Effect of Aging Time on Meat Quality of Longissimus Dorsi from Yunling Cattle: A New Hybrid Beef Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Management
2.3. Growth Performance and Carcass Traits
2.4. Chemical Composition
2.5. pH and Water Loss Rate
2.6. Cooking Loss and Shear Force
2.7. MFI and IMP Assay
2.8. Color Measurement
2.9. Fatty Acid Profile Detection
2.10. Statistical Analysis
3. Results
3.1. Growth Performance and Carcass Traits
3.2. Chemical Composition
3.3. pH and Water Loss Rate
3.4. Cooking Loss and Warner-Bratzler Shear Force
3.5. MFI and IMP Assay
3.6. Color Measurement
3.7. Fatty Acid Profile Detection
4. Discussion
4.1. Growth Performance and Carcass Traits Analysis
4.2. Chemical Composition Analysis
4.3. pH and Water Loss Rate Analysis
4.4. Cooking Loss and Warner-Bratzler Shear Force Analysis
4.5. MFI and IMP Analysis
4.6. Color Measurement Analysis
4.7. Fatty Acid Profile Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xiaotong, S.; Yanfang, Z.; Yaning, W.; Le, Z.; Linsen, Z.; Hongbao, W. Overexpression of the Rybp Gene Inhibits Differentiation of Bovine Myoblasts into Myotubes. Int. J. Mol. Sci. 2018, 19, 2082. [Google Scholar] [CrossRef] [Green Version]
- Kodani, Y.; Miyakawa, T.; Komatsu, T.; Tanokura, M. NMR-based metabolomics for simultaneously evaluating multiple determinants of primary beef quality in Japanese Black cattle. Sci. Rep. 2017, 7, 1297. [Google Scholar] [CrossRef] [Green Version]
- Wade, A.T.; Davis, C.R.; Dyer, K.A.; Hodgson, J.M.; Murphy, K.J. A Mediterranean Diet with Fresh, Lean Pork Improves Processing Speed and Mood: Cognitive Findings from the MedPork Randomised Controlled Trial. Nutrients 2019, 11, 1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekine-Dzivenu, C.; Vinsky, M.; Basarab, J.A.; Aalhus, J.L.; Dugan, M.E.R.; Li, C. Phenotypic and genetic correlations of fatty acid composition in subcutaneous adipose tissue with carcass merit and meat tenderness traits in Canadian beef cattle1. J. Anim. Sci. 2017, 95, 5184–5196. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zhan, J.; Shen, J.; Qu, K.; Lei, C. Whole-genome resequencing reveals diversity, global and local ancestry proportions in Yunling cattle. J. Anim. Breed. Genet. 2020, 137, 641–650. [Google Scholar] [CrossRef]
- Xia, X.; Qu, K.; Li, F.; Jia, P.; Lei, C. Abundant Genetic Diversity of Yunling Cattle Based on Mitochondrial Genome. Animals 2019, 9, 641. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Yang, L.; Wang, L.; Zhu, B.; Chen, Y.; Gao, H.; Gao, X.; Zhang, L.; Liu, G.E.; Li, J. Probe-based association analysis identifies several deletions associated with average daily gain in beef cattle. BMC Genom. 2019, 20, 1–10. [Google Scholar] [CrossRef]
- Jiang, N.; Liu, C.; Lan, T.; Zhang, Q.; Li, P. Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs. Animals 2020, 10, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Meng, Q.; Ren, L.; Liu, W.; Zhang, X.; Huo, Y.; Zhou, Z. Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance. Asian-Australas. J. Anim. Sci. 2015, 28, 1433–1441. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Qin, Y.; Li, J.; Xu, X.; Zhou, G. Edible quality of soft-boiled chicken processing with chilled carcass was better than that of hot-fresh carcass. Food Sci. Nutr. 2019, 7, 797–804. [Google Scholar] [CrossRef]
