Standardized Plant Extract Alleviates the Negative Effects of FMD Vaccination on Animal Performance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Tested Product
2.2. Experimental Animals and Vaccination
2.3. Animal Housing and Feed
2.4. Rectal Temperature
2.5. Experimental Procedures, Sampling, and Analysis
2.5.1. Animal Performance
2.5.2. Nutrient Digestibility
2.5.3. Blood Parameters
2.6. Statistical Analyses
3. Results
3.1. Growth Performance
3.2. Digestibility
3.3. Blood Metabolites
3.4. Rectal Temperature
4. Discussion
4.1. Phytonutrient Improve Animal Performance
4.2. Phytonutrient Did Not Affect Immune Response Measured after 10 Days of Vaccination
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Knight-Jones, T.J.D.; Rushton, J. The economic impacts of foot and mouth disease—What are they, how big are they and where do they occur? Prev. Vet. Med. 2013, 112, 161–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domingo, E.; Pariente, N.; Airaksinen, A.; González-Lopez, C.; Sierra, S.; Herrera, M.; Grande-Pérez, A.; Lowenstein, P.R.; Manrubia, S.C.; Lázaro, E.; et al. Foot-and-mouth disease virus evolution: Exploring pathways towards virus extinction. In Foot-and-Mouth Disease Virus; Springer: Berlin/Heidelberg, Germany, 2005; pp. 149–173. [Google Scholar]
- Orsel, K.; de Jong, M.C.M.; Bouma, A.; Stegeman, J.A.; Dekker, A. Foot and mouth disease virus transmission among vaccinated pigs after exposure to virus shedding pigs. Vaccine 2007, 25, 6381–6391. [Google Scholar] [CrossRef] [PubMed]
- Perry, B.; Grace, D. The impacts of livestock diseases and their control on growth and development processes that are pro-poor. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2643–2655. [Google Scholar] [CrossRef] [Green Version]
- James, A.D.; Rushton, J. The economics of foot and mouth disease. Rev. Sci. Tech. 2002, 21, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Yeruham, I.; Yadin, H.; Haymovich, M.; Perl, S. Adverse reactions to FMD vaccine. Vet. Dermatol. 2001, 2, 197–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.S.; Lu, B.Z.; Liu, H.N.; Zhao, J.H.; Zheng, H.X.; Liu, X.T. Adverse Effects of Inactivated Foot-and-Mouth Disease Vaccine—Possible Causes Analysis and Counter measures. World J. Vaccines 2018, 8, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Khajuria, A.; Gupta, A.; Malik, F.; Singh, S.; Singh, J.; Gupta, B.D.; Suri, K.A.; Suden, P.; Srinivas, V.K.; Ella, K.; et al. A new vaccine adjuvant (BOS 2000) a potent enhancer mixed Th1/Th2 immune responses in mice immunized with HBsAg. Vaccine 2007, 25, 4586–4594. [Google Scholar] [CrossRef]
- Gupta, A.; Khajuria, A.; Singh, J.; Singh, S.; Suri, K.A.; Qazi, G.N. Immunological adjuvant effect of Boswelliaserrata (BOS 2000) on specific antibody and cellular response to ovalbumin in mice. Int. Immunopharmacol. 2011, 11, 968–975. [Google Scholar] [CrossRef]
