Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis)
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Donazar, J.A.; Negro, J.J.; Palacios, C.J.; Gangoso, L.; Godoy, J.A.; Ceballos, O.; Hiraldo, F.N.; Capote, N. Description of a new subspecies of Neophron percnopterus from the Canary Islands. J. Raptor Res. 2002, 36, 17–23. [Google Scholar]
- van Overveld, T.; García-Alfonso, M.; Dingemanse, N.J.; Bouten, W.; Gangoso, L.; de la Riva, M.; Serrano, D.; Donázar, J.A. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Cortés-Avizanda, A.; Blanco, G.; Devault, T.L.; Markandya, A.; Virani, M.Z.; Brandt, J.; Donázar, J.A. Supplementary feeding and endangered avian scavengers: Benefits, caveats, and controversies. Front. Ecol. Environ. 2016, 14, 191–199. [Google Scholar] [CrossRef]
- Real Decreto 139/2011, de 4 de febrero, para el desarrollo del Listado de Especies Silvestres en Régimen de Protección Especial y del Catálogo Español de Especies Amenazadas. Bol. Of. Estado 2011, 46, 20912–20951. (In Spanish)
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic resistance is the quintessential One Health issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Lee, J.H.; Park, K.S.; Jeon, J.H.; Kim, Y.B.; Jeong, B.C.; Lee, S.H. The need for efforts to obtain high quality evidence in a one health approach. Biomed. Res. 2018, 29, 2355–2361. [Google Scholar]
- British Veterinary Association. Strategy adopts a One Health approach to antimicrobial resistance. Vet. Rec. 2013, 173, 255. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Z.B.; Zeng, Z.L.; Yang, X.W.; Huang, Y.; Liu, J.H. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool. Res. 2017, 38, 55–80. [Google Scholar] [CrossRef]
- Walther, B.A.; Boëte, C.; Binot, A.; By, Y.; Cappelle, J.; Carrique-Mas, J.; Chou, M.; Furey, N.; Kim, S.; Lajaunie, C.; et al. Biodiversity and health: Lessons and recommendations from an interdisciplinary conference to advise Southeast Asian research, society and policy. Infect. Genet. Evol. 2016, 40, 29–46. [Google Scholar] [CrossRef]
- Bonnedahl, J.; Järhult, J.D. Antibiotic resistance in wild birds. Ups. J. Med. Sci. 2014, 119, 113–116. [Google Scholar] [CrossRef]
- Szmolka, A.; Nagy, B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front. Microbiol. 2013, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Antibiotic Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 19 March 2020).
- Doi, Y.; Iovleva, A.; Bonomo, R.A. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J. Travel Med. 2017, 24, S44–S51. [Google Scholar] [CrossRef]
- Mughini-Gras, L.; Dorado-García, A.; van Duijkeren, E.; van den Bunt, G.; Dierikx, C.M.; Bonten, M.J.M.; Bootsma, M.C.J.; Schmitt, H.; Hald, T.; Evers, E.G.; et al. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: A population-based modelling study. Lancet Planet. Heal. 2019, 3, e357–e369. [Google Scholar] [CrossRef]
- Alcalá, L.; Alonso, C.A.; Simón, C.; González-Esteban, C.; Orós, J.; Rezusta, A.; Ortega, C.; Torres, C. Wild Birds, Frequent Carriers of Extended-Spectrum β-Lactamase (ESBL) Producing Escherichia coli of CTX-M and SHV-12 Types. Microb. Ecol. 2016, 72, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Molina-López, R.A.; Vidal, A.; Obón, E.; Martín, M.; Darwich, L. Multidrug-resistant Salmonella enterica serovar typhimurium monophasic variant 4,12:i:-Isolated from asymptomatic wildlife in a catalonian wildlife rehabilitation center, Spain. J. Wildl. Dis. 2015, 51, 759–763. [Google Scholar] [CrossRef]
- Vidal, A.; Baldomà, L.; Molina-López, R.A.; Martin, M.; Darwich, L. Microbiological diagnosis and antimicrobial sensitivity profiles in diseased free-living raptors. Avian Pathol. 2017, 46, 442–450. [Google Scholar] [CrossRef]
