Comparative Transcriptome Profiling Analysis Uncovers Novel Heterosis-Related Candidate Genes Associated with Muscular Endurance in Mules
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. RNA Preparation and Single-Molecule Sequencing
2.3. RNA Reads Trimming and Alignment
2.4. Differential Expression Analysis
2.5. Functional Enrichments Analysis
2.6. Analysis of DAS Genes
2.7. PacBio Full-Length Transcripts Analysis
3. Results
3.1. Gene Expression Level in Muscle, Brain, and Skin Tissues of Mule
3.2. Analysis of DEGs between Hybrids and Either of Their Parents
3.3. Identification and Characterization of DAS Events
3.4. DEGs and DAS Genes in Muscle Contraction Pathway
4. Discussion
4.1. Comparative Transcriptome Analysis Between Hybrids and Their Parents
4.2. Differential Alternative Splicing Contributes to Heterosis of Hybrids
4.3. Muscle Contraction Pathway in Heterosis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Birchler, J.A.; Auger, D.L.; Riddle, N.C. In Search of the Molecular Basis of Heterosis. Plant Cell 2003, 15, 2236–2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochholdinger, F.; Hoecker, N. Towards the molecular basis of heterosis. Trends Plant Sci. 2007, 12, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-Y.; He, H.; Chen, L.; Li, L.; Liang, M.-Z.; Wang, X.; Liu, X.-G.; He, G.-M.; Chen, R.-S.; Ma, L.; et al. A Genome-Wide Transcription Analysis Reveals a Close Correlation of Promoter INDEL Polymorphism and Heterotic Gene Expression in Rice Hybrids. Mol. Plant 2008, 1, 720–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger, U.; Lippman, Z.B.; Zamir, D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 2010, 42, 459–463. [Google Scholar] [CrossRef]
- Huang, X.-H.; Yang, S.; Gong, J.; Zhao, Y.; Feng, Q.; Gong, H.; Li, W.; Zhan, Q.; Cheng, B.; Xia, J.; et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 2015, 6, 6258. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.; Tao, Y.; Liu, G.; Chen, C.; Luo, R.; Xia, H.; Gan, Q.; Zeng, H.; Lu, Z.; Han, Y.; et al. A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc. Natl. Acad. Sci. USA 2009, 106, 7695–7701. [Google Scholar] [CrossRef] [Green Version]
- Franke, D.E. Breed and Heterosis Effects of American Zebu Cattle. J. Anim. Sci. 1980, 50, 1206–1214. [Google Scholar] [CrossRef]
- Hanot, P.; Herrel, A.; Guintard, C.; Cornette, R. Unravelling the hybrid vigor in domestic equids: The effect of hybridization on bone shape variation and covariation. BMC Evol. Boil. 2019, 19, 188. [Google Scholar] [CrossRef] [Green Version]
- Heins, B.; Hansen, L.; Seykora, A.; Johnson, D.; Linn, J.; Romano, J.; Hazel, A. Crossbreds of Jersey × Holstein Compared with Pure Holsteins for Production, Fertility, and Body and Udder Measurements During First Lactation. J. Dairy Sci. 2008, 91, 1270–1278. [Google Scholar] [CrossRef] [Green Version]
- Davenport, C.B. Degeneration, albinism and inbreeding. Science 1908, 28, 454–455. [Google Scholar] [CrossRef] [Green Version]
- Bruce, A.B. The mendelian theory of heredity and the augmentation of vigor. Science 1910, 32, 627–628. [Google Scholar] [CrossRef] [PubMed]
- Shull, G.H. The Composition of a Field of Maize. J. Hered. 1908, 296–301. [Google Scholar] [CrossRef]
