Evaluation of Sugarcane-Derived Polyphenols on the Pre-Weaning and Post-Weaning Growth of Gilt Progeny
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals, Experimental Design, and Diets
2.2.1. Gestation and Lactation Phases
2.2.2. Post-Weaning Phase
2.3. Inflammatory Marker Analysis
2.4. Statistical Analysis
3. Results
3.1. Farrowing Performance
3.2. Pre-Weaning Performance
3.3. Post-Weaning Performance
3.4. Plasma IL-1β Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carney-Hinkle, E.E.; Tran, H.; Bundy, J.W.; Moreno, R.; Miller, P.S.; Burkey, T.E. Effect of dam parity on litter performance, transfer of passive immunity, and progeny microbial ecology. J. Anim. Sci. 2013, 91, 2885–2893. [Google Scholar] [CrossRef] [Green Version]
- Miller, Y.J.; Collins, A.M.; Smits, R.J.; Thomson, P.C.; Holyoake, P.K. Providing supplemental milk to piglets preweaning improves the growth but not survival of gilt progeny compared with sow progeny. J. Anim. Sci. 2012, 90, 5078–5085. [Google Scholar] [CrossRef]
- Craig, J.; Collins, C.L.; Bunter, K.L.; Cottrell, J.J.; Dunshea, F.R.; Pluske, J. Poorer lifetime growth performance of gilt progeny compared with sow progeny is largely due to weight differences at birth and reduced growth in the preweaning period, and is not improved by progeny segregation after weaning. J. Anim. Sci. 2017, 95, 4904–4916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deakin University. Deakin University Annual Report 2013; Deakin University: Melbourne, VIC, Australia, 2013. [Google Scholar]
- Craig, J.; Hewitt, R.J.E.; Muller, T.L.; Cottrell, J.J.; Dunshea, F.R.; Pluske, J. Reduced growth performance in gilt progeny is not improved by segregation from sow progeny in the grower–finisher phase. Animal 2019, 13, 2232–2241. [Google Scholar] [CrossRef]
- Berchieri-Ronchi, C.B.; Kim, S.W.; Zhao, Y.; Corrêa, C.R.; Yeum, K.-J.; Ferreira, A.L.A. Oxidative stress status of highly prolific sows during gestation and lactation. Animal 2011, 5, 1774–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, C.; Lavoie, M.; Richard, G.; Archambault, A.; Lapointe, J. Evidence that oxidative stress is higher in replacement gilts than in multiparous sows. J. Anim. Physiol. Anim. Nutr. 2016, 100, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Beyer, M.; Jentsch, W.; Kuhla, S.; Wittenburg, H.; Kreienbring, F.; Scholze, H.; Rudolph, P.E.; Metges, C.C. Effects of dietary energy intake during gestation and lactation on milk yield and composition of first, second and fourth parity sows. Arch. Anim. Nutr. 2007, 61, 452–468. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.; Dunshea, F.R.; Cottrell, J.J.; Wijesiriwardana, U.A.; Pluske, J. Primiparous and Multiparous Sows Have Largely Similar Colostrum and Milk Composition Profiles Throughout Lactation. Animal 2019, 9, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipiński, K.; Antoszkiewicz, Z.; Mazur-Kuśnirek, M.; Korniewicz, D.; Kotlarczyk, S. The effect of polyphenols on the performance and antioxidant status of sows and piglets. Ital. J. Anim. Sci. 2019, 18, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Gessner, D.K.; Ringseis, R.; Eder, K. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J. Anim. Physiol. Anim. Nutr. 2016, 101, 605–628. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Pié, S.; Lallès, J.P.; Blazy, F.; Laffitte, J.; Sève, B.; Oswald, I.P. Weaning Is Associated with an Upregulation of Expression of Inflammatory Cytokines in the Intestine of Piglets. J. Nutr. 2004, 134, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Dunshea, F. Metabolic and endocrine changes around weaning. In The Weaner Pig: Concepts and Consequences; Pluske, J., Dividich, J.L., Verstegen, M.W.A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2003; pp. 81–116. [Google Scholar]