- Gonzalez-Gonzalez, L.; Alarcon-Rojo, A.; Carrillo, L.; Garcia-Galicia, I.A.; Huerta, M.; Paniwnyk, L. Does ultrasound equally improve the quality of beef? An insight into longissimus lumborum, infraspinatus and cleidooccipitalis. Meat Sci. 2019, 160, 107963. [Google Scholar] [CrossRef] [PubMed]
- Holman, B.W.B.; Bailes, K.L.; Kerr, M.J.; Hopkins, D.L. Point of purchase fatty acid profile, oxidative status and quality of vacuum-packaged grass fed Australian beef held chilled for up to 12 weeks. Meat Sci. 2019, 158, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zamora, F.; Aubry, L.; Sayd, T.; Lepetit, J.; Lebert, A.; Sentandreu, M.A.; Ouali, A. Serine peptidase inhibitors, the best predictor of beef ageing amongst a large set of quantitative variables. Meat Sci. 2005, 71, 730–742. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, A.; Świderski, F.; Kostyra, E.; Rachtanmganicka, J.; Najman, K. Effect of ageing time on quality characteristics of different bovine muscles. Int. J. Food Sci. Technol. 2020, 55, 1189–1198. [Google Scholar] [CrossRef]
- Khan, M.I.; Jung, S.; Nam, K.C.; Jo, C. Postmortem Aging of Beef with a Special Reference to the Dry Aging. Korean J. Food Sci. Anim. Resour. 2016, 36, 159–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cafferky, J.; Hamill, R.M.; Allen, P.; O′Doherty, J.V.; Sweeney, T. Effect of Breed and Gender on Meat Quality of M. longissimus thoracis et lumborum Muscle from Crossbred Beef Bulls and Steers. Foods 2019, 21, 173. [Google Scholar] [CrossRef] [Green Version]
- Garmyn, A.; Hardcastle, N.; Polkinghorne, R.; Lucherk, L.; Miller, M. Extending Aging of Beef Longissimus Lumborum From 21 to 84 Days Postmortem Influences Consumer Eating Quality. Foods 2020, 9, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diniz, F.B.; Villela, S.D.J.; Mourthe, M.H.F.; Paulino, P.V.R.; Boari, C.A.; Ribeiro, J.S.; Barroso, J.A.; Pires, A.V.; Martins, P.G.M.A. Evaluation of carcass traits and meat characteristics of Guzerat-crossbred bulls. Meat Sci. 2016, 112, 58–62. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Rodríguez-Vázquez, R.; Purriños, L.; Oliván, M.; García-Torres, S.; Sentandreu, M.; Lorenzo, J.M.; Zapata, C.; Franco, D. Sensory and Physicochemical Analysis of Meat from Bovine Breeds in Different Livestock Production Systems, Pre-Slaughter Handling Conditions and Ageing Time. Foods 2020, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Wan, H.L.; Zhang, L.P.; Brown, M.A.; Wu, X.J.; Wu, J.P. Influence of Aging Days and Age at Harvest on Meat Quality of Gannan Black Yak. J. Anim. Vet. Adv. 2011, 10, 1089–1096. [Google Scholar] [CrossRef]
- Seenger, J.; Nuernberg, G.; Hartung, M.; Szuecs, E.; Nuernberg, K. ANKOM—A new instrument for the determination of fat in muscle and meat cuts—A comparison. Arch. Tierzucht 2008, 51, 449–457. [Google Scholar] [CrossRef]
