New Gene Markers Involved in Molecular Processes of Tissue Repair, Response to Wounding and Regeneration Are Differently Expressed in Fibroblasts from Porcine Oral Mucosa during Long-Term Primary Culture
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Histological Analysis
2.3. Tissue Preparation and Cell Culture
2.4. Microarray Expression Analysis and Statistics
2.5. Validation of Microarray Analysis Using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Politis, C.; Schoenaers, J.; Jacobs, R.; Agbaje, J.O. Wound Healing Problems in the Mouth. Front. Physiol. 2016, 7, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enoch, S.; Peake, M.A.; Wall, I.; Davies, L.; Farrier, J.; Giles, P.; Kipling, D.; Price, P.; Moseley, R.; Thomas, D.; et al. ‘Young’ oral fibroblasts are geno/phenotypically distinct. J. Dent. Res. 2010, 89, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Glim, J.E.; van Egmond, M.; Niessen, F.B.; Everts, V.; Beelen, R.H.J. Detrimental dermal wound healing: What can we learn from the oral mucosa? Wound Repair Regen. 2013, 21, 648–660. [Google Scholar] [CrossRef]
- Jones, K.B.; Klein, O.D. Oral epithelial stem cells in tissue maintenance and disease: The first steps in a long journey. Int. J. Oral Sci. 2013, 5, 121–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, M.; Yamato, M.; Takagi, R.; Murakami, D.; Namiki, H.; Okano, T. Significantly different proliferative potential of oral mucosal epithelial cells between six animal species. J. Biomed. Mater. Res. A 2014, 102, 1829–1837. [Google Scholar] [CrossRef]
- Winning, T.A.; Townsend, G.C. Oral mucosal embryology and histology. Clin. Dermatol. 2000, 18, 499–511. [Google Scholar] [CrossRef]
- Bryja, A.; Dyszkiewicz-Konwińska, M.; Jankowski, M.; Celichowski, P.; Stefańska, K.; Chamier-Gliszczyńska, A.; Borowiec, B.; Mehr, K.; Bukowska, D.; Antosik, P.; et al. Cation homeostasis and transport related gene markers are differentially expressed in porcine buccal pouch mucosal cells during long-term cells primary culture in vitro. Med. J. Cell Biol. 2018, 6, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Bryja, A.; Dyszkiewicz-Konwińska, M.; Jankowski, M.; Celichowski, P.; Stefańska, K.; Chamier-Gliszczyńska, A.; Popis, M.; Mehr, K.; Bukowska, D.; Antosik, P.; et al. Ion homeostasis and transport are regulated by genes differentially expressed in porcine buccal pouch mucosal cells during long-term culture in vitro—A microarray approach. Med. J. Cell Biol. 2018, 6, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, M.W.J.; O’Kane, S. Scar-free healing: From embryonic mechanisms to adult therapeutic intervention. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 839–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coolen, N.A.; Schouten, K.C.W.M.; Boekema, B.K.H.L.; Middelkoop, E.; Ulrich, M.M.W. Wound healing in a fetal, adult, and scar tissue model: A comparative study. Wound Repair Regen. 2010, 18, 291–301. [Google Scholar] [CrossRef]
- Coolen, N.A.; Schouten, K.C.W.M.; Middelkoop, E.; Ulrich, M.M.W. Comparison between human fetal and adult skin. Arch. Dermatol. Res. 2010, 302, 47–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namazi, M.R.; Fallahzadeh, M.K.; Schwartz, R.A. Strategies for prevention of scars: What can we learn from fetal skin? Int. J. Dermatol. 2011, 50, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Kathju, S.; Gallo, P.H.; Satish, L. Scarless integumentary wound healing in the mammalian fetus: Molecular basis and therapeutic implications. Birth Defects Res. C Embryo Today 2012, 96, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Penn, J.W.; Grobbelaar, A.O.; Rolfe, K.J. The role of the TGF-beta family in wound healing, burns and scarring: A review. Int. J. Burns Trauma 2012, 2, 18–28. [Google Scholar] [PubMed]
