The Effect of Shelter on Oxidative Stress and Aggressive Behavior in Crested Newt Larvae (Triturus spp.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Processing
2.3. Biochemical Analyses
2.4. Statistical Analyses
3. Results
3.1. Oxidative Stress
3.2. Shelter Use, Movement and Aggressive Behavior
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonnet, X.; Brischoux, F.; Pearson, D.; Rivalan, P. Beach-rock as a keystone habitat for sea kraits. Environ. Conserv. 2009, 36, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, X.; Fizesan, A.; Michel, C.L. Shelter availability, stress level and digestive performance in the aspic viper. J. Exp. Biol. 2013, 216, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Grillet, P.; Cheylan, M.; Thirion, J.M.; Doré, F.; Bonnet, X.; Dauge, C.; Chollet, S.; Marchand, M.A. Rabbit burrows or artificial refuges are a critical habitat component for the threatened lizard, Timon lepidus (Sauria, Lacertidae). Biodivers. Conserv. 2010, 19, 2039–2051. [Google Scholar] [CrossRef]
- Sih, A. To hide or not to hide? Refuge use in a fluctuating environment. Trends Ecol. Evol. 1997, 12, 375–376. [Google Scholar] [CrossRef]
- Berryman, A.A.; Hawkins, B.A. The refuge as an integrating concept in ecology and evolution. Oikos 2006, 115, 192–196. [Google Scholar] [CrossRef]
- Millidine, K.J.; Armstrong, J.D.; Metcalfe, N.B. Presence of shelter reduces maintenance metabolism of juvenile salmon. Funct. Ecol. 2006, 20, 839–845. [Google Scholar] [CrossRef]
- Pendlebury, C.J.; Bryant, D.M. Night-time behavior of egg-laying tits. Ibis 2005, 147, 342–345. [Google Scholar] [CrossRef]
- Langkilde, T.; OʼConnor, D.; Shine, R. Shelter-site use by five species of montane scincid lizards in south-eastern Australia. Aust. J. Zool. 2003, 51, 175–186. [Google Scholar] [CrossRef]
- Lima, S.L.; Dill, L.M. Behavioural decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 1990, 68, 619–640. [Google Scholar] [CrossRef]
- Roulin, A. On the cost of begging vocalization: implications of vigilance. Behav. Ecol. 2001, 12, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Näslund, J.; Rosengren, M.; Del Villar, D.; Gansel, L.; Norrgård, J.R.; Persson, L.; Winkowski, J.J.; Kvingedal, E. Hatchery tank enrichment affects cortisol levels and shelter-seeking in Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2013, 70, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Michaels, C.J.; Preziosi, R.F. Fitness effects of shelter provision for captive amphibian tadpoles. Herpetol. J. 2015, 25, 21–26. [Google Scholar]
- Costantini, D.; Marasco, V.; Møller, A.P. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J. Comp. Physiol. B 2011, 181, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Costantini, D.; Ferrari, C.; Pasquaretta, C.; Cavallone, E.; Carere, C.; von Hardenberg, A.; Réale, D. Interplay between plasma oxidative status, cortisol and coping styles in wild alpine marmots, Marmota marmota. J. Exp. Biol. 2012, 215, 374–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costantini, D. Oxidative Stress and Hormesis in Evolutionary Ecology and Physiology; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M. Free Radicals in Biology and Medicine, 4th ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Hayes, T.B.; Falso, P.; Gallipeau, S.; Stice, M. The cause of global amphibian declines: a developmental endocrinologist’s perspective. J. Exp. Biol. 2010, 213, 921–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ficetola, G.F.; Rondinini, C.; Bonardi, A.; Baisero, D.; Padoa-Schioppa, E. Habitat availability for amphibians and extinction threat: A global analysis. Divers. Distrib. 2015, 21, 302–311. [Google Scholar] [CrossRef]
- Burraco, P.; Díaz-Paniagua, C.; Gomez-Mestre, I. Different effects of accelerated development and enhanced growth on oxidative stress and telomere shortening in amphibian larvae. Sci. Rep. 2017, 7, 7494. [Google Scholar] [CrossRef] [Green Version]
- Prokić, M.D.; Borković-Mitić, S.S.; Krizmanić, I.I.; Mutić, J.J.; Gavrić, J.P.; Despotović, S.G.; Gavrilović, B.R.; Radovanović, T.B.; Pavlović, S.Z.; Saičić, Z.S. Oxidative stress parameters in two Pelophylax esculentus complex frogs during pre-and post-hibernation: Arousal vs heavy metals. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2017, 202, 19–25. [Google Scholar] [CrossRef]
