Integrative Analysis of Energy Partition Patterns and Plasma Metabolomics Profiles of Modern Growing Pigs Raised at Different Ambient Temperatures
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Equipment for Indirect Calorimetry
2.2. Animals, Diets, and Experiment Design
2.3. Sample Collection
2.4. Chemical Analysis and Calculation
2.5. Hormone and Biochemical Marker Assays in Serum
2.6. Non-Target Metabolomics Profiling in Plasma and Data Analysis
2.7. Statistical Analysis
3. Results
3.1. Energy Partition and N Balance in Pigs at 25 kg and 65 kg Raised at Different Ambient Temperatures
3.2. Changes in Hormone and Biochemical Marker Levels in Serum of Pigs at 25 kg Raised at different Ambient Temperatures
3.3. Metabolomics Profiles in Plasma of Pigs at 25 kg Raised at different Ambient Temperatures
4. Discussion
4.1. Effects of Ambient Temperature on Energy Partition and N Balance of Modern Growing Pigs
4.2. Effects of Ambient Temperature on Hormone and Biochemical Markers in Serum of Modern Growing Pigs
4.3. Effects of Ambient Temperature on Plasma Metabolomics Profiles of Modern Growing Pigs
4.4. Limitations and Prospects of the Current Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dou, S.; Villa-Vialaneix, N.; Liaubet, L.; Billon, Y.; Giorgi, M.; Gilbert, H.; Gourdine, J.; Riquet, J.; Renaudeau, D. 1HNMR-Based metabolomic profiling method to develop plasma biomarkers for sensitivity to chronic heat stress in growing pigs. PLoS ONE 2017, 12, e0188469. [Google Scholar] [CrossRef] [Green Version]
- Close, W.H.; Mount, L.; Start, I. The influence of environmental temperature and plane of nutrition on heat losses from groups of growing pigs. Anim. Sci. 1971, 18, 285–294. [Google Scholar] [CrossRef]
- Verstegen, M.; Close, W.; Start, I.; Mount, L. The effects of environmental temperature and plane of nutrition on heat loss, energy retention and deposition of protein and fat in groups of growing pigs. Br. J. Nutr. 1973, 30, 21–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, J.; Clark, J. Models of heat production and critical temperature for growing pigs. Anim. Prod. 1979, 28, 353–369. [Google Scholar] [CrossRef]
- Noblet, J.; Le Dividich, J.; Bikawa, T. Interaction between energy level in the diet and environmental temperature on the utilization of energy in growing pigs. J. Anim. Sci. 1985, 61, 452–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Milgen, J.; Quiniou, N.; Noblet, J. Modelling the relation between energy intake and protein and lipid deposition in growing pigs. Anim. Sci. 2000, 71, 119–130. [Google Scholar] [CrossRef]
- Collin, A.; van Milgen, J.; Dubois, S.; Noblet, J. Effect of high temperature on feeding behaviour and heat production in group-housed young pigs. Br. J. Nutr. 2000, 72, 519–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quiniou, N.; Noblet, J.; van Milgen, J.; Dubois, S. Modelling heat production and energy balance in group-housed growing pigs exposed to low or high ambient temperatures. Br. J. Nutr. 2001, 85, 97–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Bellego, L.; van Milgen, J.; Noblet, J. Effect of high ambient temperature on protein and lipid deposition and energy utilization in growing pigs. Anim. Sci. 2002, 75, 85–96. [Google Scholar] [CrossRef]