- Milanovic, S.; Caric, M.; Djuric, M.; Ilicic, M.; Durakovic, K. Physico-chemical properties of probiotic yoghurt produced with transglutaminase. Acta Period. Technol. 2007, 38, 45–52. [Google Scholar] [CrossRef]
- Kim, C.J.; Lee, E.S. Effects of quality grade on the chemical, physical and sensory characteristics of Hanwoo (Korean native cattle) beef. Meat Sci. 2003, 63, 397–405. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, Y.; Zhou, G. Electron microscopy of contractile bands in low voltage electrical stimulation beef. Meat Sci. 2008, 80, 948–951. [Google Scholar] [CrossRef] [PubMed]
- Culler, R.D.; Jr, F.C.P.; Smith, G.C.; Cross, H.R. Relationship of myofibril fragmentation index to certain chemical, physical and sensory characteristics of bovine longissimus muscle. J. Food Sci. 2010, 43, 1177–1180. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Thompson, J.M. Inhibition of protease activity. Part 1. The effect on tenderness and indicators of proteolysis in ovine muscle. Meat Sci. 2001, 59, 175–185. [Google Scholar] [CrossRef]
- Tikk, M.; Tikk, K.; TøRngren, M.A.; Meinert, L.; Aaslyng, M.D.; Karlsson, A.H.; Andersen, H.J. Development of inosine monophosphate and its degradation products during aging of pork of different qualities in relation to basic taste and retronasal flavor perception of the meat. J. Agric. Food Chem. 2006, 54, 7769–7777. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, L.; Kulig, B.; Moscetti, R.; Massantini, R.; Pawelzik, E.; Hensel, O.; Sturm, B. Optimisation of Physical and Chemical Treatments to Control Browning Development and Enzymatic Activity on Fresh-cut Apple Slices. Foods 2020, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Ventanas, S.; Ventanas, J.; Jurado, A.; Estevez, M. Quality traits in muscle biceps femoris and back-fat from purebred Iberian and reciprocal Iberian × Duroc crossbred pigs. Meat Sci. 2006, 73, 651–659. [Google Scholar] [CrossRef]
- Gonzalez, F.A.L.; Tarouco, J.U.; Lobato, J.F.P.; Patino, H.O.; Feijó, F.D. Average daily gain rates determine eye muscle area and rump fat depth of beef heifers. Ital. J. Anim. Sci. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Reynolds, J.G.; Foote, A.P.; Freetly, H.C.; Oliver, W.T.; Lindholm-Perry, A.K. Relationships between inflammation- and immunity-related transcript abundance in the rumen and jejunum of beef steers with divergent average daily gain. Anim. Genet. 2017, 48, 447–449. [Google Scholar] [CrossRef]
- Campion, B.; Keane, M.G.; Kenny, D.A.; Berry, D.P. Evaluation of estimated genetic merit for carcass weight in beef cattle: Live weights, feed intake, body measurements, skeletal and muscular scores, and carcass characteristics. Livest. Sci. 2009, 126, 87–99. [Google Scholar] [CrossRef]
- Miciński, J.; Zwierzchowski, G.; Kowalski, I.M.; Wojtkiewicz, J.; Szarek, J. Health-supporting properties of beef. J. Elem. 2012, 17, 149–157. [Google Scholar] [CrossRef]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Strydom, P.E.; Hugo, A.; Raats, J.G. Some biochemical aspects pertaining to beef eating quality and consumer health: A review. Food Chem. 2009, 112, 279–289. [Google Scholar] [CrossRef]