- Chen, L.; Arbieva, Z.H.; Guo, S.; Marucha, P.T.; Mustoe, T.A.; DiPietro, L.A. Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics 2010, 11, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryja, A.; Dyszkiewicz-Konwinska, M.; Budna, J.; Ciesiółka, S.; Kranc, W.; Borys, S.; Jeseta, M.; Urbaniak, O.; Bukowska, D.; Antosik, P.; et al. Expression of cell mitotic progression proteins and keratinocyte markers in porcine buccal pouch mucosal cells during short-term, real-time primary culture. J. Biol. Regul. Homeost. Agents 2017, 31, 297–309. [Google Scholar]
- Bryja, A.; Dyszkiewicz-Konwinska, M.; Budna, J.; Kranc, W.; Chachula, A.; Borys, S.; Ciesiółka, S.; Sokalski, J.; Prylinski, M.; Bukowska, D.; et al. The biomedical aspects of oral mucosal epithelial cell culture in mammals. J. Biol. Regul. Homeost. Agents 2017, 31, 81–85. [Google Scholar]
- Takaichi, S.; Muramatsu, T.; Lee, J.-M.; Jung, H.-S.; Shinozaki, N.; Katakura, A.; Yamane, G.-Y. Re-epithelialization of the buccal mucosa after alkaline chemical injury. Acta Histochem. Cytochem. 2014, 47, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-G.; Eun, H.C. Differences between fibroblasts cultured from oral mucosa and normal skin: Implication to wound healing. J. Dermatol. Sci. 1999, 21, 176–182. [Google Scholar] [CrossRef]
- Wong, J.W.; Gallant-Behm, C.; Wiebe, C.; Mak, K.; Hart, D.A.; Larjava, H.; Häkkinen, L. Wound healing in oral mucosa results in reduced scar formation as compared with skin: Evidence from the red Duroc pig model and humans. Wound Repair Regen. 2009, 17, 717–729. [Google Scholar] [CrossRef]
- Smith, P.C.; Martínez, C.; Martínez, J.; McCulloch, C.A. Role of Fibroblast Populations in Periodontal Wound Healing and Tissue Remodeling. Front. Physiol. 2019, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Rahimov, C.H.; Gasimov, E.; Guliyev, T.; Rzayev, F.; Farzaliyev, I. Comparative behavior of wound healing on within different sites of oral mucosa and skin. Experimental study on pigs by electron microscope. Int. J. Oral Maxillofac. Surg. 2015, 44, e278. [Google Scholar] [CrossRef]
- Hyun, S.-Y.; Mun, S.; Kang, K.-J.; Lim, J.-C.; Kim, S.-Y.; Han, K.; Jang, Y.-J. Amelogenic transcriptome profiling in ameloblast-like cells derived from adult gingival epithelial cells. Sci. Rep. 2019, 9, 3736. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Gasser, S. Generating Primary Fibroblast Cultures from Mouse Ear and Tail Tissues. J. Vis. Exp. 2016, 107, 53565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Tan, Q.; Collins, J.R.; Alvord, W.G.; Roayaei, J.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. The DAVID Gene Functional Classification Tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007, 8, R183. [Google Scholar] [CrossRef] [Green Version]
- Walter, W.; Sanchez-Cabo, F.; Ricote, M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics 2015, 31, 2912–2914. [Google Scholar] [CrossRef]
- Von Mering, C.; Jensen, L.J.; Snel, B.; Hooper, S.D.; Krupp, M.; Foglierini, M.; Jouffre, N.; Huynen, M.A.; Bork, P. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005, 33, D433–D437. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.; Manji, A.; Gallant-Behm, C.; Wiebe, C.; Hart, D.A.; Larjava, H.; Hakkinen, L. Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model. J. Dermatol. Sci. 2009, 56, 168–180. [Google Scholar] [CrossRef]