- Radhouani, H.; Poeta, P.; Gonçalves, A.; Pacheco, R.; Sargo, R.; Igrejas, G. Wild birds as biological indicators of environmental pollution: Antimicrobial resistance patterns of Escherichia coli and Enterococci isolated from common buzzards (Buteo buteo). J. Med. Microbiol. 2012, 61, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, A.; Fioretti, A.; Russo, T.P.; Varriale, L.; Rampa, L.; Paone, S.; De Luca Bossa, L.M.; Raia, P.; Dipineto, L. Occurrence of enteropathogenic bacteria in birds of prey in Italy. Lett. Appl. Microbiol. 2018, 66, 202–206. [Google Scholar] [CrossRef]
- Grzywaczewski, G.; Kowalczyk-Pecka, D.; Cios, S.; Bojar, W.; Junkuszew, A.; Bojar, H.; Kolejko, M. Tawny owl Strix aluco as a potential transmitter of Enterobacteriaceae epidemiologically relevant for forest service workers, nature protection service and ornithologists. Ann. Agric. Environ. Med. 2017, 24, 62–65. [Google Scholar] [CrossRef]
- Badia-Boher, J.A.; Sanz-Aguilar, A.; de la Riva, M.; Gangoso, L.; van Overveld, T.; García-Alfonso, M.; Luzardo, O.P.; Suarez-Pérez, A.; Donázar, J.A. Evaluating European LIFE conservation projects: Improvements in survival of an endangered vulture. J. Appl. Ecol. 2019, 56, 1210–1219. [Google Scholar] [CrossRef]
- Marin, C.; Palomeque, M.D.; Marco-Jiménez, F.; Vega, S. Wild griffon vultures (Gyps fulvus) as a source of Salmonella and Campylobacter in eastern Spain. PLoS ONE 2014, 9, 1–5. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute, C. M02-A12: Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition. Clin. Lab. Stand. Inst. 2015, 35, 73. [Google Scholar]
- Mukerji, S.; O’Dea, M.; Barton, M.; Kirkwood, R.; Lee, T.; Abraham, S. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Essays Biochem. 2017, 61, 23–35. [Google Scholar]
- Blanco, G.; Junza, A.; Segarra, D.; Barbosa, J.; Barrón, D. Wildlife contamination with fluoroquinolones from livestock: Widespread occurrence of enrofloxacin and marbofloxacin in vultures. Chemosphere 2016, 144, 1536–1543. [Google Scholar] [CrossRef]
- Blanco, G.; Junza, A.; Barrón, D. Food safety in scavenger conservation: Diet-associated exposure to livestock pharmaceuticals and opportunist mycoses in threatened Cinereous and Egyptian vultures. Ecotoxicol. Environ. Saf. 2017, 135, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Yang, R.S.; Xia, J.; Chen, L.; Zhang, R.; Fang, L.X.; Lei, F.; Song, G.; Jia, L.; Han, L.; et al. High colonization rate of a novel carbapenem-resistant Klebsiella lineage among migratory birds at Qinghai Lake, China. J. Antimicrob. Chemother. 2019, 74, 2895–2903. [Google Scholar] [CrossRef] [PubMed]
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High prevalence and diversity of extended-spectrum β-lactamase and emergence of OXA-48 producing Enterobacterales in wildlife in Catalonia. PLoS ONE 2019, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Tzouvelekis, L.S.; Markogiannakis, A.; Psichogiou, M.; Tassios, P.T.; Daikos, G.L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin. Microbiol. Rev. 2012, 25, 682–707. [Google Scholar] [CrossRef] [PubMed]
- Dolejska, M.; Masarikova, M.; Dobiasova, H.; Jamborova, I.; Karpiskova, R.; Havlicek, M.; Carlile, N.; Priddel, D.; Cizek, A.; Literak, I. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J. Antimicrob. Chemother. 2016, 71, 63–70. [Google Scholar] [CrossRef][Green Version]
- Van Duijkeren, E.; Schwarz, C.; Bouchard, D.; Catry, B.; Pomba, C.; Baptiste, K.E.; Moreno, M.A.; Rantala, M.; Ružauskas, M.; Sanders, P.; et al. The use of aminoglycosides in animals within the EU: Development of resistance in animals and possible impact on human and animal health: A review. J. Antimicrob. Chemother. 2019, 74, 2480–2496. [Google Scholar] [CrossRef]
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th Revision; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Available online: http://data.europa.eu/eli/reg/2019/6/oj (accessed on 2 June 2020).
