Effect of an Outdoor Access System on the Growth Performance, Carcass Characteristics, and Longissimus lumborum Muscle Meat Quality of the Prestice Black-Pied Pig Breed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Feed Chemical Composition
2.3. Growth Performance
2.4. Slaughter and Carcass Composition and Muscle Sampling
2.5. Physical and Chemical Analysis
2.6. Sensory Analysis
2.7. Calculations
2.7.1. Metabolizable Energy (ME)
2.7.2. Indexes Related to Human Health
2.7.3. Statistical Analysis
3. Results
3.1. Growth Performance and Carcass Characteristics of Pigs
3.2. Physical and Chemical Traits of the Longissimus Lumborum Muscle of the Outdoor and Indoor Groups
3.3. Fatty Acid Profile of Longissimus Lumborum Muscle
3.4. Organoleptic Properties of Grilled Longissimus Lumborum Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Programme on Conservation and Utilization of Plant, Animal and Microbial Genetic Resources Important for Food and Agriculture. Ministry of Agriculture Czech Republic. Available online: https://www.np-genetickezdroje.cz/?lang=en (accessed on 3 May 2020).
- Nevrkla, P.; Kapelanski, W.; Vaclavkova, E.; Hadas, Z.; Cebulska, A.; Horky, P. Meat quality and fatty acid profile of pork and backfat from an indigenous breed and a commercial hybrid of pigs. Ann. Anim. Sci. 2017, 17, 1215–1227. [Google Scholar] [CrossRef] [Green Version]
- Almeida, J.; Bressan, M.C.; Santos-Silva, J.; Moreira, O.; Bettencourt, C.; Gama, L.T. Physicochemical characteristics and sensory attributes of meat from heavy-weight Iberian and F1 Large White x Landrace pigs finished intensively or in free-range conditions. J. Anim. Sci. 2018, 96, 2734–2746. [Google Scholar] [CrossRef]
- Gade, P.B. Welfare of animal production in intensive and organic systems with special reference to Danish organic pig production. Meat Sci. 2002, 62, 353–358. [Google Scholar] [CrossRef]
- Edwards, S.A. Product quality attributes associated with outdoor pig production. Livest. Prod. Sci. 2005, 94, 5–14. [Google Scholar] [CrossRef]
- Lebret, B. Effects of feeding and rearing systems on growth, carcass composition and meat quality in pigs. Animal 2008, 2, 1548–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokola-Wysoczanska, E.; Wysoczanski, T.; Wagner, J.; Czyz, K.; Bodkowski, R.; Lochynski, S.; Patkowska-Sokola, B. Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System DisordersA Review. Nutrients 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Ghidurus, M.; Ilie, L.; Varga, M.; Mihalache, M. Review on dietary tocopherol accumulation on pork tissues and its membrane antioxidant role against lipid oxidation. Agrolife Sci. J. 2017, 6, 112–119. [Google Scholar]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Oswell, N.J.; Thippareddi, H.; Pegg, R.B. Practical use of natural antioxidants in meat products in the US: A review. Meat Sci. 2018, 145, 469–479. [Google Scholar] [CrossRef]
- Simsek, S.; Simsek, A.; Kilic, B. Antioxidant and antimicrobial properties of plant extracts and their recent applications in meat product processing. Sci. Pap. Ser. D Anim. Sci. 2017, 60, 308–311. [Google Scholar]
- Lebret, B.; Ecolan, P.; Bonhomme, N.; Meteau, K.; Prunier, A. Influence of production system in local and conventional pig breeds on stress indicators at slaughter, muscle and meat traits and pork eating quality. Animal 2015, 9, 1404–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes Text with EEA Relevance. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF (accessed on 17 March 2020).