- Gemenetzidis, E.; Elena-Costea, D.; Parkinson, E.K.; Waseem, A.; Wan, H.; Teh, M.T. Induction of human epithelial stem/progenitor expansion by FOXM1. Cancer Res. 2010, 70, 9515–9526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, T.; Endo, K.-I.; Kinoshita, S. Identification of human oral keratinocyte stem/progenitor cells by neurotrophin receptor p75 and the role of neurotrophin/p75 signaling. Stem Cells 2007, 25, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Izumi, K.; Tobita, T.; Feinberg, S.E. Isolation of human oral keratinocyte progenitor/stem cells. J. Dent. Res. 2007, 86, 341–346. [Google Scholar] [CrossRef]
- Stephens, P.; Genever, P. Non-epithelial oral mucosal progenitor cell populations. Oral Dis. 2007, 13, 1–10. [Google Scholar] [CrossRef]
- Ravikanth, M.; Soujanya, P.; Manjunath, K.; Saraswathi, T.R.; Ramachandran, C.R. Heterogenecity of fibroblasts. J. Oral Maxillofac. Pathol. 2011, 15, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Higa, K.; Satake, Y.; Shimazaki, J. The characterization of human oral mucosal fibroblasts and their use as feeder cells in cultivated epithelial sheets. Future Sci. OA 2017, 3, FSO243. [Google Scholar] [CrossRef] [Green Version]
- Van Wyk, C.W.; Olivier, A.; Hoal-van Helden, E.G.; Grobler-Rabie, A.F. Growth of oral and skin fibroblasts from patients with oral submucous fibrosis. J. Oral Pathol. Med. 1995, 24, 349–353. [Google Scholar] [CrossRef]
- Mah, W.; Jiang, G.; Olver, D.; Gallant-Behm, C.; Wiebe, C.; Hart, D.A.; Koivisto, L.; Larjava, H.; Häkkinen, L. Elevated CD26 Expression by Skin Fibroblasts Distinguishes a Profibrotic Phenotype Involved in Scar Formation Compared to Gingival Fibroblasts. Am. J. Pathol. 2017, 187, 1717–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Murphy-Ullrich, J.E.; Poczatek, M. Activation of latent TGF-beta by thrombospondin-1: Mechanisms and physiology. Cytokine Growth Factor Rev. 2000, 11, 59–69. [Google Scholar] [CrossRef]
- Szpaderska, A.M.; Walsh, C.G.; Steinberg, M.J.; DiPietro, L.A. Distinct patterns of angiogenesis in oral and skin wounds. J. Dent. Res. 2005, 84, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Szpaderska, A.M.; Zuckerman, J.D.; DiPietro, L.A. Differential injury responses in oral mucosal and cutaneous wounds. J. Dent. Res. 2003, 82, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.-L.; Reh, D.; Li, A.G.; Woods, J.; Corless, C.L.; Kulesz-Martin, M.; Wang, X.-J. Overexpression of transforming growth factor beta1 in head and neck epithelia results in inflammation, angiogenesis, and epithelial hyperproliferation. Cancer Res. 2004, 64, 4405–4410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Januszyk, M.; Rennert, R.C.; Sorkin, M.; Maan, Z.N.; Wong, L.K.; Whittam, A.J.; Whitmore, A.; Duscher, D.; Gurtner, G.C. Evaluating the Effect of Cell Culture on Gene Expression in Primary Tissue Samples Using Microfluidic-Based Single Cell Transcriptional Analysis. Microarrays 2015, 4, 540–550. [Google Scholar] [CrossRef]
- Miyoshi, K.; Horiguchi, T.; Tanimura, A.; Hagita, H.; Noma, T. Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells. BioMed Res. Int. 2015, 2015, 121575. [Google Scholar] [CrossRef] [Green Version]
- Larjava, H.; Wiebe, C.; Gallant-Behm, C.; Hart, D.A.; Heino, J.; Hakkinen, L. Exploring scarless healing of oral soft tissues. J. Can. Dent. Assoc. 2011, 77, b18. [Google Scholar]
- Wang, R.; Ghahary, A.; Shen, Q.; Scott, P.G.; Roy, K.; Tredget, E.E. Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells. Wound Repair Regen. 2000, 8, 128–137. [Google Scholar] [CrossRef]