- Stoddard, E.; Hovorka, A. Animals, vulnerability and global environmental change: The case of farmed pigs in concentrated animal feeding operations in North Carolina. Geoforum 2019, 100, 153–165. [Google Scholar] [CrossRef]
- Li, Z.C.; Liu, H.; Li, Y.K.; Lyu, Z.Q.; Liu, L.; Lai, C.H.; Wang, J.J.; Wang, F.L.; Li, D.F.; Zhang, S. Methodologies on estimating the energy requirements for maintenance and determining the net energy contents of feed ingredients in swine: A review of recent work. J. Anim. Sci. Biotechnol. 2018, 9, 39. [Google Scholar] [CrossRef]
- Zhang, G.F.; Liu, D.W.; Wang, F.L.; Li, D.F. Estimation of the net energy requirements for maintenance in growing and finishing pigs. J. Anim. Sci. 2014, 92, 2987–2995. [Google Scholar] [CrossRef] [PubMed]
- Li, E.K.; Liu, H.; Li, Y.K.; Liu, L.; Wang, F.L.; Li, D.F.; Zhang, S. Determination of net energy content of dietary lipids fed to growing pigs using indirect calorimetry. J. Anim. Sci. 2018, 96, 2184–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NRC. Nutrient Requirements of Swine, 11th rev. ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official’s Analytical Chemist: Arlington, VA, USA, 2007. [Google Scholar]
- Brouwer, E. Report of sub-committee on constants and factors. In Proceedings of the 3rd Symposium of Energy Metabolism, Troon, Scotland, May 1964; Blaxter, K.L., Ed.; Academic Press: Troon, UK, 1965; pp. 441–443. [Google Scholar]
- Noblet, J.; Fortune, H.; Shi, X.S.; Dubois, S. Prediction of net energy value of feeds for growing pigs. J. Anim. Sci. 1994, 72, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, Y.F.; Ming, D.X.; Wang, J.; Li, Z.; Ma, X.; Wang, J.J.; van Milgen, J.; Wang, F.L. Integrative analysis of indirect calorimetry and metabolomics profiling reveals alterations in energy metabolism between fed and fasted pigs. J. Anim. Sci. Biotechnol. 2018, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Quiniou, N.; Dubois, S.; Noblet, J. Voluntary feed intake and feeding behaviour of group-housed growing pigs are affected by ambient temperature and body weight. Livest. Prod. Sci. 2000, 63, 245–253. [Google Scholar] [CrossRef]
- Renaudeau, D.; Gilbert, H.; Noblet, J. Effect of climatic environment on feed efficiency in swine. In Feed Efficiency in Swine; Patience, J.F., Ed.; Wageningen Academic Publishers: Wageningen, The Netherland, 2012. [Google Scholar]
- Close, W.H.; Mount, L.E. Energy retention in the pig at several environmental temperatures and levels of feeding. Proc. Nutr. Soc. 1971, 30, 33A–34A. [Google Scholar]
- Guo, C.H. Modelling the Effect of Ambient Temperature on Protein and Energy Metabolism and Utilization in Growing-Finishing Pigs. Ph.D. Thesis, Sichuan Agricultural University, Chengdu, China, 2004. [Google Scholar]