- Yu, S.B.; Li, J.X.; Xu, C.G.; Tan, Y.F.; Gao, Y.J.; Li, X.; Zhang, Q.; Maroof, M.A.S. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA 1997, 94, 9226–9231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunning, H.; Wall, E.; Chagunda, M.G.G.; Banos, G.; Simm, G. Heterosis in cattle crossbreeding schemes in tropical regions: Meta-analysis of effects of breed combination, trait type, and climate on level of heterosis1. J. Anim. Sci. 2018, 97, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Ebato, H.; Seyfried, T.N.; Yu, R.K. Biochemical Study of Heterosis for Brain Myelin Content in Mice. J. Neurochem. 1983, 40, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Noguera, J.L.; Ibáñez-Escriche, N.; Casellas, J.; Rosas, J.P.; Varona, L. Genetic parameters and direct, maternal and heterosis effects on litter size in a diallel cross among three commercial varieties of Iberian pig. Animals 2019, 13, 2765–2772. [Google Scholar] [CrossRef] [PubMed]
- Siwendu, N.A.; Norris, D.; Ng’Ambi, J.; Shimelis, H.A.; Benyi, K. Heterosis and combining ability for body weight in a diallel cross of three chicken genotypes. Trop. Anim. Heal. Prod. 2012, 45, 965–970. [Google Scholar] [CrossRef]
- Montanari, S.R.; Hobbs, J.-P.A.; Pratchett, M.S.; Bay, L.K.; Van Herwerden, L. Naturally occurring hybrids of coral reef butterflyfishes have similar fitness compared to parental species. PLoS ONE 2017, 12, e0173212. [Google Scholar] [CrossRef]
- Ferreira, V.C.; Berger, Y.M.; Thomas, D.; Rosa, G.J.M. Survival in crossbred lambs: Breed and heterosis effects. J. Anim. Sci. 2015, 93, 912. [Google Scholar] [CrossRef]
- Black, D.L. Mechanisms of Alternative Pre-Messenger RNA Splicing. Annu. Rev. Biochem. 2003, 72, 291–336. [Google Scholar] [CrossRef] [Green Version]
- Krüger, M.; Linke, W.A. The Giant Protein Titin: A Regulatory Node That Integrates Myocyte Signaling Pathways*. J. Boil. Chem. 2011, 286, 9905–9912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.; Schafer, S.; Greaser, M.L.; Radke, M.H.; Liss, M.; Govindarajan, T.; Maatz, H.; Schulz, H.; Li, S.; Parrish, A.M.; et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 2012, 18, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Guo, W.; Dewey, C.N.; Greaser, M.L. Rbm20 regulates titin alternative splicing as a splicing repressor. Nucleic Acids Res. 2013, 41, 2659–2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brauch, K.M.; Karst, M.L.; Herron, K.J.; De Andrade, M.; Pellikka, P.A.; Rodeheffer, R.J.; Michels, V.V.; Olson, T.M. Mutations in Ribonucleic Acid Binding Protein Gene Cause Familial Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2009, 54, 930–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, J.; Frese, K.; Peil, B.; Kloos, W.; Keller, A.; Nietsch, R.; Feng, Z.; Müller, S.; Kayvanpour, E.; Vogel, B.; et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Hear. J. 2014, 36, 1123–1135. [Google Scholar] [CrossRef] [PubMed]
- Proops, L.; Burden, F.; Osthaus, B. Mule cognition: A case of hybrid vigour? Anim. Cogn. 2008, 12, 75–84. [Google Scholar] [CrossRef]
- Renaud, G.; Petersen, B.; Seguin-Orlando, A.; Bertelsen, M.F.; Waller, A.S.; Newton, R.; Paillot, R.; Bryant, N.; Vaudin, M.; Librado, P.; et al. Improved de novo genomic assembly for the domestic donkey. Sci. Adv. 2018, 4, eaaq0392. [Google Scholar] [CrossRef] [Green Version]
- Osthaus, B.; Proops, L.; Hocking, I.; Burden, F. Spatial cognition and perseveration by horses, donkeys and mules in a simple A-not-B detour task. Anim. Cogn. 2012, 16, 301–305. [Google Scholar] [CrossRef]