- AOAC International. Official Methods of Analysis, 18th ed.; Association of Officiating Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Daumas, G. Non-electronic techniques to classify pig carcasses in small slaughterhouses. In Proceedings of the Second International Virtual Conference on Pork Quality 2001, Via Internet, Concordia, Brazil, 5 November–6 December 2001; Available online: https://www.researchgate.net/profile/Gerard_Daumas/publication/285574394_NON-ELECTRONIC_TECHNIQUES_TO_CLASSIFY_PIG_CARCASSES_IN_SMALL_SLAUGHTERHOUSES/links/565efc6308ae1ef92984212f/NON-ELECTRONIC-TECHNIQUES-TO-CLASSIFY-PIG-CARCASSES-IN-SMALL-SLAUGHTERHOUSES.pdf (accessed on 20 March 2020).
- Steinhauser, L. Hygiena a Technologie Masa; LAST: Brno, Czech Republic, 1995. [Google Scholar]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- ISO 1444. Meat and Meat Products—Determination of Free Fat Content; International Organization for Standardization: Geneva, Switzerland, 1996. [Google Scholar]
- Bergman, I.; Loxley, R. Two improved and simplified methods for spectrophotometric determination of hydroxyproline. Anal. Chem. 1963, 35, 1961–1965. [Google Scholar] [CrossRef]
- ISO 3596. Animal and Vegetable Fats and Oils—Determination of Unsaponifiable Matter. Method Using Diethyl Ether Extraction; International Organization for Standardization: Geneve, Switzerland, 2000. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Volek, Z.; Marounek, M. Effect of feeding growing-fattening rabbits a diet supplemented with whole white lupin (Lupinus albus cv Amiga) seeds on fatty acid composition and indexes related to human health in hind leg meat and perirenal fat. Meat Sci. 2011, 87, 40–45. [Google Scholar] [CrossRef]
- ISO 5509. Animal and Vegetable Fats and Oils—Preparation of Methyl Esters of Fatty Acids; International Organization for Standardization: Geneve, Switzerland, 2000. [Google Scholar]
- ISO 5508. Animal and Vegetable Fats and Oils—Analysis by Gas Chromatography of Methyl Esters of Fatty Acids; International Organization for Standardization: Geneve, Switzerland, 1990. [Google Scholar]
- EN 12822. Determination of Vitamin E by High Performance Liquid Chromatography—Measurement of a-, b-, g- and d-Tocopherol; European Committee for Standardization: Brusel, Belgium, 2014. [Google Scholar]
- EN 12823-1. Determination of Vitamin A by High Performance Liquid Chromatography—Part 1: Measurement of all-E-Retinol and 13-Z-Retinol; European Committee for Standardization: Brusel, Belgium, 2014. [Google Scholar]
- ISO 8589. Sensory Analysis—General Guidance for the Design of Test Rooms; International Organization for Standardization: Geneva, Switzerland, 2007. [Google Scholar]
- ISO 8586. Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors; International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- Hoffmann, L.; Schiemann, R. Von der Kalorie zum Joule: Neue Größenbeziehungen bei Messungen des Energieumsatzes und bei der Berechnung von Kennzahlen der energetischen Futterbewertung. Arch. Für Tierernaehrung 1980, 30, 733–742. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. coronary heart-disease—7 dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Dostálová, A.; Koucký, M.; Vališ, L.; Šimečková, M. Fatty acid composition in fattening pigs from differnt rearing system. In Proceedings of the Research in Pig Breeding, Kostelec nad Orlicí, Czech Republic; p. 7. Available online: http://www.respigbreed.cz/2012/2/4.pdf (accessed on 20 March 2020).