- Close, W.H. The effects of plane of nutrition and environmental temperature on the energy metabolism of the growing pig. 3. The efficiency of energy utilization for maintenance and growth. Br. J. Nutr. 1978, 40, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.B.; Xiong, Y.X.; Wu, Q.W.; Wang, M.Z.; Liu, S.; Jiang, Z.Y.; Wang, L. Effects of dietary supplementation with l-arginine on the intestinal barrier function in finishing pigs with heat stress. J. Anim. Physiol. Anim. Nutr. 2019, 104, 1134–1143. [Google Scholar] [CrossRef]
- Renaudeau, D.; Gourdine, J.L.; St-Pierre, N.R. A meta-analysis of the effects of high ambient temperature on growth performance of growing-finishing pigs. J. Anim. Sci. 2011, 89, 2220–2230. [Google Scholar] [CrossRef] [Green Version]
- Christon, R. The effect of tropical ambient temperature on growth and metabolism in pigs. J. Anim. Sci. 1988, 66, 3112–3123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.D. Effect of Heat Stress on Physiological and Biochemical Responses of Pigs. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2004. [Google Scholar]
- Kellner, T.A.; Baumgard, L.H.; Prusa, K.J.; Gabler, N.K.; Patience, J.F. Does heat stress alter the pig’s response to dietary fat? J. Anim. Sci. 2016, 94, 4688–4703. [Google Scholar] [CrossRef]
- Seibert, J.T.; Abuajamieh, M.; Sanz Fernandez, M.V.; Johnson, J.S.; Kvidera, S.K.; Horst, E.A.; Mayorga, E.J.; Lei, S.; Patience, J.F.; Ross, J.W.; et al. Effects of heat stress and insulin sensitizers on pig adipose tissue. J. Anim. Sci. 2018, 96, 510–520. [Google Scholar] [CrossRef] [Green Version]
- Qu, H.; Ajuwon, K.M. Metabolomics of heat stress response in pig adipose tissue reveals alteration of phospholipid and fatty acid composition during heat stress. J. Anim. Sci. 2018, 96, 3184–3195. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; McMillan, R.P.; Xie, G.; Giridhar, S.G.L.W.; Baumgard, L.H.; El-Kadi, S.; Selsby, J.; Ross, J.; Gabler, N.; Hulver, M.W.; et al. Heat stress decreases metabolic flexibility in skeletal muscle of growing pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R1096–R1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesan, S.; Summers, C.M.; Pearce, S.C.; Gabler, N.K.; Valentine, R.J.; Baumgard, L.H.; Rhoads, R.P.; Selsby, J.T. Short-term heat stress altered metabolism and insulin signaling in skeletal muscle. J. Anim. Sci. 2018, 96, 154–167. [Google Scholar] [CrossRef] [Green Version]
Items | Growth Stage | |
---|---|---|
25 kg | 65 kg | |
Ingredients, % | ||
Corn | 76.93 | 80.19 |
Soybean meal | 20.00 | 17.00 |
Dicalcium phosphate | 0.90 | 0.80 |
Limestone | 0.75 | 0.65 |
Sodium chloride | 0.35 | 0.35 |
Premix 1 | 0.50 | 0.50 |
Lysine-HCl | 0.41 | 0.37 |
DL-Methionine | 0.11 | 0.09 |
L-Threonine | 0.02 | 0.02 |
L-Tryptophan | 0.03 | 0.03 |
Analyzed nutrient levels, % | ||
Dry matter | 89.50 | 89.60 |
Gross energy, MJ/kg | 16.38 | 16.67 |
Crude protein | 17.78 | 16.20 |
Ether extract | 2.89 | 2.57 |
Ash | 4.72 | 3.34 |
Calculated nutrient levels, % | ||
Digestible energy, MJ/kg | 14.26 | 14.27 |
Standardized ileal digestible lysine | 0.99 | 0.89 |
Standardized ileal digestible methionine + cysteine | 0.58 | 0.53 |
Items | Ambient Temperature (°C) | SEM | p-Value 5 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