- Kuroiwa, A.; Liou, S.; Yan, H.; Eshita, A.; Naitoh, S.; Nagayama, A. Effect of a traditional Japanese herbal medicine, Hochu-ekki-to (Bu-Zhong-Yi-Qi Tang), on immunity in elderly persons. Int. Immunopharmacol. 2004, 4, 317–324. [Google Scholar] [CrossRef]
- Yang, T.; Jia, M.; Meng, J.; Wu, H.; Mei, Q. Immunomodulatory activity of polysaccharide isolated from Angelica sinensis. Int. J. Biol. Macromol. 2006, 39, 179–184. [Google Scholar] [CrossRef]
- Lee, S.H.; Lillehoj, H.S.; Jang, S.I.; Lee, K.W.; Bravo, D.; Lillehoj, E.P. Effects of dietary supplementation with phytonutrients on vaccine-stimulated immunity against infection with Eimeria tenella. Vet. Parasitol. 2011, 181, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Fu, N.; Wu, J.; Lv, L.; He, J.; Jiang, S. Anti-foot-and-mouth disease virus effects of Chinese herbal kombucha in vivo. Braz. J. Microbiol. 2015, 46, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, V.; McGaw, L.J.; Bisschop, S.P.R.; Duncan, N.; Eloff, J.N. The value of plant extracts with antioxidant activity in attenuating coccidiosis in broiler chickens. Vet. Parasitol. 2008, 153, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.D.; Deng, Y.R.; Tian, Z.; Lian, Z.X. Traditional Chinese medicine and immune regulation. Clin. Rev. Allergy Immunol. 2013, 44, 229–241. [Google Scholar] [CrossRef]
- Costa, L.B.; Luciano, F.B.; Miyada, V.S.; Gois, F.D. Herbal extracts and organic acids as natural feed additives in pig diets. S. Afr. J. Anim. Sci. 2013, 43, 181–193. [Google Scholar]
- Lee, S.H.; Lillehoj, H.S.; Jang, S.I.; Lillehoj, E.P.; Min, W.; Bravo, D.M. Dietary supplementation of young broiler chickens with Capsicum and turmeric oleoresins increases resistance to necrotic enteritis. Br. J. Nutr. 2013, 110, 840–847. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, T.M.; Chapalkar, S.M. Antiviral activity of plant extracts against FMDV in vitro a preliminary report. Int. J. Inst. Pharm. Life Sci. 2013, 3, 1–18. [Google Scholar]
- National Research Council. Nutrient Requirement of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Williams, C.H.; David, D.J.; Iismaa, O. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J. Agric. Sci. 1962, 59, 381–385. [Google Scholar] [CrossRef]
- Jo, N.C.; Jung, J.; Kim, J.N.; Lee, J.; Jeong, S.Y.; Kim, W.; Sung, H.G.; Seo, S. Effect of vaccination against foot-and-mouth disease on growth performance of Korean native goat (Capra hircus coreanae). J. Anim. Sci. 2014, 92, 2578–2586. [Google Scholar] [CrossRef]
- Lee, S.; Guevarra, R.; Lee, R.; Marimuthu, V.; Kim, D.; Kim, S.; Baek, J.; Mun, D.; Song, M.; Kim, K. Effects of dietary plant extracts on growth performance and intestinal microbiota composition in weaned piglets. J. Anim. Sci. 2018, 96, 489. [Google Scholar] [CrossRef]
- Liu, Y.; Che, T.M.; Song, M.; Lee, J.J.; Almeida, J.A.S.; Bravo, D.; Van Alstine, W.G.; Pettigrew, J.E. Dietary plant extracts improve immune responses and growth efficiency of pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J. Anim. Sci. 2013, 91, 5668–5679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maneewan, C.; Koh-En, Y.; Mekbungwan, A.; Maneewan, B.; Suthut, S. Effect of turmeric (Curcuma longa Linnaeus) on growth performance, nutrient digestibility, hematological values, and intestinal histology in nursery pigs. J. Swine Health Prod. 2012, 20, 231–240. [Google Scholar]