- Marrow, J.; Whittington, J.K.; Mitchell, M.; Hoyer, L.L.; Maddox, C. Prevalence and antibiotic-resistance characteristics of Enterococcus spp. isolated from free-living and captive raptors in central Illinois. J. Wildl. Dis. 2009, 45, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Tormoehlen, K.; Johnson-Walker, Y.J.; Lankau, E.W.; Myint, M.S.; Herrmann, J.A. Considerations for studying transmission of antimicrobial resistant enteric bacteria between wild birds and the environment on intensive dairy and beef cattle operations. Peer J. 2019, 2019, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Maherchandani, S.; Shringi, B.N.; Kashyap, S.K.; Sundar, K.S.G. Temporal variations in patterns of Escherichia coli strain diversity and antimicrobial resistance in the migrant Egyptian vulture. Infect. Ecol. Epidemiol. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Giacopello, C.; Foti, M.; Mascetti, A.; Grosso, F.; Ricciardi, D.; Fisichella, V.; Lo Piccolo, F. Antibiotico resistenza in ceppi di Enterobacteriaceae isolati da avifauna europea ricoverata presso un centro di recupero per la fauna selvatica. Vet. Ital. 2016, 52, 139–144. (In Italian) [Google Scholar] [PubMed]
- Guenther, S.; Aschenbrenner, K.; Stamm, I.; Bethe, A.; Semmler, T.; Stubbe, A.; Stubbe, M.; Batsajkhan, N.; Glupczynski, Y.; Wieler, L.H.; et al. Comparable High Rates of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli in Birds of Prey from Germany and Mongolia. PLoS ONE 2012, 7, 1–6. [Google Scholar] [CrossRef][Green Version]
- Blanco, G.; Díaz de Tuesta, J.A. Culture- and molecular-based detection of swine-adapted Salmonella shed by avian scavengers. Sci. Total Environ. 2018, 634, 1513–1518. [Google Scholar] [CrossRef]
- Battisti, A.; Di Guardo, G.; Agrimi, U.; Bozzano, A.I. Embryonic and neonatal mortality from salmonellosis in captive bred raptors. J. Wildl. Dis. 1998, 34, 64–72. [Google Scholar] [CrossRef][Green Version]
- Blanco, G. Supplementary feeding as a source of multiresistant Salmonella in endangered Egyptian vultures. Transbound. Emerg. Dis. 2018, 65, 806–816. [Google Scholar] [CrossRef]
- Molina-Lopez, R.A.; Valverdú, N.; Martin, M.; Mateu, E.; Obon, E.; Cerdà-Cuéllar, M.; Darwich, L. Wild raptors as carriers of antimicrobial resistant Salmonella and Campylobacter strains. Vet. Rec. 2011, 168, 565–568. [Google Scholar] [CrossRef]