- Matousek, V.; Kernerova, N.; Hysplerova, K.; Jirotkova, D.; Brzakova, M. Carcass traits and meat quality of Prestice Black-Pied Pig Breed. Asian Australas. J. Anim. Sci. 2016, 29, 1181–1187. [Google Scholar] [CrossRef] [Green Version]
- Václavková, E.; Horký, P.; Kamanová, V.; Hadaš, Z.; Rečková, Z.; Máchal, L. Growth and meat quality of Prestice Black-Pied and (Landrace × Large White) × Duroc Pigs. Acta Univ. Agric. Silvic. Mendel. Brun. 2018, 66, 701–705. [Google Scholar] [CrossRef] [Green Version]
- Lucas, M.M.; Stoddard, F.L.; Annicchiarico, P.; Frias, J.; Martinez-Villaluenga, C.; Sussmann, D.; Duranti, M.; Seger, A.; Zander, P.M.; Pueyo, J.J. The future of lupin as a protein crop in Europe. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef]
- Gentry, J.G.; McGlone, J.J.; Miller, M.F.; Blanton, J.R. Environmental effects on pig performance, meat quality, and muscle characteristics. J. Anim. Sci. 2004, 82, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Juska, R.; Juskiene, V.; Leikus, R. The influence of a free-range housing system on pig growth, carcass composition and meat quality. J. Appl. Anim. Res. 2013, 41, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Sirtori, F.; Crovetti, A.; Zilio, D.M.; Pugliese, C.; Acciaioli, A.; Campodoni, G.; Bozzi, R.; Franci, O. Effect of sire breed and rearing system on growth, carcass composition and meat traits of Cinta Senese crossbred pigs. Ital. J. Anim. Sci. 2011, 10. [Google Scholar] [CrossRef]
- Juska, R.; Juskiene, V.; Leikus, R.; Norviliene, J. The growth performance and behaviour of pigs raised in conventional and alternative systems. Vet. Zootech. 2012, 57, 22–30. [Google Scholar]
- Hoffman, L.C.; Styger, E.; Muller, M.; Brand, T.S. The growth and carcass and meat characteristics of pigs raised in a free-range or conventional housing system. S. Afr. J. Anim. Sci. 2003, 33, 166–175. [Google Scholar]
- Strudsholm, K.; Hermansen, J.E. Performance and carcass quality of fully or partly outdoor reared pigs in organic production. Livest. Prod. Sci. 2005, 96, 261–268. [Google Scholar] [CrossRef]
- Tomkins, N.; O’Reagain, P. Global positioning systems indicate landscape preferences of cattle in the subtropical savannas. Rangel. J. 2007, 29, 217–222. [Google Scholar] [CrossRef]
- Parrini, S.; Acciaioli, A.; Franci, O.; Pugliese, C.; Bozzi, R. Grazing behaviour of Cinta senese and its crossbreed pigs. Ital. J. Anim. Sci. 2019, 18, 287–291. [Google Scholar] [CrossRef]
- O’Neill, D.J.; Lynch, P.B.; Troy, D.J.; Buckley, D.J.; Kerry, J.P. Influence of the time of year on the incidence of PSE and DFD in Irish pigmeat. Meat Sci. 2003, 64, 105–111. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry; Springer Science & Business Media: Berlin, Germany, 2009; p. 589. [Google Scholar] [CrossRef]
- Gentry, J.G.; McGlone, J.J.; Blanton, J.R.; Miller, M.F. Alternative housing systems for pigs: Influences on growth, composition, and pork quality. J. Anim. Sci. 2002, 80, 1781–1790. [Google Scholar] [CrossRef]