- Pluske, J.; Williams, I.H.; Aherne, F.X. Maintenance of villous height and crypt depth in piglets by providing continuous nutrition after weaning. Anim. Sci. 1996, 62, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Xie, H.; Chen, D.; Yu, B.; Mao, X.; Zheng, P.; Yu, J.; Luo, Y.; Luo, J.; He, J. Chlorogenic Acid improves intestinal development via suppressing mucosa inflammation and cell apoptosis in weaned pigs. ACS Omega 2018, 3, 2211–2219. [Google Scholar] [CrossRef] [Green Version]
- Gessner, D.K.; Ringseis, R.; Siebers, M.; Keller, J.; Kloster, J.; Wen, G.; Eder, K. Inhibition of the pro-inflammatory NF-κB pathway by a grape seed and grape marc meal extract in intestinal epithelial cells. J. Anim. Physiol. Anim. Nutr. 2011, 96, 1074–1083. [Google Scholar] [CrossRef]
- Shakeri, M. Amelioration of the Effects of Cyclic Heat Stress in Broiler Chickens with Dietary Betaine and Antioxidants. Ph.D. Thesis, Agriculture and Food Systems, Veterinary and Agricultural Sciences, Melbourne, VIC, Australia, March 2019. [Google Scholar]
- Deseo, M.A.; Elkins, A.; Rochfort, S.; Kitchen, B. Antioxidant Activity and Polyphenol Composition of Sugarcane Molasses Extract. Food Chem. 2020, 126180. [Google Scholar] [CrossRef] [PubMed]
- Wijesiriwardana, U.A.; Pluske, J.; Craig, J.; Cottrell, J.J.; Dunshea, F.R. Dietary Inclusion of 1,3-Butanediol Increases Dam Circulating Ketones and Increases Progeny Birth Weight. Animal 2019, 9, 479. [Google Scholar] [CrossRef] [Green Version]
- Quiniou, N.; Dagorn, J.; Gaudré, D. Variation of piglets’ birth weight and consequences on subsequent performance. Livest. Prod. Sci. 2002, 78, 63–70. [Google Scholar] [CrossRef]
- Dunshea, F.R.; Kerton, D.K.; Cranwell, P.D.; Campbell, R.G.; Mullan, B.P.; King, R.H.; Power, G.N.; Pluske, J. Lifetime and post-weaning determinants of performance indices of pigs. Aust. J. Agric. Res. 2003, 54, 363. [Google Scholar] [CrossRef]
- King, R.; Mullan, B.; Dunshea, F.R.; Dove, H. The influence of piglet body weight on milk production of sows. Livest. Prod. Sci. 1997, 47, 169–174. [Google Scholar] [CrossRef]
- Dunshea, F.; Kerton, D.; Cranwell, P.; Campbell, R.; Mullan, B.; King, R.; Pluske, J. Interactions between weaning age, weaning weight, sex, and enzyme supplementation on growth performance of pigs. Aust. J. Agric.Res. 2002, 53, 939–945. [Google Scholar] [CrossRef]
- Dunshea, F.; Kerton, D.; Cranwell, P.; Campbell, R.; Mullan, B.; King, R.; Pluske, J. Dietary lysine requirements of heavy and light pigs weaned at 14 days of age. Aust. J. Agric. Res. 2000, 51, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Pluske, J.; Kerton, D.; Cranwell, P.; Campbell, R.; Mullan, B.; King, R.; Power, G.; Pierzynowski, S.; Westrom, B.; Rippe, C. Age, sex, and weight at weaning influence organ weight and gastrointestinal development of weanling pigs. Aust. J. Agric. Res. 2003, 54, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Lessard, M.; Blais, M.; Beaudoin, F.; Deschene, K.; Verso, L.L.; Bissonnette, N.; Lauzon, K.; Guay, F. Piglet weight gain during the first two weeks of lactation influences the immune system development. Veter. Immunol. Immunopathol. 