | M | −2.2 ± 7.3 | 8.3 ± 5.1 | 10.0 ± 2.9 | 9.9 ± 2.4 | 11.3 ± 4.5 |
AG | A | 21 ± 5 | 12 ± 1 | 11 ± 2 | 12 ± 2 | 13 ± 2 |
(mmol/L) | M | 17 ± 5 | 13 ± 4 | 12 ± 2 | 13 ±2 | 13 ± 2 |
Lactate | A | 12.04 ± 4.21 | 2.38 ± 0.93 | 2.01 ± 0.93 | 2.41 ± 1.57 | 2.54 ± 1.67 |
(mmol/L) | M | 8.82 ± 5.07 | 3.77 ± 3.23 | 2.32 ± 1.17 | 2.91 ± 1.35 | 2.71 ± 0.91 |
Quantitative (Stewart’s) blood acid-base variables | ||||||
SIDm | A | 35.2 ± 5.4 | 46.0 ± 1.7 | 46.1 ± 1.5 | 46.1 ± 1.0 | 45.9 ± 2.4 |
(mmol/L) | M | 36.7 ± 5.8 | 44.4 ± 4.5 | 45.7 ± 2.7 | 45.5 ± 2.6 | 46.7 ± 2.2 |
Atot | A | 17.5 ± 0.6 | 15.5 ± 1.3 | 15.9 ± 1.3 | 15.7 ± 1.3 | 15.4 ± 1.3 |
(mmol/L) | M | 17.2 ± 0.7 | 14.9 ± 0.5 | 15.3 ± 0.7 | 15.1 ± 0.5 | 15.1 ± 0.5 |
SIG | A | −8.0 ± 5.4 | 1.1 ± 1.9 | 2.7 ± 1.7 | 1.3 ± 2.2 | 0.4 ± 1.7 |
(mmol/L) | M | −3.6 ± 5.8 | −0.5 ± 3.5 | 2.1 ± 4.0 | 0.48 ± 1.79 | 1.9 ± 3.9 |
Osmolality | A | 291.1 ± 9.4 | 286.2 ± 8.9 | 286.7 ± 7.2 | ||
(mOsm/kg) | M | 289.4 ± 8.0 | 288.8 ± 7.7 | 286.8 ± 6.7 |
pH | PCO2 (mmHg) | HCO3− (mmol/L) | BE (mmol/L) | AG (mmol/L) | Lactate (mmol/L) | SIDm (mmol/L) | Atot (mmol/L) | SIG (mmol/L) | Osmolality (mOsm/kg) | |
---|---|---|---|---|---|---|---|---|---|---|
Group M | −0.011 | −0.986 | −1.358 | −1.462 | 1.068 | 1.392 | −1.593 | −0.527 | −1.572 | 2.502 |
(0.027) | (3.300) | (1.486) | (1.748) | (1.243) | (1.070) | (1.423) | (0.390) | (1.475) | (3.314) | |
p = 0.695 | p = 0.766 | p = 0.362 | p = 0.403 | p = 0.391 | p = 0.193 | p = 0.263 | p = 0.177 | p = 0.287 | p = 0.451 | |
Time TC | −0.332 * | 23.645 * | −10.218 * | −15.573 * | 8.818 * | 9.657 * | −10.845 * | 2.068 * | −9.160 * | 4.735 * |
(0.028) | (3.188) | (1.391) | (1.661) | (1.208) | (1.025) | (1.357) | (0.222) | (1.404) | (1.176) | |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
Time T2 | 0.002 | 1.573 | 0.873 | 0.945 | −1.182 | −0.372 | 0.023 | 0.433 | 1.559 | |
(0.028) | (3.188) | (1.391) | (1.661) | (1.208) | (1.025) | (1.357) | (0.222) | (1.404) | ||
p = 0.933 | p = 0.622 | p = 0.531 | p = 0.570 | p = 0.329 | p = 0.717 | p = 0.987 | p = 0.052 | p = 0.267 | ||
Time T4 | 0.038 | −3.518 | 0.036 | 0.664 | 0.182 | 0.028 | 0.069 | 0.219 | 0.164 | |
(0.028) | (3.188) | (1.391) | (1.661) | (1.208) | (1.025) | (1.357) | (0.222) | (1.404) | ||
p = 0.169 | p = 0.270 | p = 0.980 | p = 0.690 | p = 0.881 | p = 0.979 | p = 0.960 | p = 0.325 | p = 0.908 | ||
Time T6 | 0.033 | −3.782 | −0.782 | −0.264 | 0.727 | 0.072 | −0.337 | −0.084 | −0.670 | 0.476 |
(0.028) | (3.188) | (1.391) | (1.661) | (1.208) | (1.025) | (1.357) | (0.222) | (1.404) | (1.135) | |
p = 0.241 | p = 0.236 | p = 0.574 | p = 0.874 | p = 0.548 | p = 0.945 | p = 0.804 | p = 0.706 | p = 0.634 | p = 0.675 | |
Group M: Time TC | 0.098 * | −6.879 | 3.577 | 5.106 * | −5.152 * | −4.610 * | 3.085 | 0.178 | 6.013 * | −4.075 * |
(0.039) | (4.413) | (1.925) | (2.300) | (1.673) | (1.419) | (1.879) | (0.308) | (1.943) | (1.602) | |