18 | 21 | 23 | 27 | 29 | 32 | ANOVA | Linear | Quadratic | ||
Average bodyweight, kg | 28.7 | 28.7 | 27.0 | 28.7 | 28.8 | 28.7 | 0.8 | 0.587 | 0.709 | 0.622 |
Average daily gain, g | 913 a | 860 a,b | 867 a,b | 763 a,b | 927 a | 529 b | 79 | 0.030 | 0.024 | 0.030 |
Dry matter intake, kg/d | 1.32 a | 1.24 a,b | 1.21 a,b | 1.05 a,b | 1.16 a,b | 0.99 b | 0.06 | 0.030 | <0.001 | 0.002 |
Nitrogen balance, g/d | ||||||||||
Intake | 41.9 a | 39.3 a,b | 38.4 a,b | 33.4 a,b | 36.8 a,b | 31.6 b | 2.1 | 0.030 | <0.001 | 0.002 |
Fecal output | 6.7 a | 6.6 a | 5.9 a,b | 4.3 b | 4.6 a,b | 4.8 a,b | 0.5 | 0.004 | <0.001 | <0.001 |
Urine output | 5.4 | 4.6 | 3.2 | 4.9 | 6.0 | 3.8 | 0.9 | 0.327 | 0.867 | 0.926 |
Retention | 29.8 a | 28.0 a,b | 29.2 a,b | 24.7 a,b | 26.2 a,b | 21.7 b | 1.7 | 0.040 | <0.001 | 0.003 |
Energy balance, kJ/kg BW0.6/d | ||||||||||
ME intake | 2699 a | 2510 a,b | 2555 a,b | 2197 a,b | 2426 a,b | 2035 b | 133 | 0.025 | <0.001 | 0.004 |
Total heat production | 1133 a | 1093 a,b | 1075 a,b | 1000 a,b | 947 b | 925 b | 55 | 0.004 | 0.002 | 0.011 |
Total heat production adjusted 2 | 1010 | 1063 | 1034 | 1123 | 954 | 1069 | 87 | 0.629 | 0.875 | 0.953 |
Fasting heat production (FHP) | 716 | 713 | 628 | 713 | 666 | 698 | 49 | 0.809 | 0.758 | 0.748 |
Energy retention (RE) | 1565 | 1417 | 1480 | 1202 | 1478 | 1145 | 144 | 0.193 | 0.059 | 0.172 |
REP 3 | 594 a | 558 a,b | 602 a | 491 a,b | 521 a,b | 431 b | 33 | 0.013 | <0.001 | 0.001 |
REL 4 | 971 | 860 | 879 | 715 | 957 | 714 | 121 | 0.409 | 0.220 | 0.471 |
Respiratory quotient | ||||||||||
Fed state | 1.07 | 1.09 | 1.09 | 1.08 | 1.05 | 1.12 | 0.03 | 0.576 | 0.520 | 0.635 |
Fast state | 0.80 b | 0.80 b | 0.80 b | 0.83 a,b | 0.83 a,b | 0.87 a | 0.02 | 0.025 | 0.003 | 0.007 |
Energy utilization, % | ||||||||||
DE/GE | 84.9 | 84.3 | 84.9 | 86.7 | 87.6 | 84.9 | 1.1 | 0.293 | 0.211 | 0.307 |
Urine energy/DE | 1.0 | 1.1 | 1.1 | 1.2 | 1.4 | 1.3 | 0.2 | 0.709 | 0.114 | 0.283 |
Methane energy/DE | 0.35 | 0.42 | 0.38 | 0.50 | 0.40 | 0.43 | 0.07 | 0.829 | 0.426 | 0.559 |
ME/DE | 98.6 | 98.5 | 98.6 | 98.3 | 98.2 | 98.5 | 0.2 | 0.647 | 0.274 | 0.411 |
NE/ME | 85.1 | 85.4 | 83.4 | 84.1 | 88.7 | 86.0 | 2.3 | 0.577 | 0.441 | 0.709 |
Items | Ambient Temperature (°C) | SEM | p-Value 5 | |||||
---|---|---|---|---|---|---|---|---|
18 | 23 | 27 | 32 | ANOVA | Linear | Quadratic | ||
Average bodyweight, kg | 69.6 | 67.0 | 69.2 | 70.8 | 1.2 | 0.226 | 0.306 | 0.134 |
Average daily gain, g | 1040 a,b | 1107 a | 1187 a | 698 b | 119 | 0.064 | 0.016 | 0.004 |
Dry matter intake, kg/d | 2.29 a | 2.28 a | 1.71 b | 1.22 c | 0.09 | <0.001 | <0.001 | <0.001 |
Nitrogen balance, g/d | ||||||||
Intake | 72.7 a | 72.5 a | 54.3 b | 38.8 c | 2.8 | <0.001 | <0.001 | <0.001 |
Fecal output | 11.2 a | 8.9 a,b | 6.9 b,c | 5.0 c | 0.7 | <0.001 | <0.001 | <0.001 |
Urine output | 21.1 a | 12.3 a,b | 12.2 a,b | 6.5 b | 2.2 | 0.003 | <0.001 | <0.001 |
Retention | 39.5 a,b | 47.2 a | 35.2 b,c | 29.2 c | 2.2 | <0.001 | 0.001 | 0.003 |
Energy balance, kJ/kg BW0.6/d | ||||||||
ME intake | 2774 b | 3292 a | 2177 c | 1466 d | 109 | <0.001 | <0.001 | <0.001 |