- Enfalt, A.C.; Lundstrom, K.; Hansson, I.; Karlsson, A.; Essengustavsson, B.; Hakansson, J. Moderate indoor exercise—Effect on production and carcass traits, muscle enzyme-activities and meat quality in pigs. Anim. Prod. 1993, 57, 127–135. [Google Scholar] [CrossRef]
- Lebret, B.; Dourmad, J.Y.; Mourot, J.; Pollet, P.Y.; Gondret, F. Production performance, carcass composition, and adipose tissue traits of heavy pigs: Influence of breed and production system. J. Anim. Sci. 2014, 92, 3543–3556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrlep, M.; Candek-Potokar, M.; Batorek-Lukac, N.; Tomazin, U.; Flores, M. Aromatic profile, physicochemical and sensory traits of dry-fermented sausages produced without nitrites using pork from Krskopolje pig reared in organic and conventional husbandry. Animals 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daza, A.; Rey, A.I.; Olivares, A.; Cordero, G.; Toldra, F.; Lopez-Bote, C.J. Physical activity-induced alterations on tissue lipid composition and lipid metabolism in fattening pigs. Meat Sci. 2009, 81, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Cava, R.; Ventanas, J.; Tejeda, J.F.; Ruiz, J.; Antequera, T. Effect of free-range rearing and alpha-tocopherol and copper supplementation on fatty acid profiles and susceptibility to lipid oxidation of fresh meat from Iberian pigs. Food Chem. 2000, 68, 51–59. [Google Scholar] [CrossRef]
- Meisser, M.; Deleglise, C.; Frelechoux, F.; Chassot, A.; Jeangros, B.; Mosimann, E. Foraging behaviour and occupation pattern of beef cows on a heterogeneous pasture in the Swiss Alps. Czech J. Anim. Sci. 2014, 59, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.K.; Frette, X.C.; Kristensen, T.; Eriksen, J.; Soegaard, K.; Nielsen, J.H. Fatty acid, tocopherol and carotenoid content in herbage and milk affected by sward composition and season of grazing. J. Sci. Food Agric. 2012, 92, 2891–2898. [Google Scholar] [CrossRef]
- Priolo, A.; Micol, D.; Agabriel, J. Effects of grass feeding systems on ruminant meat colour and flavour. A review. Anim. Res. 2001, 50, 185–200. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D. Effect of the polyunsaturated fatty acid composition of beef muscle on the profile of aroma volatiles. J. Agric. Food Chem. 1999, 47, 1619–1625. [Google Scholar] [CrossRef]
- Enfalt, A.C.; Lundstrom, K.; Hansson, I.; Lundeheim, N.; Nystrom, P.E. Effects of outdoor rearing and sire breed (Duroc or Yorkshire) on carcass composition and sensory and technological meat quality. Meat Sci. 1997, 45, 1–15. [Google Scholar] [CrossRef]
- Jonsall, A.; Johansson, L.; Lundstrom, K. Sensory quality and cooking loss of ham muscle (M-biceps femoris) from pigs reared indoors and outdoors. Meat Sci. 2001, 57, 245–250. [Google Scholar] [CrossRef]
- Martínez, B.; Rubio, B.; Vaquero, M.; Sánchez, M.J. Consumers attitudes to Iberian pork meat. In Proceedings of the 7th International Symposium on the Mediterranean Pig, Zaragoza, Spain, 14–16 October 2010; pp. 463–466. [Google Scholar]
Composition (g/kg) 1 | Paddock 1 | Paddock 2 | Paddock 3 |
---|---|---|---|
Dry matter | 253.0 | 789.3 | 509.3 |
Ash | 21.56 | 76.14 | 53.07 |
Crude protein | 23.7 | 73.9 | 42.0 |
Ether extract | 3.9 | 5.8 | 12.3 |