p = 0.012 | p = 0.120 | p = 0.064 | p = 0.027 | p = 0.003 | p = 0.002 | p = 0.101 | p = 0.563 | p = 0.002 | p = 0.011 | |
Group M: Time T2 | 0.030 | −2.673 | 0.386 | 0.763 | 0.108 | −1.083 | 1.276 | −0.099 | 0.951 | |
(0.039) | (4.413) | (1.925) | (2.300) | (1.692) | (1.419) | (1.901) | (0.308) | (1.943) | ||
p = 0.437 | p = 0.545 | p = 0.842 | p = 0.741 | p = 0.950 | p = 0.446 | p = 0.503 | p = 0.748 | p = 0.625 | ||
Group M: Time T4 | −0.0001 | 1.485 | 1.014 | 0.936 | −0.848 | −0.896 | 1.021 | −0.092 | 0.773 | |
(0.039) | (4.413) | (1.925) | (2.300) | (1.673) | (1.419) | (1.879) | (0.308) | (1.943) | ||
p = 0.998 | p = 0.737 | p = 0.599 | p = 0.684 | p = 0.613 | p = 0.528 | p = 0.587 | p = 0.766 | p = 0.691 | ||
Group M: Time T6 | 0.011 | 1.873 | 2.173 | 3.230 | −1.165 | −1.123 | 2.607 | 0.333 | 3.078 | −2.475 |
(0.039) | (4.413) | (1.925) | (2.300) | (1.692) | (1.419) | (1.927) | (0.312) | (1.966) | (1.572) | |
p = 0.775 | p = 0.672 | p = 0.259 | p = 0.161 | p = 0.492 | p = 0.429 | p = 0.177 | p = 0.286 | p = 0.118 | p = 0.116 | |
Constant | 7.441 * | 49.636 * | 33.891 * | 9.745 * | 12.182 * | 2.381 * | 46.029 * | 15.457 * | 1.119 | 286.265 * |
(0.020) | (2.384) | (1.074) | (1.263) | (0.898) | (0.773) | (1.028) | (0.282) | (1.066) | (2.393) | |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.003 | p < 0.001 | p < 0.001 | p = 0.294 | p < 0.001 | |
Observations | 115 | 115 | 115 | 115 | 113 | 115 | 112 | 114 | 114 | 68 |
LL | 124.934 | −377.299 | −292.391 | −310.037 | −269.919 | −258.737 | −280.524 | −118.074 | −289.566 | −189.428 |
AIC | −225.868 | 778.597 | 608.782 | 644.074 | 563.837 | 541.474 | 585.048 | 260.147 | 603.131 | 394.857 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pohlin, F.; Buss, P.; Hooijberg, E.H.; Meyer, L.C.R. Midazolam Alters Acid-Base Status Less than Azaperone during the Capture and Transport of Southern White Rhinoceroses (Ceratotherium simum simum). Animals 2020, 10, 1323. https://doi.org/10.3390/ani10081323
Pohlin F, Buss P, Hooijberg EH, Meyer LCR. Midazolam Alters Acid-Base Status Less than Azaperone during the Capture and Transport of Southern White Rhinoceroses (Ceratotherium simum simum). Animals. 2020; 10(8):1323. https://doi.org/10.3390/ani10081323
Chicago/Turabian StylePohlin, Friederike, Peter Buss, Emma H. Hooijberg, and Leith C. R. Meyer. 2020. "Midazolam Alters Acid-Base Status Less than Azaperone during the Capture and Transport of Southern White Rhinoceroses (Ceratotherium simum simum)" Animals 10, no. 8: 1323. https://doi.org/10.3390/ani10081323
APA StylePohlin, F., Buss, P., Hooijberg, E. H., & Meyer, L. C. R. (2020). Midazolam Alters Acid-Base Status Less than Azaperone during the Capture and Transport of Southern White Rhinoceroses (Ceratotherium simum simum). Animals, 10(8), 1323. https://doi.org/10.3390/ani10081323