1. Introduction
In 2018, global beef production was estimated at 72.1 million tonnes (carcass weight equivalent), representing 22.5% of total meat production [
1]. Beef production increasingly utilizes calves originating from the dairy industry [
2,
3], which is partly due to the expansion of dairy farming producing an accessible supply of calves [
4]. In New Zealand, 65% of the annual beef production is sourced from dairy-origin cattle [
5], and the dairy industry supplies 35% to 40% of annual calves required for beef finishing [
4].
On dairy farms, calves are produced in excess of the dairy herd’s replacement requirements. These calves may go to beef finishing farms or be processed for veal or pet-food [
2,
5]. In New Zealand, 1.7 million calves from the dairy industry were commercially processed at 4 to 8 days of age in 2018 [
5]. There is scope to further increase beef production if more calves from the dairy industry are reared for beef [
4,
6]. Dairy-origin steers managed in a beef finishing system to 24 to 36 months of age produce beef that has an acceptable eating quality [
7,
8]. However, due to resource constraints (in particular, grazing land), it is not possible to finish a larger number of calves from the dairy industry for beef to an age of 24 to 36 months. Yearling beef is a potential solution to this issue by accelerating the cycle of beef production. Animals of a similar age are produced in Europe and marketed under different descriptions, such as
Jungrindfleisch (Austria, Germany), rose veal (Ireland, France), or
carne de ternera (Spain) [
2], and yearling beef production is a common practice in Argentina [
9].
Many carcass classification systems for beef indirectly consider saleable meat yield [
10,
11] based on conformation, muscling, and fat depths in the hindquarter region, e.g., the EUROP carcass classification system or the fat depth by conformation matrix used in New Zealand [
5,
12,
13,
14]. However, the carcass classification schemes for yearling cattle are generally undefined [
2], and those used for older cattle are unlikely to be applicable due to a less developed conformation and fat deposition in yearling cattle [
15]. Therefore, there is a need to provide carcass classification and grading systems for creating a fair payment system.
To measure the saleable meat yield, boneless primal and subprimal cuts are obtained; these can be costly and require substantial labor [
12,
16,
17]. For countries that do not use video image analysis (VIA) scanning to assess saleable meat yield [
18], prediction equations are a practical tool. The use of prediction equations avoids the need to assess saleable meat yield directly (thereby avoiding any effect on the quality of the meat), and could be used to assess potential meat yield on live animals if ultrasound measures of carcass composition are used as the predictors [
12,
17,
19,
20].
Carcass weight, eye muscle area, rump, and rib fat depths have been used as predictors of beef saleable meat yield [
14,
17,
21,
22] but lack applicability across age, breed, and gender variables [
23]. Predictive models for saleable meat yield have not yet been developed for yearling steers. The boneless muscle weight from the hindquarter region has been used as an indicator of saleable meat yield for the whole carcass [
12,
13,
14,
24]. Hence, this study was initiated to identify the most pertinent explanatory variables for the weight of boneless cuts from the hind-legs of 8, 10, and 12 month old steers, and to develop predictive models which could be employed for both whole carcass classification and grading, thereby allowing the assignment of a carcass value. It was hypothesized that a combination of carcass weight, wither height, ultrasound eye muscle area, rump, and rib fat depths would be suitable predictors of hind-leg muscles yield, and would elucidate characteristics of importance for use in a carcass classification system for yearling cattle.
4. Discussion
Hind-leg muscles weight represents the major muscle from beef carcasses and is typically employed as an indicator of total saleable meat yield. This study was initiated with the main objective of developing predictive equations for hind-leg muscles weight in yearling steers to assess saleable meat yield, and to identify those variables that could be implemented in a classification system. A strong positive correlation between carcass weight and saleable meat yield was translated into prediction equations in older cattle [
10,
16,
22,
33], and this was also evident for the yearling cattle in the current study.
The 12 month old steers were heavier and produced higher carcass weight than younger steers. They also had a higher wither height, although it was lower than the 121.8 cm reported in a mature cow [
34]. Bone is the earliest developing tissue, followed by muscle and then fat [
15,
35]. Muscle mass increases with carcass weight at a diminishing rate and then plateaus at the fattening stage [
15,
35]. The 10 and 12 month old steers produced a heavier hind-leg muscles weight than did the 8 month old steers, although it was lower than the 13.3 kg reported from different breeds of steers up to 3 years of age [
24]. The eye muscle area of yearling steers was 65.5% of the size reported in Hereford-sired dairy-Angus crossbred steers at 22 to 25 months of age (59.2 cm
2 to 75.3 cm
2) [
8]. Tarouco et al. [
14] reported 70.8 cm
2 of eye muscle area in Nellore steers at 24 to 30 months of age. Bergen et al. [
19] and Lee et al. [
11] reported an eye muscle area of 96 cm
2 in one-year old bulls and Hanwoo steers at 32 months of age. The lower value of muscle weights in the yearling steers in this study is due to the younger age and lighter weight at slaughter.