2018, 206, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Briana, D.D.; Liosi, S.; Gourgiotis, D.; Boutsikou, M.; Marmarinos, A.; Baka, S.; Hassiakos, D.; Malamitsi-Puchner, A. Fetal concentrations of the growth factors TGF-α and TGF-β1 in relation to normal and restricted fetal growth at term. Cytokine 2012, 60, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Peng, X.; Chen, H.; Yan, C.; Liu, Y.; Xu, Q.; Fang, Z.; Lin, Y.; Xu, S.; Feng, B.; et al. Effects of intrauterine growth retardation and Bacillus subtilis PB6 supplementation on growth performance, intestinal development and immune function of piglets during the suckling period. Eur. J. Nutr. 2016, 56, 1753–1765. [Google Scholar] [CrossRef]
- Craig, J.; Dunshea, F.R.; Cottrell, J.J.; Furness, J.B.; Wijesiriwardana, U.A.; Pluske, J. A comparison of the anatomical and gastrointestinal functional development between gilt and sow progeny around birth and weaning1. J. Anim. Sci. 2019, 97, 3809–3822. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Wang, H.; Tu, Z.; Wang, S.; Wang, X.; Zhu, H.; Wang, C.; Zhu, J.; Liu, Y. Medium-chain TAG improve intestinal integrity by suppressing toll-like receptor 4, nucleotide-binding oligomerisation domain proteins and necroptosis signalling in weanling piglets challenged with lipopolysaccharide. Br. J. Nutr. 2018, 119, 1019–1028. [Google Scholar] [CrossRef] [Green Version]
- Soares, S.; Kohl, S.; Thalmann, S.; Mateus, N.; Meyerhof, W.; De Freitas, V. Different Phenolic Compounds Activate Distinct Human Bitter Taste Receptors. J. Agric. Food Chem. 2013, 61, 1525–1533. [Google Scholar] [CrossRef]
- King, R. The effect of adding a feed flavour to the diets of young pigs before and after weaning. Aust. J. Exp. Agric. 1979, 19, 695–697. [Google Scholar] [CrossRef]
- Sulabo, R.C.; Tokach, M.D.; DeRouchey, J.M.; Dritz, S.S.; Goodband, R.D.; Nelssen, J.L. Influence of feed flavors and nursery diet complexity on preweaning and nursery pig performance1,2. J. Anim. Sci. 2010, 88, 3918–3926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkeveld, M.; Langendijk, P.; Van Beers-Schreurs, H.M.G.; Koets, A.P.; Taverne, M.A.M.; Verheijden, J.H.M. Postweaning growth check in pigs is markedly reduced by intermittent suckling and extended lactation1. J. Anim. Sci. 2007, 85, 258–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, C.S.; Alves da Silva, G.; Perrone, D.; Vericimo, M.A.; Baião, D.S.; Pereira, P.R.; Paschoalin, V.M.F.; Del Aguila, E.M. Recovery of antimicrobials and bioaccessible isoflavones and phenolics from soybean (Glycine max) meal by aqueous extraction. Molecules 2019, 24, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandasiri, R.; Eskin, N.A.M.; Thiyam-Holländer, U. Antioxidative Polyphenols of Canola Meal Extracted by High Pressure: Impact of Temperature and Solvents. J. Food Sci. 2019, 84, 3117–3128. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hua, H.; Wang, L.; He, P.; Zhang, L.; Qin, Q.; Yu, C.; Wang, X.; Zhang, G.; Liu, Y. Holly polyphenols alleviate intestinal inflammation and alter microbiota composition in lipopolysaccharide-challenged pigs. Br. J. Nutr. 2020, 123, 881–891. [Google Scholar] [CrossRef] [PubMed]