- Burraco, P.; Iglesias-Carrasco, M.; Cabido, C.; Gomez-Mestre, I. Eucalypt leaf litter impairs growth and development of amphibian larvae, inhibits their antipredator responses and alters their physiology. Conserv. Physiol. 2018, 6, coy066. [Google Scholar] [CrossRef] [Green Version]
- Prokić, M.D.; Petrović, T.G.; Gavrić, J.P.; Despotović, S.G.; Gavrilović, B.R.; Radovanović, T.B.; Faggio, C.; Saičić, Z.S. Comparative assessment of the antioxidative defense system in subadult and adult anurans: A lesson from the Bufotes viridis toad. Zoology 2018, 130, 30–37. [Google Scholar] [CrossRef]
- Prokić, M.D.; Gavrić, J.P.; Petrović, T.G.; Despotović, S.G.; Gavrilović, B.R.; Radovanović, T.B.; Krizmanić, I.I.; Pavlović, S.Z. Oxidative stress in Pelophylax esculentus complex frogs in the wild during transition from aquatic to terrestrial life. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2019, 234, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Denoël, M.; Perez, A.; Cornet, Y.; Ficetola, G.F. Similar local and landscape processes affect both a common and a rare newt species. PLoS ONE 2013, 8, e62727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orizaola, G.; Braña, F. Response of predator-naive newt larvae to food and predator presence. Can. J. Zool. 2003, 81, 1845–1850. [Google Scholar] [CrossRef] [Green Version]
- Babbitt, K.J.; Tanner, G.W. Effects of cover and predator identity on predation of Hyla squirella tadpoles. J. Herpetol. 1997, 31, 128–130. [Google Scholar] [CrossRef]
- Yurewicz, K.L. A growth/mortality trade-off in larval salamanders and the coexistence of intraguild predators and prey. Oecologia 2004, 138, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Semlitsch, R.D.; Reichling, S.B. Density-Dependent injury in larval salamanders. Oecologia 1989, 81, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Wildy, E.L.; Chivers, D.P.; Kiesecker, J.M.; Blaustein, A.R. The effects of food level and conspecific density on biting and cannibalism in larval long-toed salamanders, Ambystoma macrodactylum. Oecologia 2001, 128, 202–209. [Google Scholar] [CrossRef]
- Hossie, T.J.; MacFarlane, S.; Clement, A.; Murray, D.L. Threat of predation alters aggressive interactions among spotted salamander (Ambystoma maculatum) larvae. Ecol. Evol. 2018, 8, 3131–3138. [Google Scholar] [CrossRef] [Green Version]
- Wielstra, B.; Sillero, N.; Vörös, J.; Arntzen, J.W. The distribution of the crested and marbled newt species (Amphibia: Salamandridae: Triturus) – an addition to the New Atlas of Amphibians and Reptiles of Europe. Amphib. Reptil. 2014, 35, 376–381. [Google Scholar] [CrossRef]
- Wielstra, B.; Arntzen, J.W. Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models. BMC Evol. Biol. 2012, 12, 161. [Google Scholar] [CrossRef] [Green Version]
- Wielstra, B.; Burke, T.; Butlin, R.K.; Arntzen, J.W. A signature of dynamic biogeography: Enclaves indicate past species replacement. Proc. R. Soc. B 2017, 284, 20172014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arntzen, J.W.; Üzüm, N.; Ajduković, M.D.; Ivanović, A.; Wielstra, B. Absence of heterosis in hybrid crested newts. PeerJ 2018, 6, e5317. [Google Scholar] [CrossRef] [PubMed]
- Van Buskirk, J.; Schmidt, B.R. Predator-induced phenotypic plasticity in larval newts: Trade-Offs, selection, and variation in nature. Ecology 2000, 81, 3009–3028. [Google Scholar] [CrossRef] [Green Version]
- Glucksohn, S. Äussere Entwicklung der Extremitäten und Stadieneinteilung der Larvenperiode von Triton taeniatus Leyd. und Triton cristatus Laur. Wilhelm Roux Arch. Entwickl. Mech. Org. 1932, 125, 341–405. (In German) [Google Scholar] [CrossRef] [PubMed]
- Vučić, T.; Vukov, T.D.; Kolarov, N.T.; Cvijanović, M.; Ivanović, A. The study of larval tail morphology reveals differentiation between two Triturus species and their hybrids. Amphib. Reptil. 2018, 39, 87–97. [Google Scholar] [CrossRef]
- Sheets, H.D. Integrated morphometrics package (IMP). Available online: http://www2.canisius.edu/~sheets. (accessed on 7 May 2000).