- Clifton, P. Effects of a high protein diet on body weight and comorbidities associated with obesity. Br. J. Nutr. 2012, 108, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Gannon, M.C.; Nuttall, F.Q.; Asad, S.; Kelly, J.; Heidi, H. An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. Am. J. Clin. Nutr. 2004, 78, 734–741. [Google Scholar] [CrossRef]
- Wycherley, T.P.; Noakes, M.; Clifton, P.M.; Cleanthous, X.; Keogh, J.B.; Brinkworth, G.D. A high-protein diet with resistance exercise training improves weight loss and body composition in overweight and obese patients with type 2 diabetes. Diabetes Care 2010, 33, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Gillies, A.R.; Lieber, R.L. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 2011, 44, 318–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013, 95, 828–836. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, J.B.S.; de Felício, P.E. Production systems—An example from Brazil. Meat Sci. 2010, 84, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, G.; Xu, X. Changes of meat quality characteristics and intramuscular connective tissue of beef semitendinosus muscle during postmortem aging for Chinese Yellow bulls. Int. J. Food Sci. Technol. 2010, 43, 838–845. [Google Scholar] [CrossRef]
- Iida, F.; Miyazaki, Y.; Tsuyuki, R.; Kato, K.; Egusa, A.; Ogoshi, H.; Nishimura, T. Changes in taste compounds, breaking properties, and sensory attributes during dry aging of beef from Japanese black cattle. Meat Sci. 2016, 112, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, S.I.; van der Werf, J.H.J.; Jacob, R.H.; Hopkins, D.L.; Pannier, L.; Pearce, K.L.; Gardner, G.E.; Warner, R.D.; Geesink, G.H.; Hocking Edwards, J.E.; et al. Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci. 2014, 96, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Immonen, K.; Puolanne, E. Variation of residual glycogen-glucose concentration at ultimate pH values below 5.75. Meat Sci. 2000, 55, 279–283. [Google Scholar] [CrossRef]
- Marino, R.; Albenzio, M.; Malva, A.D.; Caroprese, M.; Santillo, A.; Sevi, A. Changes in meat quality traits and sarcoplasmic proteins during aging in three different cattle breeds. Meat Sci. 2014, 98, 178–186. [Google Scholar] [CrossRef]
- Onopiuk, A.; Półtorak, A.; Wierzbicka, A. Influence of post-mortem muscle glycogen content on the quality of beef during aging. J. Vet. Res. 2016, 60, 301. [Google Scholar] [CrossRef] [Green Version]
- Lamare, M.; Taylor, R.G.; Farout, K. Changes in proteasome activity during postmortem aging of bovine muscle. Meat Sci. 2002, 61, 199–204. [Google Scholar] [CrossRef]
- Schnfeldt, H.C.; Strydom, P.E. Effect of age and cut on cooking loss, juiciness and flavour of South African beef. Meat Sci. 2011, 87, 180–190. [Google Scholar] [CrossRef]
- King, D.A.; Dikeman, M.E.; Wheeler, T.L.; Kastner, C.L.; Koohmaraie, M. Chilling and cooking rate effects on some myofibrillar determinants of tenderness of beef. J. Anim. Sci. 2003, 81, 1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, R.; della Malva, A.; Albenzio, M. Proteolytic changes of myofibrillar proteins in Podolian meat during aging: Focusing on tenderness1. J. Anim. Sci. 2015, 93, 1376–1387. [Google Scholar] [CrossRef] [PubMed]