Total heat production | 1203 a | 1164 a | 1000 b | 898 b | 43 | <0.001 | <0.001 | <0.001 |
Total heat production adjusted 2 | 1053 b | 848 c | 1107 b | 1423 a | 60 | <0.001 | 0.011 | <0.001 |
Fasting heat production (FHP) | 734 | 731 | 658 | 727 | 51 | 0.638 | 0.699 | 0.703 |
Energy retention (RE) | 1572 b | 2128 a | 1177 c | 568 d | 104 | <0.001 | <0.001 | <0.001 |
REP 3 | 567 a,b | 725 a | 453 b,c | 296 c | 44 | <0.001 | 0.004 | <0.001 |
REL 4 | 1005 b | 1403 a | 724 c | 365 d | 75 | <0.001 | <0.001 | <0.001 |
Respiratory quotient | ||||||||
Fed state | 1.09 a | 1.09 a | 1.06 a | 1.00 b | 0.01 | <0.001 | 0.002 | 0.001 |
Fast state | 0.80 | 0.81 | 0.81 | 0.83 | 0.01 | 0.224 | 0.122 | 0.266 |
Energy utilization, % | ||||||||
DE/GE | 86.2 | 89.3 | 88.8 | 86.8 | 0.84 | 0.099 | 0.999 | 0.030 |
Urine energy/DE | 1.6 | 1.1 | 1.6 | 2.1 | 0.3 | 0.147 | 0.330 | 0.097 |
Methane energy/DE | 0.46 b | 0.46 b | 0.75 a,b | 0.85 a | 0.08 | 0.006 | 0.001 | 0.004 |
ME/DE | 97.9 | 98.5 | 97.7 | 97.3 | 0.3 | 0.079 | 0.130 | 0.069 |
NE/ME | 72.0 b,c | 79.4 a | 72.7 b | 66.5 c | 2.1 | <0.001 | 0.063 | 0.003 |
No. | Models | Coefficients Estimation 2 | RMSE | R2 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | g | |||||
1 | VFI = a + b × BW0.6 + c × (BW0.6)2 + d × T + e × T2 + f × BW0.6 × T | −7.72 | 1.54 | −0.059 | 0.15 | −0.0022 | −0.0088 | / | 0.18 | 0.86 | <0.001 |
2 | MEi = a + b × BW0.6 + c × (BW0.6)2 + d × T + e × T2 + f × BW0.6 × T | −9242.45 | 2042.05 | −91.95 | 242.32 | −4.56 | −8.33 | / | 316.30 | 0.67 | <0.001 |
3 | REP = a + b × BW0.6 + c × (BW0.6)2 + d × T + e × T2 + f × BW0.6 × T + g × MEi | −233.38 | −67.28 | 3.16 | 39.58 | −0.76 | −0.26 | 0.26 | 61.66 | 0.86 | <0.001 |
4 | REL = a + b × BW0.6 + c × (BW0.6)2 + d × T + e × T2 + f × BW0.6 × T + g × MEi | −465.10 | 8.10 | −1.03 | −53.73 | 1.34 | 0.67 | 0.69 | 134.58 | 0.85 | <0.001 |
Items | Ambient Temperature (°C) | SEM | p-Value 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
18 | 21 | 23 | 27 | 29 | 32 | ANOVA | Linear | Quadratic | ||
Cortisol, ng/mL | 61.8 | 67.3 | 61.6 | 59.2 | 47.3 | 36.9 | 7.9 | 0.058 | 0.006 | 0.010 |
Glucagon, pg/mL | 89.6 | 83.9 | 76.6 | 63.6 | 83.6 | 98.1 | 6.7 | 0.054 | 0.673 | 0.012 |
Growth hormone, ng/mL | 4.53 | 5.23 | 6.56 | 4.06 | 4.97 | 5.97 | 0.98 | 0.571 | 0.707 | 0.930 |
Insulin, µIU/mL | 8.69 | 8.00 | 8.68 | 7.59 | 7.22 | 8.09 | 0.54 | 0.470 | 0.171 | 0.335 |
Thyroxine, ng/mL | 58.6 a | 46.2 a,b | 45.7 a,b | 41.3 b,c | 33.6 b,c | 31.0 c | 3.7 | <0.001 | <0.001 | <0.001 |
Triiodothyronine, ng/mL | 0.63 | 0.62 | 0.59 | 0.55 | 0.59 | 0.52 | 0.03 | 0.061 | 0.010 | 0.039 |
Albumin, µmol/L | 35.7 | 35.8 | 35.4 | 33.8 | 35.0 | 37.2 | 1.0 | 0.303 | 0.661 | 0.212 |
ALT, U/L | 61.2 | 53.8 | 60.4 | 50.5 | 55.5 | 56.0 | 3.3 | 0.337 | 0.244 | 0.309 |
AST, U/L | 35.2 b | 36.8 a,b | 48.5 a,b | 54.3 a,b | 55.5 a | 39.2 a,b | 4.6 | 0.013 | 0.082 | 0.005 |
Globulin, µmol/L | 34.1 | 31.6 | 37.2 | 35.1 | 34.9 | 33.0 | 1.3 | 0.128 | 0.937 | 0.438 |
HDL, mmol/L | 0.55 a | 0.49 a,b,c | 0.53 a,b | 0.40 c | 0.43 b,c | 0.46 a,b,c | 0.03 | 0.004 | 0.004 | 0.006 |