- Botti, V.; Valérie Navillod, F.; Domenis, L.; Orusa, R.; Pepe, E.; Robetto, S.; Guidetti, C. Salmonella spp. and antibiotic-resistant strains in wild mammals and birds in north-western Italy from 2002 to 2010. Vet. Ital. 2013, 49, 195–202. [Google Scholar] [PubMed]
- Jijón, S.; Wetzel, A.; LeJeune, J. Salmonella enterica isolated from Wildlife at two Ohio Rehabilitation Centers. J. Zoo Wildl. Med. 2007, 38, 409–413. [Google Scholar] [CrossRef]
- Seng, P.; Boushab, B.M.; Romain, F.; Gouriet, F.; Bruder, N.; Martin, C.; Paganelli, F.; Bernit, E.; Le Treut, Y.P.; Thomas, P.; et al. Emerging role of Raoultella ornithinolytica in human infections: A series of cases and review of the literature. Int. J. Infect. Dis. 2016, 45, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, R.; Ambaraghassi, G.; Sebajang, H.; Schwenter, F.; Su, S.H. Raoultella ornithinolytica: Emergence and resistance. Infect. Drug Resist. 2020, 13, 1091–1104. [Google Scholar] [CrossRef] [PubMed]
- Tauler-Ametlller, H.; Pretus, J.L.; Hernández-Matías, A.; Ortiz-Santaliestra, M.E.; Mateo, R.; Real, J. Domestic waste disposal sites secure food availability but diminish plasma antioxidants in Egyptian vulture. Sci. Total Environ. 2019, 650, 1382–1391. [Google Scholar] [CrossRef] [PubMed]
Antibiotic | Resistant | Intermediate | Susceptible |
---|---|---|---|
Ampicillin | 54.25 | - | 45.75 |
Amoxicillin/Clavulanic Acid | 8.5 | 2.85 | 88.65 |
Cephalexin | 16.15 | 3.1 | 80.75 |
Cefpodoxime | 3.1 | 0.77 | 96.13 |
Piperacillin | 23.1 | 10 | 66.9 |
Imipenem | 6.96 | 1.54 | 91.5 |
Gentamicin | 11.5 | - | 88.5 |
Tobramycin | 8 | 1.4 | 90.6 |
Amikacin | 6.87 | - | 93.13 |
Enrofloxacin | 17.7 | 3.1 | 79.2 |
Marbofloxacin | 16.15 | 0.75 | 83.1 |
Tetracycline | 48.44 | 1.56 | 50 |
Nitrofurantoin | 6.15 | 10 | 83.85 |
Chloramphenicol | 15.38 | 16.15 | 68.47 |
Polymyxin B | 3.7 | - | 96.3 |
Trimethoprim/Sulfamethoxazole | 46.85 | - | 53.15 |
Antibiotic | Resistant | Intermediate | Susceptible | ||||||
---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2015 | 2016 | 2017 | 2015 | 2016 | 2017 | |
Ampicillin | 53.3 | 50 | 60 | - | - | - | 46.7 | 50 | 40 |
Amoxicillin/Clavulanic Acid | 10.35 | 25 | 12 | - | - | 8 | 89.65 | 75 | 80 |
Cephalexin | - | 16.4 | 22.9 | 4.8 | - | 6.25 | 95.2 | 83.6 | 70.85 |
Cefpodoxime | - | 4.9 | 2.1 | - | - | 2.1 | 100 | 95.1 | 95.8 |
Piperacillin | 9.52 | 19.7 | 33.3 | 19 | 6.5 | 10.4 | 71.48 | 73.8 | 56.3 |
Imipenem | 4.7 | 5.1 | 10 | - | - | 4 | 95.3 | 94.9 | 86 |
Gentamicin | 3.33 | 16.4 | 10.4 | - | - | - | 96.67 | 83.6 | 89.6 |
Tobramycin | 3.33 | 9.9 | 8.4 | - | 1.65 | 2.1 | 96.67 | 88.5 | 89.5 |