Crude fiber | 72.9 | 304.7 | 142.0 |
Fatty Acid (%) 2 | |||
Lauric C 12:0 | 0.06 | 0.15 | 0.29 |
Myristic C 14:0 | 0.29 | 0.70 | 0.63 |
Palmitic C16:0 | 14.07 | 16.05 | 17.60 |
Oleic C18:1n − 9 | 3.54 | 18.28 | 23.76 |
Linoleic C18:2n − 6 | 15.98 | 47.92 | 37.43 |
α-linolenic C18:3n − 3 | 59.91 | 8.11 | 13.97 |
Arachidonic C20:4n − 6 | 0.21 | 0,15 | 0.11 |
ME (MJ/kg) 3 | 1.7 | 3.2 | 3.2 |
Ingredients (g/kg) 1 | |
---|---|
Wheat | 550 |
Pea seeds | 120 |
White lupine seeds | 100 |
Wheat bran | 200 |
Vitamin/mineral premix 2 | 30 |
Composition (g/kg) 1 | |
Dry matter | 870.4 |
Crude protein | 145.7 |
Ether extract | 30.0 |
Crude fiber | 54.4 |
Lysine | 7.1 |
Methionine | 2.4 |
Fatty Acid (%) 3 | |
Lauric C 12:0 | 0.03 |
Myristic C 14:0 | 0.51 |
Palmitic C16:0 | 19.82 |
Oleic C18:1n − 9 | 26.92 |
Linoleic C18:2n − 6 | 35.73 |
α-linolenic C18:3n − 3 | 3.60 |
Arachidonic C20:4n − 6 | 0.10 |
ME 4 (MJ/kg) | 12.4 |
Attribute | Evaluation | Definition | Scale |
---|---|---|---|
Pork odor intensity | Before eating sample | The strength of aroma typical for cooked pork. | 1 = very low 9 = very high |
Tenderness | After first two or three chews | The force required to bite through the sample with molars. | 1 = very low 9 = very high |
Juiciness | After first three to five chews | The amount of moisture released by the sample. | 1 = very low 9 = very high |
Pork flavor intensity | After first five to ten chews | The presence of a flavor typical for cooked pork. | 1 = very low 9 = very high |
Chewiness | After at least 15 chews | The amount of residual tissue after most of the sample has been masticated. | 1 = scarcely chewable 9 = easily chewable |
Overall acceptance | After completion of evaluation | Preference of the judge among the evaluated samples. | 1 = not acceptable 9 = highly acceptable |
Item | Housing | |||
---|---|---|---|---|
Outdoor | Indoor | SEM | Significance | |
n = 12 | n = 12 | p-Value | ||
Initial body weight (kg) | 21 | 23 | 2 | NS |
Final body weight (kg) | 109 | 111 | 4 | NS |
Average weight gain (kg/day) | 0.74 | 0.70 | 0.07 | NS |
Average feed intake 1 (kg/day) | 2.70 | 2.68 | − | − |
Feed conversion ratio (FCR) 1 | 3.33 | 3.45 | − | − |
Carcass characteristics (kg) | ||||
Right carcass side | 42.4 | 43.2 | 1.6 | NS |
Ham 2 | 7.5 | 7.9 | 0.7 | NS |
Loin 2 | 4.4 | 4.3 | 0.5 | NS |
Shoulder 2 | 3.7 | 3.6 | 0.3 | NS |
Belly 2 | 8.4 | 8.8 | 0.7 | NS |
Back fat thickness (mm) | 34.23 | 32.97 | 4.3 | NS |
Lean meat content (%) | 53.83 | 53.75 | 2.13 | NS |
Item | Housing | |||
---|---|---|---|---|
Outdoor | Indoor | SEM | Significance | |
n = 12 | n = 12 | p-Value | ||
Physical meat quality traits | ||||
pH45 | 6.21 | 6.09 | 0.15 | NS |
pH24 | 5.58 | 5.55 | 0.17 | NS |
Drip loss % | 3.01 | 3.02 | 0.71 | NS |
WHC 1 % | 32.75 | 35.83 | 6.20 | NS |
Proximate chemical composition | ||||
Dry matter (g/kg) | 270 | 274 | 10 | NS |
Protein (g/kg) | 227 | 227 | 6 | NS |
Lipids (g/kg) | 25 | 28 | 10 | NS |
Cholesterol (g/kg) | 482 | 503 | 34 | NS |
Hydroxyproline (g/kg) | 0.47 | 0.47 | 0.04 | NS |
Tocopherol (mg/kg) | 3.89 | 3.79 | 0.69 | NS |
Item | Housing | |||
---|---|---|---|---|