- Knottenbelt, D.C. Skin Disorders of the Donkey and Mule. Vet. Clin. N. Am. Equine Pr. 2019, 35, 493–514. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Zhao, Y.; Chen, W.-H.; Shao, J.-J.; Wang, N.-N.; Li, M.; Zhou, G.-X.; Wang, L.; Shen, W.-J.; et al. Allele-specific expression and alternative splicing in horse×donkey and cattle×yak hybrids. Zool. Res. 2019, 40, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Mansour, T.A.; Scott, E.Y.; Finno, C.J.; Bellone, R.R.; Mienaltowski, M.J.; Penedo, M.C.; Ross, P.J.; Valberg, S.J.; Murray, J.D.; Brown, C.T. Tissue resolved, gene structure refined equine transcriptome. BMC Genom. 2017, 18, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, E.N.; Bordbari, M.H.; Mienaltowski, M.J.; Affolter, V.K.; Barro, M.V.; Gianino, F.; Gianino, G.; Giulotto, E.; Kalbfleisch, T.S.; Katzman, S.A.; et al. Generation of an equine biobank to be used for Functional Annotation of Animal Genomes project. Anim. Genet. 2018, 49, 564–570. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2012, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- I Love, M.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 002832. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.-Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, W316–W322. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Park, J.W.; Lu, Z.-X.; Lin, L.; Henry, M.D.; Wu, Y.N.; Zhou, Q.; Xing, Y. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. USA 2014, 111, E5593–E5601. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.D.; Watanabe, C.K. GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 2005, 21, 1859–1875. [Google Scholar] [CrossRef] [Green Version]
- Hahne, F.; Ivanek, R. Visualizing Genomic Data Using Gviz and Bioconductor. In Advanced Structural Safety Studies; Springer Science and Business Media LLC: Berlin, Germany, 2016; Volume 1418, pp. 335–351. [Google Scholar]
- Bastien, J.; Adam-Stitah, S.; Riedl, T.; Egly, J.-M.; Chambon, P.; Rochette-Egly, C. TFIIH Interacts with the Retinoic Acid Receptor γ and Phosphorylates Its AF-1-activating Domain through cdk7. J. Boil. Chem. 2000, 275, 21896–21904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, H.; Periyasamy, M.; Sava, G.P.; Bondke, A.; Slafer, B.W.; Kroll, S.H.B.; Barbazanges, M.; Starkey, R.; Ottaviani, S.; Harrod, A.; et al. ICEC0942, an Orally Bioavailable Selective Inhibitor of CDK7 for Cancer Treatment. Mol. Cancer Ther. 2018, 17, 1156–1166. [Google Scholar] [CrossRef] [Green Version]
- Timms, A.E.; Dorschner, M.O.; Wechsler, J.; Choi, K.Y.; Kirkwood, R.; Girirajan, S.; Baker, C.; Eichler, E.E.; Korvatska, O.; Roche, K.W.; et al. Support for the N -Methyl-D-Aspartate Receptor Hypofunction Hypothesis of Schizophrenia From Exome Sequencing in Multiplex Families. JAMA Psychiatry 2013, 70, 582. [Google Scholar] [CrossRef] [Green Version]
- Matosin, N.; Newell, K.; Quidé, Y.; Andrews, J.L.; Teroganova, N.; Green, M.J.; Fernandez, F. Effects of common GRM5 genetic variants on cognition, hippocampal volume and mGluR5 protein levels in schizophrenia. Brain Imaging Behav. 2017, 12, 509–517. [Google Scholar] [CrossRef]
- Strausberg, R.L.; Feingold, E.A.; Grouse, L.H.; Derge, J.G.; Klausner, R.D.; Collins, F.S.; Wagner, L.; Shenmen, C.M.; Schuler, G.D.; Altschul, S.F.; et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. USA 2002, 99, 16899–16903. [Google Scholar] [PubMed] [Green Version]
- Townsend, P.J.; Yacoub, M.H.; Barton, P.J. Assignment of the human fast skeletal muscle troponin C gene (TNNC2) between D20S721 and GCT10F11 on chromosome 20 by somatic cell hybrid analysis. Ann. Hum. Genet 1997, 61, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Bai, X.-C.; Yan, C.; Wu, J.; Li, Z.; Xie, T.; Peng, W.; Yin, C.-C.; Li, X.; Scheres, S.; et al. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 2014, 517, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Fujii, J.; Otsu, K.; Zorzato, F.; De León, S.; Khanna, V.; Weiler, J.; O’Brien, P.; MacLennan, D.; Benito, M.; Porras, A.; et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 1991, 253, 448–451. [Google Scholar] [CrossRef]