Regardless of breed, gender, and nutrition status of an animal, fat growth is faster as animals approach maturity [
15,
35]. The 12 month old steers had thicker rump and rib fat depths than the young steers, but were half that reported in 22 to 25 month old Hereford-sired dairy-Angus crossbred steers [
8]. Bergen et al. [
19] reported 6.0 mm and 5.1 mm rump and rib fat depths, respectively, in one-year old bulls. In Nellore steers at the age of 24 to 30 months, a 9.2 mm rump fat depth and 6.4 mm rib fat depth were reported [
14]. The lower fat depths in this study were likely due to the growth stage of the steers and the predominately forage diet. Animals deposit more fat when fed a diet composed of concentrates, rather than pasture or forages [
15].
For the 8 to 12 month old steers in the current study, carcass weight explained the largest proportion of the variation in hind-leg muscles weight. The coefficient of determination (R
2 value) and prediction accuracy (RMSE) of carcass weight within each slaughter treatment group were increased up to 25.7% and 55.6% of its respective value in the combined data. Similar to our study, Chen et al. [
22] reported that carcass weight could explain 63% to 90% of the variation in the weight of trimmed top-grade cuts from native and crossbred Chinese Yellow steers at age of 18 to 52 months. Epley et al. [
33], Berry et al. [
36], and Lee et al. [
11] reported 83.4% to 86.0% for the coefficient of determination of carcass weight in predicting beef prime cuts. In agreement with the current study, several studies have identified carcass weight as being the strongest predictor of beef meat yields [
11,
16,
22,
33,
36].
Eye muscle area and fat depths assessed by ultrasound were more accurate (higher correlation coefficient) than the carcass measured equivalents in predicting saleable meat yield [
14,
19,
20]. Amongst the ultrasound measurements, only eye muscle area was a significant predictor of hind-leg muscles weight from the yearling steers, although it controlled the least variation (39.9%). Similarly, Greiner et al. [
37] reported that the ultrasound eye muscle area controlled 37% of the variation in beef saleable meat yield from 1 to 2-year old steers. Similarly, in a study with different age classes of Angus and Angus-crossbred bulls and steers, 41% of the variation in beef saleable meat yield was explained by the ultrasound eye muscle area [
20]. Neither rump nor rib fat depth was a significant predictor of hind-leg muscles weight in yearling steers; they were also not significant predictors of weight of saleable meat from the hind-legs in Nellore steers at 24 to 30 months old [
14]. Fat measurements have previously been correlated to the percentage of saleable meat yield rather than the weight [
14,
22].
The coefficient of determination and accuracy of prediction equations were improved with multivariate analysis. The prediction efficiency and accuracy between models using carcass weight and wither height or carcass weight and eye muscle area, across the age groups, were not different. The prediction abilities of multivariate analysis in terms of the R
2 value and accuracy were improved when using data within each of the slaughter age groups. Epley et al. [
33] from mixed carcasses, and Lee et al. [
11] in 32 month old Hanwoo steers, reported R
2 values of 88.0% and 85.9% using carcass weight and eye muscle area in predicting valuable beef cuts, respectively. According to Brungardt and Bray [
38], 82.0% of the variation in the saleable meat yield retrieved from four wholesale cuts of steers was explained using the percent of kidney fat, left side carcass weight, eye muscle area, and percent of trimmed round yield. With different breeds of steers considered, 94% of the variation in beef saleable meat yield was explained using eye muscle area, side carcass weight, and trimmed round-cut as predictors [
16].
The goodness of fitness and accuracy of the models using the combined data from all the slaughter age groups for hind-leg muscles weight were lower than the corresponding models within the slaughter age group. Therefore, it is recommended to use the within-slaughter age prediction equations; if an accurate record of age is known when slaughtered at less than 12 months of age, it would be preferable to validate these equations with larger data sets before application. However, if the carcasses are from steers of approximately one year of age, but the exact age is not known, the prediction equations developed utilizing the data across the slaughter ages could be used. The prediction equations developed in this study could be used for beef classification systems which utilize cattle that originate from dairy farms, are finished in pasture-based production systems, and are processed at an age of approximately 8 to 12 months [
2].