- Jiu, Z.; Roy, B.C.; Das, C.; Wismer, W.V.; Juárez, M.; Fitzsimmons, C.; Li, C.; Plastow, G.; Aalhus, J.L.; Bruce, H.L. Meat and sensory quality of major muscles from Angus, Charolais, and Angus crossbred steers with high and low residual feed intake. Can. J. Anim. Sci. 2019, 100, 140–153. [Google Scholar] [CrossRef]
- Rajagopal, K.; Oommen, G.T. Myofibril Fragmentation Index as an Immediate Postmortem Predictor of Buffalo Meat Tenderness. J. Food Process. Preserv. 2015, 39, 1166–1171. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Grebitus, C.; Jensen, H.H.; Roosen, J.; Sebranek, J.G. Fresh Meat Packaging: Consumer Acceptance of Modified Atmosphere Packaging including Carbon Monoxide. J. Food Prot. 2013, 76, 99–107. [Google Scholar] [CrossRef]
- Iii, W.N.T.; Yancey, J.W.S.; Apple, J.K. How is the instrumental color of meat measured? Meat Sci. 2011, 89, 1–5. [Google Scholar] [CrossRef]
- Chambaz, A.; Scheeder, M.R.L.; Kreuzer, M.; Dufey, P.-A. Meat quality of Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content. Meat Sci. 2003, 63, 491–500. [Google Scholar] [CrossRef]
- Waritthitham, A.; Lambertz, C.; Langholz, H.J.; Wicke, M.; Gauly, M. Assessment of beef production from Brahman × Thai native and Charolais × Thai native crossbred bulls slaughtered at different weights. I: Growth performance and carcass quality. Meat Sci. 2010, 85, 191–195. [Google Scholar] [CrossRef]
- Ogata, B.N.; Hayes, D. Position of the Academy of Nutrition and Dietetics: Nutrition Guidance for Healthy Children Ages 2 to 11 Years. J. Am. Acad. Nutr. Diet. 2014, 114, 1257–1276. [Google Scholar] [CrossRef]
- Horcada, A.; Polvillo, O.; González-Redondo, P.; López, A.; Tejerina, D.; García-Torres, S. Stability of fatty acid composition of intramuscular fat from pasture- and grain-fed young bulls during the first 7 d postmortem. Arch. Anim. Breed. 2020, 63, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.M. Dietary fatty acids and human health. Ann. De Zootech. 2000, 49, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M.; Zhao, G.; Pelkman, C.L.; Fishell, V.K.; Coval, S.M. Beneficial Effects of a Diet High in Monounsaturated Fatty Acids on Risk Factors for Cardiovascular Disease. Nutr. Clin. Care 2010, 3, 153–162. [Google Scholar] [CrossRef]
- Cameron, N.D.; Enser, M.; Nute, G.R.; Whittington, F.M.; Penman, J.C.; Fisken, A.C.; Perry, A.M.; Wood, J.D. Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Sci. 2000, 55, 187–195. [Google Scholar] [CrossRef]
- Trbovic, D.; Lakicevic, B.; Petronijevic, R.; Lukic, M.; Nastasijevic, I. Assessment of meat products and saturated fatty acid intake in human diets. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Scollan, N.D.; Dannenberger, D.; Nuernberg, K.; Richardson, I.; MacKintosh, S.; Hocquette, J.-F.; Moloney, A.P. Enhancing the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2014, 97, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, X.; Liu, Z.; Yuan, Z.; Song, Y.; Shao, S.; Zhou, X.; Yan, H.; Guan, Q.; Gao, L. High-Cholesterol Diet Disrupts the Levels of Hormones Derived from Anterior Pituitary Basophilic Cells. J. Neuroendocrinol. 2016, 28, 1–12. [Google Scholar] [CrossRef]