- Olesen, O.F.; Lonnroth, A.; Mulligan, B. Human vaccine research in the European Union. Vaccine 2009, 27, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.R.; Heldens, J.G. Immunoprophylaxis against important virus disease of horses, farm animals and birds. Vaccine 2009, 27, 1797–1810. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Khajuria, A.; Singh, S.; Singh, J.; Suri, K.A.; Satti, N.K.; Qazi, G.N.; Srinivas, V.K.; Gopinathan; Ella, K. RLJ-NE-299A: A new plant based vaccine adjuvant. Vaccine 2007, 25, 2706–2715. [Google Scholar]
- Barnett, P.V.; Cox, S.J.; Aggarwal, N.; Gerber, H.; McCollough, K.C. Further studies on the early protective responses of pigs following immunisation with high potency foot and mouth disease vaccine. Vaccine 2002, 20, 3197–3208. [Google Scholar] [CrossRef]
- Awaad, M.H.H.; Elmenawey, M.; Ahmed, K.A. Effect of a specific combination of carvacrol, cinnamaldehyde, and Capsicum oleoresin on the growth performance, carcass quality and gut integrity of broiler chickens. Vet. World 2014, 7, 284–290. [Google Scholar] [CrossRef] [Green Version]
Items | |
---|---|
Corn | 375.7 |
Wheat | 190 |
Rice bran | 20 |
Wheat bran | 20 |
Palm kernel meal | 20 |
Soybean meal | 30 |
De-hulled soybean meal | 151.1 |
Rape seed meal | 40 |
Sesame meal | 20 |
Brown Rice | 50 |
Animal fat | 37.9 |
Molasses | 20 |
Limestone | 10.5 |
MCP | 1.6 |
Salt | 3.0 |
Methionine 98% | 0.1 |
Threonine 98% | 0.2 |
Lysine 25% | 5.0 |
Choline Chloride 50% | 0.9 |
Vitamin/Mineral mixture * | 4.0 |
Calculated composition | |
Digestible Energy (MJ/kg) | 14.90 |
Analyzed composition, % | |
Crude Protein | 17.50 |
Crude Fat | 6.7 |
Crude Ash | 4.4 |
Crude Fiber | 3.8 |
Total Lysine | 0.99 |
Calcium | 0.75 |
Phosphorus | 0.42 |
Items | NV | OV | PV | SEM † | p-Value | ||
---|---|---|---|---|---|---|---|
OV vs. NV | OV vs. PV | NV vs. PV | |||||
Body weight, kg | |||||||
Initial | 24.66 | 24.65 | 24.68 | 0.006 | 0.5542 | 0.0700 | 0.2014 |
wk2 | 33.11 | 32.98 | 33.36 | 0.11 | 0.4074 | 0.022 | 0.1147 |
wk6 | 53.89 | 53.46 | 54.51 | 0.31 | 0.3397 | 0.0291 | 0.1816 |
Week 2 | |||||||
ADG, g | 603 | 594 | 621 | 8.0 | 0.4305 | 0.0298 | 0.1377 |
ADFI, g | 1228 | 1229 | 1249 | 11.0 | 0.9735 | 0.2131 | 0.2027 |
G/F | 0.491 | 0.484 | 0.496 | 0.004 | 0.1393 | 0.0749 | 0.735 |
Week 6 | |||||||
ADG, g | 742 | 731 | 755 | 10.1 | 0.4565 | 0.1 | 0.3724 |
ADFI, g | 1652 | 1650 | 1655 | 13.2 | 0.9307 | 0.8021 | 0.8699 |
G/F | 0.449 | 0.444 | 0.456 | 0.008 | 0.5752 | 0.2686 | 0.5752 |
Overall | |||||||
ADG, g | 696 | 686 | 710 | 8.1 | 0.348 | 0.0318 | 0.1896 |
ADFI, g | 1511 | 1510 | 1520 | 11.2 | 0.9529 | 0.5278 | 0.5664 |
G/F | 0.461 | 0.455 | 0.467 | 0.006 | 0.4795 | 0.1659 | 0.4795 |
Items | NV | OV | PV | SEM † | p-Value | ||