Outdoor | Indoor | SEM | Significance | |
n = 12 | n = 12 | p-Value | ||
SFA 1 | ||||
Lauric (C 12:0) | 2.15 | 2.62 | 0.69 | NS |
Myristic (C 14:0) | 33.24 | 41.38 | 11.16 | NS |
Pentadecanoic (C 15:0) | 1.55 | 1.64 | 0.44 | NS |
Palmitic (C 16:0) | 581.13 | 749.97 | 176.5 | * |
Margaric (C 17:0) | 3.00 | 3.12 | 0.90 | NS |
Stearic (C 18:0) | 240.92 | 323.87 | 89.32 | * |
Total SFA | 869.36 | 1131.63 | 278.77 | NS |
MUFA 2 | ||||
Palmitoleic (C 16:1n − 7) | 92.45 | 99.75 | 28.55 | NS |
Oleic (C 18:1n − 9) | 994.62 | 1244.15 | 325.4 | NS |
(C 18:1n − 7) | 90.05 | 98.78 | 27.92 | NS |
Eicosenoic (C 20:1n − 9) | 13.19 | 17.46 | 4.32 | * |
Total MUFA | 1192.14 | 1461.93 | 384.34 | NS |
PUFA 3 | ||||
Linoleic (C 18:2n − 6) | 231.38 | 238.33 | 48.93 | NS |
α-linolenic (C 18:3n − 3) | 55.50 | 37.46 | 19.82 | NS |
Eicosadienoic (C 20:2n − 6) | 6.54 | 7.40 | 1.02 | NS |
Eicosatrienoic (C 20:3n − 6) | 5.14 | 5.94 | 0.81 | * |
Arachidonic (C 20:4n − 6) | 37.74 | 42.19 | 4.44 | * |
EPA 4 (C 20:5n − 3) | 4.21 | 4.23 | 0.56 | NS |
Docosatetraenoic (C 22:4n − 6) | 5.14 | 6.26 | 0.91 | * |
Docosapentaenoic (C 22:5n − 3) | 4.21 | 4.23 | 1.09 | NS |
DHA 5 (C 22:6n − 3) | 0.63 | 0.60 | 0.17 | NS |
Indexes | ||||
Total PUFA n − 3 | 69.27 | 51.62 | 19.89 | NS |
Total PUFA n − 6 | 289.23 | 304.10 | 51.24 | NS |
PUFA n − 6/PUFA n − 3 ratio | 4.47 | 6.32 | 1.55 | ** |
S/U 6 | 0.71 | 0.79 | 0.05 | ** |
Atherogenic index | 0.46 | 0.51 | 0.02 | ** |
Thrombogenic index | 0.89 | 1.07 | 0.19 | *** |
Item | Housing | |||
---|---|---|---|---|
Outdoor | Indoor | SEM | Significance | |
LSM | LSM | p-Value | ||
Pork odor intensity | 4.1 | 4.0 | 0.3 | NS |
Tenderness | 4.2 | 5.1 | 0.2 | *** |
Juiciness | 4.6 | 6.0 | 0.2 | *** |
Pork flavor intensity | 3.9 | 4.3 | 0.2 | NS |
Chewiness | 4.3 | 5.4 | 0.2 | *** |
Overall acceptance | 5.3 | 4.2 | 0.2 | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dostálová, A.; Svitáková, A.; Bureš, D.; Vališ, L.; Volek, Z. Effect of an Outdoor Access System on the Growth Performance, Carcass Characteristics, and Longissimus lumborum Muscle Meat Quality of the Prestice Black-Pied Pig Breed. Animals 2020, 10, 1244. https://doi.org/10.3390/ani10081244
Dostálová A, Svitáková A, Bureš D, Vališ L, Volek Z. Effect of an Outdoor Access System on the Growth Performance, Carcass Characteristics, and Longissimus lumborum Muscle Meat Quality of the Prestice Black-Pied Pig Breed. Animals. 2020; 10(8):1244. https://doi.org/10.3390/ani10081244
Chicago/Turabian StyleDostálová, Anne, Alena Svitáková, Daniel Bureš, Libor Vališ, and Zdeněk Volek. 2020. "Effect of an Outdoor Access System on the Growth Performance, Carcass Characteristics, and Longissimus lumborum Muscle Meat Quality of the Prestice Black-Pied Pig Breed" Animals 10, no. 8: 1244. https://doi.org/10.3390/ani10081244
APA StyleDostálová, A., Svitáková, A., Bureš, D., Vališ, L., & Volek, Z. (2020). Effect of an Outdoor Access System on the Growth Performance, Carcass Characteristics, and Longissimus lumborum Muscle Meat Quality of the Prestice Black-Pied Pig Breed. Animals, 10(8), 1244. https://doi.org/10.3390/ani10081244