- Crane, A.L.; Demuth, B.S.; Ferrari, M.C. Experience with predators shapes learning rules in larval amphibians. Behav. Ecol. 2017, 28, 312–318. [Google Scholar] [CrossRef]
- Underwood, W.; Anthony, R.; Gwaltney-Brant, S.; Poison, A.; Meyer, R. AVMA Guidelines for the Euthanasia of Animals, 2020 ed.; American Veterinary Medical Association: Schaumburg, IL, USA, 2013. [Google Scholar]
- Pinya, S.; Tejada, S.; Capó, X.; Sureda, A. Invasive predator snake induces oxidative stress responses in insular amphibian species. Sci. Total Environ. 2016, 566, 57–62. [Google Scholar] [CrossRef]
- Lionetto, M.G.; Caricato, R.; Giordano, M.; Schettino, T. Acetylcholinesterase as biomarker in environmental biomonitoring. In Recent Trends in the Acetylcholinesterase System; Parveen, M., Kumar, S., Eds.; IOS Press: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Takada, Y.; Noguchit, T.; Kayiyama, M. Superoxide dismutase in various tissues from rabbits bearing the Vx-2 carcinoma in the maxillary sinus. Cancer Res. 1982, 42, 4233–4235. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar]
- Claiborne, A. Catalase activity. In Handbook of Methods for Oxygen Radical Research; Greenwald, R.A., Ed.; CRC Press Inc.: Boca Raton, FL, USA, 1984. [Google Scholar]
- Tamura, M.; Oshino, N.; Chance, B. Some characteristics of hydrogen- and alkylhydroperoxides metabolizing systems in cardiac tissue. J. Biochem. 1982, 92, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Glatzle, D.; Vuilleumier, J.P.; Weber, F.; Decker, K. Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in humans. Experientia 1974, 30, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [PubMed]
- Griffith, O.W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 1980, 106, 207–212. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Rehncrona, S.; Smith, D.S.; Akesson, B.; Westerberg, E.; Siesjö, B.K. Peroxidative changes in brain cortical fatty acids and phospholipids, as characterized during Fe2+ and ascorbic acid stimulated lipid peroxidation In Vitro. J. Neurochem. 1980, 34, 1630–1638. [Google Scholar] [CrossRef]
- Mesquita, C.S.; Oliveira, R.; Bento, F.; Geraldo, D.; Rodrigues, J.V.; Marcos, J.C. Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Anal. Biochem. 2014, 458, 69–71. [Google Scholar] [CrossRef]
- Costantini, D.; Lindecke, O.; Pētersons, G.; Voigt, C.C. Migratory flight imposes oxidative stress in bats. Curr. Zool. 2018, 65, 147–153. [Google Scholar] [CrossRef] [Green Version]
- StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 8; StatSoft, Inc.: Tulsa, OK, USA, 2007; Available online: https://www.statsoft.com.
- Winandy, L.; Denoël, M. Cues from introduced fish alter shelter use and feeding behaviour in adult alpine newts. Ethology 2013, 119, 121–129. [Google Scholar] [CrossRef]
- Winandy, L.; Colin, M.; Denoël, M. Temporal habitat shift of a polymorphic newt species under predation risk. Behav. Ecol. 2016, 27, 1025–1032. [Google Scholar] [CrossRef] [Green Version]
- Van der Oost, R.; Beyer, J.; Vermeulen, N.P. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environ. Toxicol. Pharmacol. 2003, 13, 57–149. [Google Scholar] [CrossRef]
- Fischer, P. An experimental test of metabolic and behavioural responses of benthic fish species to different types of substrate. Can. J. Fish. Aquat. Sci. 2000, 57, 2336–2344. [Google Scholar] [CrossRef]
- Finstad, A.G.; Einum, S.; Forseth, T.; Ugedal, O. Shelter availability affects behaviour, size-dependent and mean growth of juvenile Atlantic salmon. Freshw. Biol. 2007, 52, 1710–1718. [Google Scholar] [CrossRef]
- Barcellos, L.J.G.; Kreutz, L.C.; Quevedo, R.M.; da Rosa, J.G.S.; Koakoski, G.; Centenaro, L.; Pottker, E. Influence of color background and shelter availability on jundiá (Rhamdia quelen) stress response. Aquaculture 2009, 288, 51–56. [Google Scholar] [CrossRef]