- Sundram, K.; Hayes, K.C.; Siru, O.H. Dietary palmitic acid results in lower serum cholesterol than does a lauric-myristic acid combination in normolipemic humans. Am. J. Clin. Nutr. 1994, 59, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Delgado, G.E.; MäRz, W.; Lorkowski, S.; Von Schacky, C.; Kleber, M.E. Omega-6 fatty acids: Opposing associations with risk-The Ludwigshafen Risk and Cardiovascular Health Study. J. Clin. Lipidol. 2017, 11, 1082–1090. [Google Scholar] [CrossRef]
Item | Yunling Cattle | Simmental Cattle | Wenshan Cattle | SEM | Effects, p |
---|---|---|---|---|---|
Initial weight (kg) | 305 a | 312 a | 160 b | 3.45 | <0.0001 |
Final weight (kg) | 498 b | 540 a | 326 c | 2.70 | <0.0001 |
Body weight (kg) | 487 b | 526 a | 312 c | 3.19 | <0.0001 |
Average daily gain (kg/day) | 1.07 ab | 1.26 a | 0.92 b | 0.04 | 0.0021 |
Carcass weight (kg) | 295 a | 318 a | 178 b | 2.61 | <0.0001 |
Dressing percentage (%) | 61.46 a | 60.24 a | 57.49 b | 0.31 | 0.0325 |
Item | Day | Breed | SEM | Effects, p | ||||
---|---|---|---|---|---|---|---|---|
Yunling Cattle | Simmental Cattle | Wenshan Cattle | Breed | Aging | Breed × Aging | |||
Protein (%) | 0 | 23.55 b | 26.04 a | 23.18 b | 0.13 | 0.0316 | 0.9523 | 0.4128 |
3 | 23.49 b | 26.08 a | 23.12 b | |||||
7 | 23.47 b | 26.01 a | 23.15 b | |||||
Collagen (%) | 0 | 0.71 | 0.73 | 0.75 | 0.02 | 0.9075 | 0.9157 | 0.1137 |
3 | 0.69 | 0.71 | 0.72 | |||||
7 | 0.72 | 0.74 | 0.74 | |||||
Moisture (%) | 0 | 72.51 b | 72.24 b | 74.78 a | 0.56 | 0.0452 | 0.9256 | 0.6024 |
3 | 72.63 b | 72.15 b | 74.86 a | |||||
7 | 72.42 b | 71.94 b | 74.98 a | |||||
Fat (%) | 0 | 3.47 a | 3.57 a | 3.05 b | 0.08 | 0.0012 | 0.9416 | 0.0896 |
3 | 3.41 a | 3.50 a | 3.01 b | |||||
7 | 3.39 a | 3.61 a | 3.06 b |
Item | Day | Breed | SEM | Effects, p | ||||
---|---|---|---|---|---|---|---|---|
Yunling Cattle | Simmental Cattle | Wenshan Cattle | Breed | Aging | Breed × Aging | |||
pH | 0 | 6.23 Aab | 6.10 Ab | 6.39 Aa | 0.06 | 0.1227 | <0.0001 | 0.0005 |
1 | 5.52 B | 5.53 B | 5.50 B | |||||
2 | 5.45 BC | 5.39 C | 5.44 C | |||||
3 | 5.35 Cb | 5.46 BCa | 5.37 BCb | |||||
5 | 5.51 B | 5.43 BC | 5.46 BC | |||||
7 | 5.46 BC | 5.41 BC | 5.43 BC | |||||
Water loss rate (%) | 0 | 23.05 | 22.61 BC | 21.42 B | 0.37 | 0.1367 | 0.0003 | 0.0105 |
1 | 23.36 a | 18.83 Db | 24.32 Aa | |||||
2 | 24.21 | 21.89 CD | 23.99 A | |||||
3 | 23.49 | 25.83 AB | 24.37 A | |||||
5 | 24.14 | 23.80 ABC | 25.72 A | |||||
7 | 23.90 | 26.10 A | 26.30 A |
Item | Day | Breed | SEM | Effects, p | ||||
---|---|---|---|---|---|---|---|---|
Yunling Cattle | Simmental Cattle | Wenshan Cattle | Breed | Aging | Breed × Aging | |||
Cooking loss (%) | 0 | 28.42 Ba | 21.87 Db | 26.97 Ba | 0.32 | <0.0001 | <0.0001 | <0.0001 |
1 | 29.26 Ba | 25.54 Cb | 29.91 Aa | |||||
2 | 26.55 Cb | 30.62 Aa | 31.33 Aa | |||||
3 | 32.50 Aa | 28.69 ABb | 31.90 Aa | |||||
5 | 30.14 B | 29.47 AB | 31.31 A | |||||
7 | 32.21 Aa | 28.22 Bb | 31.61 Aa | |||||
WBSF (N) | 0 | 86.71 Aa | 73.45 Ab | 90.17 Aa | 1.26 | 0.0125 | <0.0001 | 0.0068 |
1 | 86.46 Aa | 71.64 ABb | 86.52 ABa | |||||