- Filipova, D.; Walter, A.M.; Gaspar, J.A.; Brunn, A.; Linde, N.F.; Ardestani, M.A.; Deckert, M.; Hescheler, J.; Pfitzer, G.; Sachinidis, A.; et al. Erratum: Corrigendum: Gene profiling of embryonic skeletal muscle lacking type I ryanodine receptor Ca2+ release channel. Sci. Rep. UK 2016, 6, 20050. [Google Scholar] [CrossRef] [Green Version]
- Ablondi, M.; Eriksson, S.; Tetu, S.; Sabbioni, A.; Viklund, Å.; Mikko, S. Genomic Divergence in Swedish Warmblood Horses Selected for Equestrian Disciplines. Genes 2019, 10, 976. [Google Scholar] [CrossRef] [Green Version]
- Nanaei, H.A.; Mehrgardi, A.A.; Esmailizadeh, A. Comparative population genomics unveils candidate genes for athletic performance in Hanoverians. Genome 2019, 62, 279–285. [Google Scholar] [CrossRef] [PubMed]
Tissues | Gene Type | Mules vs. Horses | Mules vs. Donkeys | Hinnies vs. Horses | Hinnies vs. Horses |
---|---|---|---|---|---|
Muscle | Up-regulated | 3602 | 73 | 2523 | 2442 |
Down-regulated | 3442 | 202 | 2810 | 3028 | |
Brain | Up-regulated | 1527 | 341 | 1054 | 2308 |
Down-regulated | 2162 | 611 | 1223 | 2895 | |
Skin | Up-regulated | 3077 | 720 | 2899 | 2573 |
Down-regulated | 3560 | 606 | 3311 | 2645 |
Tissues | Hybrids | Non-Addictive | Over-Dominance | High-Parent Dominance | Addictive | Low-Parent Dominance | Under-Dominance |
---|---|---|---|---|---|---|---|
Muscle | Mule | 561 | 1713 | 1397 | 434 | 1040 | 2051 |
Hinny | 1135 | 2281 | 1207 | 1371 | 1160 | 1459 | |
Brain | Mule | 688 | 811 | 1212 | 625 | 503 | 495 |
Hinny | 992 | 1369 | 1431 | 826 | 792 | 1148 | |
Skin | Mule | 1008 | 1394 | 1532 | 1223 | 1069 | 1141 |
Hinny | 1363 | 2294 | 1189 | 1343 | 1237 | 1665 |
Tissues | Mules vs. Horses | Mules vs. Donkeys | Hinnies vs. Horses | Hinnies vs. Horses |
---|---|---|---|---|
Muscle | 1377 | 593 | 656 | 1319 |
Brain | 1124 | 280 | 1264 | 1330 |
Skin | 1128 | 378 | 1121 | 1570 |
Tissues | Hybrids | Over-Dominance | High-Parent Dominance | Addictive | Low-Parent Dominance | Under-Dominance |
---|---|---|---|---|---|---|
Muscle | Mule | 173 | 950 | 287 | 633 | 198 |
Hinny | 450 | 1037 | 311 | 1075 | 744 | |
Brain | Mule | 189 | 946 | 334 | 910 | 278 |
Hinny | 175 | 695 | 278 | 1043 | 333 | |
Skin | Mule | 171 | 828 | 253 | 578 | 143 |
Hinny | 340 | 866 | 335 | 1033 | 655 |
Comparison Mule and Either of Its Parents | Covered DAS Genes | Verified DAS Genes | (Verified/Covered) % |
---|---|---|---|
mule vs. horse | 1123 | 768 | 68 |
mule vs. donkey | 279 | 183 | 66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Nanaei, H.A.; Wei, B.; Wang, Y.; Wang, X.; Li, Z.; Dai, X.; Wang, Z.; Jiang, Y.; Shao, J. Comparative Transcriptome Profiling Analysis Uncovers Novel Heterosis-Related Candidate Genes Associated with Muscular Endurance in Mules. Animals 2020, 10, 980. https://doi.org/10.3390/ani10060980
Gao S, Nanaei HA, Wei B, Wang Y, Wang X, Li Z, Dai X, Wang Z, Jiang Y, Shao J. Comparative Transcriptome Profiling Analysis Uncovers Novel Heterosis-Related Candidate Genes Associated with Muscular Endurance in Mules. Animals. 2020; 10(6):980. https://doi.org/10.3390/ani10060980
Chicago/Turabian StyleGao, Shan, Hojjat Asadollahpour Nanaei, Bin Wei, Yu Wang, Xihong Wang, Zongjun Li, Xuelei Dai, Zhichao Wang, Yu Jiang, and Junjie Shao. 2020. "Comparative Transcriptome Profiling Analysis Uncovers Novel Heterosis-Related Candidate Genes Associated with Muscular Endurance in Mules" Animals 10, no. 6: 980. https://doi.org/10.3390/ani10060980
APA StyleGao, S., Nanaei, H. A., Wei, B., Wang, Y., Wang, X., Li, Z., Dai, X., Wang, Z., Jiang, Y., & Shao, J. (2020). Comparative Transcriptome Profiling Analysis Uncovers Novel Heterosis-Related Candidate Genes Associated with Muscular Endurance in Mules. Animals, 10(6), 980. https://doi.org/10.3390/ani10060980