- Czuwara-Ladykowska, J.; Sementchenko, V.I.; Watson, D.K.; Trojanowska, M. Ets1 is an effector of the transforming growth factor beta (TGF-beta ) signaling pathway and an antagonist of the profibrotic effects of TGF-beta. J. Biol. Chem. 2002, 277, 20399–20408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebisawa, K.; Kato, R.; Okada, M.; Sugimura, T.; Latif, M.A.; Hori, Y.; Narita, Y.; Ueda, M.; Honda, H.; Kagami, H. Gingival and dermal fibroblasts: Their similarities and differences revealed from gene expression. J. Biosci. Bioeng. 2011, 111, 255–258. [Google Scholar] [CrossRef]
Gene | Entrez Gene ID | Primer Sequence (5′-3′) | Product Size (bp) |
---|---|---|---|
ETS1 | 100302363 | atcagctggacaggagatgg gtttacccgccgtcttgtg | 166 |
FABP5 | 574074 | aagaatgggacgggaaggag ttcatagacccgagtgcagg | 104 |
FCER1G | 397406 | accctcctctactgtcgact ataagtctcctggttccggg | 111 |
ITGB3 | 397063 | ctcatcggccttgctactct agagacacccacaatcctgg | 231 |
LIF | 399503 | gtgccaacgccctctttatt attgaggctcctttggtccc | 209 |
LYN | 100152890 | agaggccatcaacttcggat tctgcaggtagtcgaaggtg | 248 |
PDPN | 100738269 | ggtgcaatcatcgtcatgct ttccacgggtcatcttctcc | 158 |
PPARD | 397590 | caatgccctggaactcgatg ttgatccgctgcatcatctg | 249 |
PTGS2 | 397018 | aaaggcctcaatcgaccaga atctgggcgaggcttttcta | 202 |
SCARB1 | 397087 | ccccatcgtctaccagatcc agtcctgaagaagtggggtg | 242 |
SPP1 | 397078 | agaagttccgcagatccgaa tccgtctcctcactttccac | 82 |
TGFB1 | 100302363 | accatgccaatttctgcctg gaacgcacgatcatgttgga | 208 |
ACTB | 414396 | cccttgccgctccgccttc gcagcaatatcggtcatccat | 69 |
HPRT | 397351 | ccatcacatcgtagccctc acttttatatcgcccgttgac | 171 |
Gene | LOG10(FC) D15/D7 | LOG10(FC) D30/D7 | p Value D15/D7 | p Value D30/D7 | Entrez Gene ID |
---|---|---|---|---|---|
CCL2 | −0.59 | −0.16 | 0.0407 | 0.4044 | 397422 |
ETS1 | −0.40 | −0.33 | 0.0311 | 0.0475 | 100302363 |
FABP5 | −0.53 | −0.57 | 0.0268 | 0.0235 | 574074 |
FCER1G | −0.37 | −0.38 | 0.0268 | 0.0236 | 397406 |
IL6 | −0.25 | −0.35 | 0.0885 | 0.0442 | 107652590 |
ITGB3 | −0.46 | −0.12 | 0.0389 | 0.4214 | 397063 |
LIF | −0.60 | −0.45 | 0.0128 | 0.0230 | 399503 |
LYN | −0.40 | −0.39 | 0.0346 | 0.0423 | 100152890 |
PDPN | −0.41 | −0.25 | 0.0342 | 0.1033 | 100738269 |
PPARD | −0.38 | −0.60 | 0.0520 | 0.0235 | 397297 |
PTGS2 | −0.75 | −0.48 | 0.0333 | 0.0862 | 397590 |
SCARB1 | −0.42 | −0.23 | 0.0346 | 0.1343 | 397018 |
SPP1 | −1.04 | −1.15 | 0.0163 | 0.0230 | 397087 |
TGFB1 | −0.35 | −0.09 | 0.0150 | 0.2166 | 397078 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryja, A.; Sujka-Kordowska, P.; Konwerska, A.; Ciesiółka, S.; Wieczorkiewicz, M.; Bukowska, D.; Antosik, P.; Bryl, R.; Skowroński, M.T.; Jaśkowski, J.M.; et al. New Gene Markers Involved in Molecular Processes of Tissue Repair, Response to Wounding and Regeneration Are Differently Expressed in Fibroblasts from Porcine Oral Mucosa during Long-Term Primary Culture. Animals 2020, 10, 1938. https://doi.org/10.3390/ani10111938
Bryja A, Sujka-Kordowska P, Konwerska A, Ciesiółka S, Wieczorkiewicz M, Bukowska D, Antosik P, Bryl R, Skowroński MT, Jaśkowski JM, et al. New Gene Markers Involved in Molecular Processes of Tissue Repair, Response to Wounding and Regeneration Are Differently Expressed in Fibroblasts from Porcine Oral Mucosa during Long-Term Primary Culture. Animals. 2020; 10(11):1938. https://doi.org/10.3390/ani10111938
Chicago/Turabian StyleBryja, Artur, Patrycja Sujka-Kordowska, Aneta Konwerska, Sylwia Ciesiółka, Maria Wieczorkiewicz, Dorota Bukowska, Paweł Antosik, Rut Bryl, Mariusz T. Skowroński, Jędrzej M. Jaśkowski, and et al. 2020. "New Gene Markers Involved in Molecular Processes of Tissue Repair, Response to Wounding and Regeneration Are Differently Expressed in Fibroblasts from Porcine Oral Mucosa during Long-Term Primary Culture" Animals 10, no. 11: 1938. https://doi.org/10.3390/ani10111938