Parity (P) | GILT | SOW | SED | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Diet (D) | CON | POL | CON | POL | P | D | P × D | |
(n) | 29 | 31 | 34 | 33 | ||||
Dam weaning liveweight (kg) | 189 | 190 | 259 | 255 | 6.4 | <0.001 | 0.26 | 0.58 |
Dam weaning P2 backfat (mm) | 20.0 | 18.0 | 21.5 | 22.4 | 1.33 | 0.001 | 0.55 | 0.14 |
Dam lactation feed intake (kg/day) | 6.93 | 6.19 | 7.38 | 7.04 | 0.236 | <0.001 | 0.002 | 0.24 |
Piglets born alive (#/L) | 10.9 | 11.3 | 12.1 | 12.3 | 0.66 | 0.020 | 0.61 | 0.82 |
Piglets still born (#/L) | 0.92 | 1.06 | 1.23 | 1.17 | 0.429 | 0.49 | 0.92 | 0.74 |
Mummified piglets (#/L) | 0.18 | 0.30 | 0.31 | 0.12 | 0.128 | 0.73 | 0.71 | 0.09 |
Birth litter weight (kg) | 13.8 | 13.6 | 18.4 | 18.3 | 0.86 | <0.001 | 0.80 | 0.89 |
Birth piglet weight (kg) | 1.29 | 1.20 | 1.55 | 1.49 | 0.049 | <0.001 | 0.029 | 0.64 |
Birth weight intra-litter CV (%) | 17.8 | 18.1 | 18.3 | 20.3 | 1.63 | 0.25 | 0.28 | 0.48 |
21-day litter weight (kg) | 42.2 | 40.7 | 59.7 | 64.0 | 3.59 | <0.001 | 0.54 | 0.25 |
21-day piglet weight (kg) | 4.85 | 4.60 | 6.37 | 6.26 | 0.239 | <0.001 | 0.30 | 0.68 |
21-day weight intra-litter CV (%) | 18.6 | 20.8 | 23.7 | 22.7 | 1.72 | 0.006 | 0.68 | 0.19 |
Litter daily gain (kg/day) | 1.33 | 1.27 | 2.04 | 2.17 | 0.113 | <0.001 | 0.48 | 0.18 |
Parity (P) | GILT | SOW | SED | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Diet (D) | CON | POL | CON | POL | P | D | P × D | |
(n) | 47 | 32 | 49 | 42 | ||||
Day 7 liveweight (kg) | 7.19 | 7.17 | 9.17 | 8.86 | 0.359 | <0.001 | 0.61 | 0.58 |
Day 14 liveweight (kg) | 9.66 | 9.55 | 11.8 | 11.8 | 0.49 | <0.001 | 0.97 | 0.88 |
Day 7−14 live weight gain (g/day) | 353 | 341 | 372 | 415 | 30.9 | 0.042 | 0.40 | 0.20 |
Day 0−7 feed intake (g/day) | 184 | 181 | 185 | 193 | 16.1 | 0.60 | 0.77 | 0.59 |
Day 7−14 feed intake (g/day) | 385 | 366 | 414 | 443 | 29.8 | 0.018 | 0.67 | 0.25 |
Day 7−14 feed conversion ratio | 1.12 | 1.16 | 1.32 | 1.11 | 0.129 | 0.37 | 0.29 | 0.18 |
Diet (D) | Parity (P) | Timepoint (T) | SED | Significance 1 | ||
---|---|---|---|---|---|---|
PreW | 3 Days PoW | 14 Days PoW | ||||
CON | GP | 2190 | 1982 | 1838 | 320 | P +, T **, D × P *, D × T *, P × T * |
SP | 2830 | 2555 | 2728 | |||
POL | GP | 2584 | 3010 | 1982 | ||
SP | 2618 | 2250 | 2427 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijesiriwardana, U.A.; Pluske, J.R.; Craig, J.R.; Cottrell, J.J.; Dunshea, F.R. Evaluation of Sugarcane-Derived Polyphenols on the Pre-Weaning and Post-Weaning Growth of Gilt Progeny. Animals 2020, 10, 984. https://doi.org/10.3390/ani10060984
Wijesiriwardana UA, Pluske JR, Craig JR, Cottrell JJ, Dunshea FR. Evaluation of Sugarcane-Derived Polyphenols on the Pre-Weaning and Post-Weaning Growth of Gilt Progeny. Animals. 2020; 10(6):984. https://doi.org/10.3390/ani10060984
Chicago/Turabian StyleWijesiriwardana, Udani A., John R. Pluske, Jessica R. Craig, Jeremy J. Cottrell, and Frank R. Dunshea. 2020. "Evaluation of Sugarcane-Derived Polyphenols on the Pre-Weaning and Post-Weaning Growth of Gilt Progeny" Animals 10, no. 6: 984. https://doi.org/10.3390/ani10060984
APA StyleWijesiriwardana, U. A., Pluske, J. R., Craig, J. R., Cottrell, J. J., & Dunshea, F. R. (2020). Evaluation of Sugarcane-Derived Polyphenols on the Pre-Weaning and Post-Weaning Growth of Gilt Progeny. Animals, 10(6), 984. https://doi.org/10.3390/ani10060984