LDL, mmol/L | 1.55 | 1.36 | 1.60 | 1.34 | 1.45 | 1.32 | 0.07 | 0.052 | 0.064 | 0.168 |
Total cholesterol,mmol/L | 2.47 a | 2.30 a | 2.40 a | 2.05 b | 2.25 a,b | 2.26 a,b | 0.05 | 0.002 | 0.017 | 0.007 |
Triglyceride, mmol/L | 0.54 | 0.44 | 0.48 | 0.54 | 0.49 | 0.40 | 0.04 | 0.134 | 0.198 | 0.351 |
Total protein, g/L | 69.8 | 67.4 | 68.8 | 71.5 | 69.1 | 70.2 | 2.1 | 0.845 | 0.556 | 0.834 |
Urea, mmol/L | 4.21 | 3.84 | 4.50 | 3.76 | 3.99 | 4.23 | 0.18 | 0.306 | 0.863 | 0.380 |
No. | Compounds | m/z | Formula | Fold Change 1 | Pathway | ||
---|---|---|---|---|---|---|---|
High/Neutral | Low/Neutral | High/Low | |||||
1 | (2’E,4’Z,7’Z,8E)-Colnelenic acid | 275.1994 | C18H28O3 | 4.97 | 0.84 | 5.91 | alpha-Linolenic acid metabolism |
2 | 20-Hydroxyeicosatetraenoic acid | 303.2305 | C20H32O3 | 0.48 | 1.21 | 0.40 | Arachidonic acid metabolism |
3 | 3-beta-Hydroxy-5-cholestenoate | 399.3242 | C27H44O3 | 2.39 | 1.22 | 1.96 | Primary bile acid biosynthesis |
4 | Adrenic acid | 355.2614 | C22H36O2 | 4.83 | 1.11 | 4.35 | Biosynthesis of unsaturated fatty acids |
5 | Beta-Sitosterol | 397.3812 | C29H50O | 0.24 | 2.36 | 0.10 | Steroid biosynthesis |
6 | Cortisol | 363.2152 | C21H30O5 | 0.35 | 0.82 | 0.43 | Steroid hormone biosynthesis |
7 | Deoxyuridine | 251.0629 | C9H12N2O5 | 0.81 | 1.24 | 0.66 | Pyrimidine metabolism |
8 | Dihydrocortisol | 382.2571 | C21H32O5 | 2.62 | 1.30 | 2.02 | Steroid hormone biosynthesis |
9 | Indoleacetic acid | 176.0700 | C10H9NO2 | 2.61 | 1.01 | 2.59 | Tryptophan metabolism |
10 | L-Histidine | 156.0763 | C6H9N3O2 | 1.04 | 0.63 | 1.66 | Histidine metabolism /beta-Alanine metabolism/Aminoacyl-tRNA biosynthesis |
11 | Leukotriene C4 | 313.6596 | C30H47N3O9S | 0.56 | 1.14 | 0.49 | Arachidonic acid metabolism |
12 | Phenylacetylglycine | 211.1070 | C10H16N2O4 | 0.57 | 0.79 | 0.73 | Phenylalanine metabolism |
13 | Spermidine | 146.1647 | C7H19N3 | 0.32 | 0.75 | 0.43 | beta-Alanine metabolism/Arginine and proline metabolism /Glutathione metabolism |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Gao, H.; Yuan, X.; Wang, J.; Zang, J. Integrative Analysis of Energy Partition Patterns and Plasma Metabolomics Profiles of Modern Growing Pigs Raised at Different Ambient Temperatures. Animals 2020, 10, 1953. https://doi.org/10.3390/ani10111953
Zhang S, Gao H, Yuan X, Wang J, Zang J. Integrative Analysis of Energy Partition Patterns and Plasma Metabolomics Profiles of Modern Growing Pigs Raised at Different Ambient Temperatures. Animals. 2020; 10(11):1953. https://doi.org/10.3390/ani10111953
Chicago/Turabian StyleZhang, Shuai, Hang Gao, Xiongkun Yuan, Junjun Wang, and Jianjun Zang. 2020. "Integrative Analysis of Energy Partition Patterns and Plasma Metabolomics Profiles of Modern Growing Pigs Raised at Different Ambient Temperatures" Animals 10, no. 11: 1953. https://doi.org/10.3390/ani10111953
APA StyleZhang, S., Gao, H., Yuan, X., Wang, J., & Zang, J. (2020). Integrative Analysis of Energy Partition Patterns and Plasma Metabolomics Profiles of Modern Growing Pigs Raised at Different Ambient Temperatures. Animals, 10(11), 1953. https://doi.org/10.3390/ani10111953