- Pamplona, R.; Costantini, D. Molecular and structural antioxidant defenses against oxidative stress in animals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, 843–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Block, M.; Stoks, R. Compensatory growth and oxidative stress in a damselfly. Proc. R. Soc. Lond. B Biol. Sci. 2008, 275, 781–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssens, L.; Stoks, R. Rapid larval development under time stress reduces adult lifespan through increasing oxidative damage. Funct. Ecol. 2018, 32, 1036–1046. [Google Scholar] [CrossRef]
- Eikenaar, C.; Isaksson, C.; Hegemann, A. A hidden cost of migration? Innate immune function versus antioxidant defense. Ecol. Evol. 2018, 8, 2721–2728. [Google Scholar] [CrossRef]
- Prokić, M.D.; Despotović, S.G.; Vučić, T.Z.; Petrović, T.G.; Gavrić, J.P.; Gavrilović, B.R.; Radovanović, T.B.; Saičić, Z.S. Oxidative cost of interspecific hybridization: a case study of two Triturus species and their hybrids. J. Exp. Biol. 2018, 221, jeb182055. [Google Scholar] [CrossRef] [Green Version]
- Gvoždík, L. Metabolic costs of hybridization in newts. Folia Zool. 2012, 61, 197–201. [Google Scholar] [CrossRef]
- Janča, M.; Gvoždík, L. Costly neighbours: Heterospecific competitive interactions increase metabolic rates in dominant species. Sci. Rep. 2017, 7, 5177. [Google Scholar] [CrossRef] [PubMed]
- Van Buskirk, J.; Anderwald, P.; Lüpold, S.; Reinhardt, L.; Schuler, H. The lure effect, tadpole tail shape, and the target of dragonfly strikes. J. Herpetol. 2003, 37, 420–425. [Google Scholar] [CrossRef]
Variable | Factor | Wald | p |
---|---|---|---|
SVL | Species | 39.12 | <0.001 |
Treatments | 1.40 | 0.236 | |
Species × treatments | 0.92 | 0.338 | |
SOD | Species | 4.97 | 0.025 |
Treatments | 0.07 | 0.781 | |
Species × treatments | 0.02 | 0.886 | |
CAT | Species | 157.44 | <0.001 |
Treatments | 44.23 | <0.001 | |
Species × treatments | 1.76 | 0.184 | |
GSH-Px | Species | 46.23 | <0.001 |
Treatments | 59.78 | <0.001 | |
Species × treatments | 0.54 | 0.461 | |
GST | Species | 22.30 | <0.001 |
Treatments | 10.96 | 0.001 | |
Species × treatments | 0.30 | 0.576 | |
GR | Species | 19.12 | <0.001 |
Treatments | 2.69 | 0.101 | |
Species × treatments | 7.55 | 0.006 | |
GSH | Species | 113.72 | <0.001 |
Treatments | 35.40 | <0.001 | |
Species × treatments | 0.31 | 0.575 | |
SH | Species | 61.26 | <0.001 |
Treatments | 0.26 | 0.609 | |
Species × treatments | 3.15 | 0.075 | |
LPO | Species | 0.11 | 0.743 |
Treatments | 5.25 | 0.022 | |
Species × treatments | 0.01 | 0.926 | |
PC | Species | 2.23 | 0.135 |
Treatments | 0.06 | 0.800 | |
Species × treatments | 0.12 | 0.730 |
Group | Median | p | |
---|---|---|---|
T. macedonicus | Shelter | 1.73 | 0.578 |
No shelter | 2.75 | ||
Hybrid | Shelter | 5.00 | <0.001 |
No shelter | 12.25 | ||
Shelter | T. macedonicus | 1.73 | 0.048 |
Hybrid | 5.00 | ||
No shelter | T. macedonicus | 2.75 | <0.001 |
Hybrid | 12.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrović, T.G.; Vučić, T.Z.; Nikolić, S.Z.; Gavrić, J.P.; Despotović, S.G.; Gavrilović, B.R.; Radovanović, T.B.; Faggio, C.; Prokić, M.D. The Effect of Shelter on Oxidative Stress and Aggressive Behavior in Crested Newt Larvae (Triturus spp.). Animals 2020, 10, 603. https://doi.org/10.3390/ani10040603
Petrović TG, Vučić TZ, Nikolić SZ, Gavrić JP, Despotović SG, Gavrilović BR, Radovanović TB, Faggio C, Prokić MD. The Effect of Shelter on Oxidative Stress and Aggressive Behavior in Crested Newt Larvae (Triturus spp.). Animals. 2020; 10(4):603. https://doi.org/10.3390/ani10040603
Chicago/Turabian StylePetrović, Tamara G., Tijana Z. Vučić, Sonja Z. Nikolić, Jelena P. Gavrić, Svetlana G. Despotović, Branka R. Gavrilović, Tijana B. Radovanović, Caterina Faggio, and Marko D. Prokić. 2020. "The Effect of Shelter on Oxidative Stress and Aggressive Behavior in Crested Newt Larvae (Triturus spp.)" Animals 10, no. 4: 603. https://doi.org/10.3390/ani10040603
APA StylePetrović, T. G., Vučić, T. Z., Nikolić, S. Z., Gavrić, J. P., Despotović, S. G., Gavrilović, B. R., Radovanović, T. B., Faggio, C., & Prokić, M. D. (2020). The Effect of Shelter on Oxidative Stress and Aggressive Behavior in Crested Newt Larvae (Triturus spp.). Animals, 10(4), 603. https://doi.org/10.3390/ani10040603