Amikacin | - | 9.7 | 6.25 | - | - | - | 100 | 90.3 | 93.75 |
Enrofloxacin | 38.1 | 11.47 | 16.67 | 4.76 | 1.64 | 4.16 | 57.14 | 86.89 | 79.17 |
Marbofloxacin | 33.33 | 11.47 | 14.6 | - | - | 2.1 | 66.67 | 88.53 | 83.3 |
Tetracycline | 38.1 | 39 | 64.6 | - | 3.4 | - | 61.9 | 57.6 | 35.4 |
Nitrofurantoin | 14.3 | - | 10.42 | - | 4.9 | 20.83 | 85.7 | 95.1 | 68.75 |
Chloramphenicol | 14.3 | 9.8 | 22.9 | 4.7 | 6.6 | 33.35 | 81 | 83.6 | 43.75 |
Polymyxin B | - | - | 6.12 | - | - | - | 100 | 100 | 93.88 |
Trimethoprim/Sulfamethoxazole | 41.9 | 48.4 | 48 | - | - | - | 58.1 | 51.6 | 52 |
Antibiotic | Age | Resistant | Intermediate | Susceptible | Chi-Squared (χ2) | p-Value |
---|---|---|---|---|---|---|
Ampicillin | chicks | 46.9 | - | 53.1 | 3.404 | 0.065 |
rest | 63.9 | - | 36.1 | |||
Amoxicillin/Clavulanic Acid | chicks | 2.45 | 2.45 | 95.1 | 7.308 | 0.007 * |
rest | 16.7 | 3.3 | 80 | |||
Cephalexin | chicks | 11.6 | 1.3 | 87.1 | 2.274 | 0.132 |
rest | 23.1 | 5.8 | 71.1 | |||
Cefpodoxime | chicks | 1.28 | - | 98.72 | 0.871 | 0.351 |
rest | 5.77 | 1.93 | 92.3 | |||
Piperacillin | chicks | 13.9 | 8.9 | 77.2 | 8.235 | 0.004 * |
rest | 37.25 | 11.75 | 51 | |||
Imipenem | chicks | 3.8 | 1.3 | 94.9 | 1.942 | 0.163 |
rest | 11.8 | 1.9 | 86.3 | |||
Gentamicin | chicks | 12.8 | - | 87.2 | 0.060 | 0.807 |
rest | 9.83 | - | 90.17 | |||
Tobramycin | chicks | 6.4 | 2.6 | 91 | 0.124 | 0.724 |
rest | 9.8 | - | 90.2 | |||
Amikacin | chicks | 6.34 | - | 93.66 | 0.012 | 0.914 |
rest | 7.69 | - | 92.31 | |||
Enrofloxacin | chicks | 19.2 | 1.3 | 79.5 | 0.108 | 0.743 |
rest | 15.38 | 5.77 | 78.85 | |||
Marbofloxacin | chicks | 17.9 | - | 82.1 | 0.192 | 0.662 |
rest | 13.47 | 1.93 | 84.6 | |||
Tetracycline | chicks | 36.36 | 1.3 | 62.34 | 10.099 | 0.001 * |
rest | 66.66 | 1.96 | 31.38 | |||
Nitrofurantoin | chicks | 5.12 | 6.42 | 88.46 | 0.050 | 0.823 |
rest | 7.7 | 15.38 | 76.92 | |||
Chloramphenicol | chicks | 7.7 | 14.1 | 78.2 | 7.448 | 0.006 * |
rest | 27 | 19.2 | 53.8 | |||
Polymyxin B | chicks | 4.35 | - | 95.65 | 0.059 | 0.809 |
rest | 2.85 | - | 97.15 | |||
Trimethoprim/ Sulfamethoxazole | chicks | 45.68 | - | 54.32 | 3.404 | 0.065 |
rest | 48.38 | - | 51.62 |
Antibiotic | Species * | Resistant | Intermediate | Susceptible |
---|---|---|---|---|
Ampicillin | E. coli | 51.3 | - | 48.7 |
Salmonella | 22.22 | - | 77.78 | |
Others | 85 | - | 15 | |
Amoxicillin/Clavulanic Acid | E. coli | 6.2 | 2.8 | 91 |
Salmonella | - | - | 100 | |
Others | 25 | 5 | 70 | |
Cephalexin | E. coli | 7.8 | 1 | 91.2 |