---|---|---|---|---|---|---|---|
OV vs. NV | OV vs. PV | NV vs. PV | |||||
Week 6 | |||||||
Dry matter | 0.758 | 0.753 | 0.770 | 0.0044 | 0.4809 | 0.0213 | 0.0828 |
Nitrogen | 0.744 | 0.743 | 0.755 | 0.0052 | 0.9425 | 0.1234 | 0.1397 |
Items | NV | OV | PV | SEM † | p-Value | ||
---|---|---|---|---|---|---|---|
OV vs. NV | OV vs. PV | NV vs. PV | |||||
Postvaccination Day 10 | |||||||
Haptoglobin, mg/dL | 15.8 | 17.3 | 16.5 | 1.3 | 0.4286 | 0.6709 | 0.7099 |
C-Reactive Protein, mg/L | 10.8 | 13.5 | 12.3 | 2.7 | 0.4895 | 0.7594 | 0.6978 |
TNF- α, U/mL | 14.4 | 18.9 | 16 | 2.4 | 0.1937 | 0.3957 | 0.6371 |
INF-γ ng/mL | 33.5 | 38.7 | 35.9 | 2.7 | 0.1961 | 0.479 | 0.5432 |
IL-6, pg/mL | 15.4 | 19.7 | 18.4 | 4.0 | 0.3854 | 0.791 | 0.5426 |
Postvaccination Day 15 | |||||||
Haptoglobin, mg/dL | 17.2 | 19.2 | 18.7 | 1.2 | 0.2607 | 0.7749 | 0.3953 |
C-Reactive Protein, mg/L | 12 | 15.3 | 14.3 | 1.9 | 0.2431 | 0.7268 | 0.4055 |
TNFx α, U/mL | 16.3 | 20.3 | 18.9 | 2.5 | 0.2693 | 0.6946 | 0.4683 |
INF- γ, ng/mL | 33 | 38.5 | 35 | 3.1 | 0.2258 | 0.4352 | 0.6538 |
IL-6, pg/mL | 18.7 | 22.6 | 20.9 | 5.8 | 0.6335 | 0.8349 | 0.7875 |
Postvaccination Day 20 | |||||||
Haptoglobin, mg/dL | 15.9 | 17.5 | 16.2 | 1.2 | 0.3525 | 0.4481 | 0.860 |
C-Reactive Protein, mg/L | 11.7 | 13.4 | 12.6 | 1.7 | 0.4843 | 0.7622 | 0.6889 |
TNF- α, U/mL | 15.2 | 18.4 | 17.2 | 2.3 | 0.3365 | 0.7155 | 0.5448 |
INF- γ, ng/mL | 31.9 | 36.9 | 34.6 | 3.7 | 0.3548 | 0.6674 | 0.6143 |
IL-6, pg/mL | 14.4 | 18.7 | 17.5 | 3.6 | 0.4118 | 0.8172 | 0.5522 |
Postvaccination Day 25 | |||||||
Haptoglobin, mg/dL | 13.6 | 15.3 | 14.6 | 0.6 | 0.0485 | 0.395 | 0.2291 |
C-Reactive Protein, mg/L | 9.6 | 12.4 | 10 | 1.3 | 0.1369 | 0.202 | 0.8186 |
TNF-α, U/mL | 12.1 | 15.9 | 14.4 | 2.1 | 0.2065 | 0.6112 | 0.438 |
INF- γ, ng/mL | 29.8 | 31.4 | 30.4 | 3.8 | 0.7688 | 0.8541 | 0.9121 |
IL-6, pg/mL | 12.3 | 14.0 | 13.1 | 2.1 | 0.5741 | 0.7653 | 0.7907 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadhaya, S.D.; Kim, Y.M.; Shi, H.; Le Cour Grandmaison, J.; Blanchard, A.; Kim, I.H. Standardized Plant Extract Alleviates the Negative Effects of FMD Vaccination on Animal Performance. Animals 2020, 10, 455. https://doi.org/10.3390/ani10030455
Upadhaya SD, Kim YM, Shi H, Le Cour Grandmaison J, Blanchard A, Kim IH. Standardized Plant Extract Alleviates the Negative Effects of FMD Vaccination on Animal Performance. Animals. 2020; 10(3):455. https://doi.org/10.3390/ani10030455
Chicago/Turabian StyleUpadhaya, Santi Devi, Yong Min Kim, Huan Shi, Josselin Le Cour Grandmaison, Alexandra Blanchard, and In Ho Kim. 2020. "Standardized Plant Extract Alleviates the Negative Effects of FMD Vaccination on Animal Performance" Animals 10, no. 3: 455. https://doi.org/10.3390/ani10030455
APA StyleUpadhaya, S. D., Kim, Y. M., Shi, H., Le Cour Grandmaison, J., Blanchard, A., & Kim, I. H. (2020). Standardized Plant Extract Alleviates the Negative Effects of FMD Vaccination on Animal Performance. Animals, 10(3), 455. https://doi.org/10.3390/ani10030455