Salmonella | 88.89 | - | 11.11 | |
Others | 26.3 | 15.8 | 57.9 | |
Cefpodoxime | E. coli | 3.9 | - | 96.1 |
Salmonella | - | - | 100 | |
Others | - | 5.26 | 94.74 | |
Piperacillin | E. coli | 19.4 | 11.6 | 69 |
Salmonella | 22.22 | 11.11 | 66.67 | |
Others | 44.44 | - | 55.56 | |
Imipenem | E. coli | 4.9 | - | 95.1 |
Salmonella | - | 11.11 | 88.89 | |
Others | 21 | 5.3 | 73.7 | |
Gentamicin | E. coli | 5.45 | - | 94.55 |
Salmonella | 100 | - | - | |
Others | 5 | - | 95 | |
Tobramycin | E. coli | 2.7 | 1.8 | 95.5 |
Salmonella | 77.78 | - | 22.22 | |
Others | 5 | - | 95 | |
Amikacin | E. coli | 1 | - | 99 |
Salmonella | 88.89 | - | 11.11 | |
Others | - | - | 100 | |
Enrofloxacin | E. coli | 19 | 2.9 | 78.1 |
Salmonella | - | - | 100 | |
Others | 15.8 | 5.3 | 78.9 | |
Marbofloxacin | E. coli | 18.6 | - | 81.4 |
Salmonella | - | - | 100 | |
Others | 10.5 | 5.3 | 84.2 | |
Tetracycline | E. coli | 45.5 | 2 | 52.5 |
Salmonella | 25 | - | 75 | |
Others | 73.7 | - | 26.3 | |
Nitrofurantoin | E. coli | 2.95 | 5.88 | 91.17 |
Salmonella | - | 22.22 | 77.78 | |
Others | 26.3 | 26.3 | 47.4 | |
Chloramphenicol | E. coli | 14.7 | 16.7 | 68.6 |
Salmonella | - | - | 100 | |
Others | 26.3 | 21 | 52.7 | |
Polymyxin B | E. coli | 5 | - | 95 |
Salmonella | - | - | 100 | |
Others | - | - | 100 | |
Trimethoprim/Sulfamethoxazole | E. coli | 50 | - | 50 |
Salmonella | - | - | 100 | |
Others | 50 | - | 50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Pérez, A.; Corbera, J.A.; González-Martín, M.; Donázar, J.A.; Rosales, R.S.; Morales, M.; Tejedor-Junco, M.T. Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals 2020, 10, 970. https://doi.org/10.3390/ani10060970
Suárez-Pérez A, Corbera JA, González-Martín M, Donázar JA, Rosales RS, Morales M, Tejedor-Junco MT. Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals. 2020; 10(6):970. https://doi.org/10.3390/ani10060970
Chicago/Turabian StyleSuárez-Pérez, Alejandro, Juan Alberto Corbera, Margarita González-Martín, José Antonio Donázar, Rubén Sebastián Rosales, Manuel Morales, and María Teresa Tejedor-Junco. 2020. "Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis)" Animals 10, no. 6: 970. https://doi.org/10.3390/ani10060970
APA StyleSuárez-Pérez, A., Corbera, J. A., González-Martín, M., Donázar, J. A., Rosales, R. S., Morales, M., & Tejedor-Junco, M. T. (2020). Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures (Neophron percnopterus majorensis). Animals, 10(6), 970. https://doi.org/10.3390/ani10060970