2 | 84.54 ABa | 69.03 ABb | 86.40 ABa | |||||
3 | 79.65 Ba | 65.47 Bb | 78.58 Ba | |||||
5 | 71.61 Ca | 64.95 Bb | 73.55 Ca | |||||
7 | 65.32 Da | 60.07 Cb | 67.58 Da |
Item | Day | Breed | SEM | Effects, p | ||||
---|---|---|---|---|---|---|---|---|
Yunling Cattle | Simmental Cattle | Wenshan Cattle | Breed | Aging | Breed × Aging | |||
MFI (mg/mL) | 0 | 97.56 Ca | 61.15 Cb | 62.12 Cb | 2.01 | <0.0001 | <0.0001 | 0.1225 |
3 | 120.40 Ba | 73.80 Bb | 76.18 Bb | |||||
7 | 138.77 Aa | 96.70 Ab | 95.65 Ab | |||||
IMP (μg/g) | 0 | 896.11 Aa | 805.98 Ab | 822.17 Ab | 8.26 | <0.0001 | <0.0001 | 0.8319 |
3 | 764.71 Ba | 558.28 Bb | 806.26 Aa | |||||
7 | 541.41 C | 532.58 B | 546.38 B |
Item | Day | Breed | SEM | Effects, p | ||||
---|---|---|---|---|---|---|---|---|
Yunling Cattle | Simmental Cattle | Wenshan Cattle | Breed | Aging | Breed × Aging | |||
L* | 0 | 28.20 Ca | 25.64 Cb | 27.33 Da | 0.47 | <0.0001 | <0.0001 | 0.8956 |
1 | 31.15 BC | 30.31 B | 33.87 BC | |||||
2 | 33.66 AB | 33.10 AB | 33.47 C | |||||
3 | 35.81 A | 34.53 A | 35.36 AB | |||||
5 | 35.63 A | 33.79 A | 35.68 A | |||||
7 | 36.15 A | 34.01 A | 35.99 A | |||||
a* | 0 | 11.63 Bab | 12.31 Ca | 11.25 b | 0.23 | <0.0001 | <0.0001 | 0.4195 |
1 | 16.56 A | 16.70 B | 15.69 A | |||||
2 | 16.53 Aab | 18.86 Aa | 16.00 Ab | |||||
3 | 16.64 A | 18.60 A | 16.68 A | |||||
5 | 16.26 Aab | 16.58 Ba | 15.10 Ab | |||||
7 | 16.45 Aab | 17.66 ABa | 15.67 Ab | |||||
b* | 0 | 0.99 B | 1.16 C | 1.02 C | 0.17 | 0.2641 | <0.0001 | 0.4333 |
1 | 5.00 A | 4.39 B | 4.55 AB | |||||
2 | 4.83 A | 6.37 A | 4.91 AB | |||||
3 | 5.28 A | 6.33 A | 5.81 A | |||||
5 | 5.40 A | 4.75 B | 4.14 B | |||||
7 | 4.86 A | 5.15 B | 4.72 AB |
Fatty Acid | Day | Breed | SEM | Effects, p | ||||
---|---|---|---|---|---|---|---|---|
Yunling Cattle | Simmental Cattle | Wenshan Cattle | Breed | Aging | Breed × Aging | |||
C4:0 (%) | 0 | 0.31 a | 0.18 c | 0.23 b | 0.01 | <0.0001 | 0.8232 | 0.1238 |
3 | 0.29 a | 0.19 c | 0.22 b | |||||
7 | 0.32 a | 0.19 c | 0.23 b | |||||
C10:0 (%) | 0 | 0.01 b | 0.03 a | 0.03 a | 0.00 | <0.0001 | 0.9975 | 0.3791 |
3 | 0.01 b | 0.03 a | 0.03 a | |||||
7 | 0.01 b | 0.03 a | 0.03 a | |||||
C12:0 (%) | 0 | 0.01 c | 0.02 b | 0.04 a | 0.00 | <0.0001 | 0.9888 | 0.6059 |
3 | 0.01 c | 0.02 b | 0.04 a | |||||
7 | 0.01 c | 0.02 b | 0.04 a | |||||
C14:0 (%) | 0 | 2.37 b | 2.39 b | 3.21 a | 0.03 | <0.0001 | 0.8677 | 0.6642 |
3 | 2.40 b | 2.37 b | 3.28 a | |||||
7 | 2.41 b | 2.41 b | 3.25 a | |||||
C15:0 (%) | 0 | 0.17 c | 0.31 a | 0.22 b | 0.01 | <0.0001 | 0.8291 | 0.7785 |
3 | 0.18 c | 0.34 a | 0.20 b | |||||
7 | 0.17 c | 0.33 a | 0.21 b | |||||
C16:0 (%) | 0 | 29.21 a | 27.83 b | 27.61 b | 0.52 | 0.0127 | 0.8327 | 0.4725 |
3 | 29.19 a | 28.01 b | 27.69 b | |||||
7 | 29.17 a | 27.83 b | 27.71 b | |||||
C17:0 (%) | 0 | 0.52 | 0.49 | 0.50 | 0.01 | 0.8987 | 0.7537 | 0.4126 |
3 | 0.54 | 0.52 | 0.52 | |||||
7 | 0.52 | 0.51 | 0.48 | |||||
C18:0 (%) | 0 | 15.26 a | 14.37 b | 13.32 c | 0.37 | 0.0112 | 0.9918 | 0.8459 |
3 | 15.30 a | 14.33 b | 13.34 c | |||||
7 | 15.46 a | 14.34 b | 13.29 c | |||||
C22:0 (%) | 0 | 0.23 a | 0.06 b | 0.05 b | 0.01 | <0.0001 | 0.8901 | 0.8754 |
3 | 0.24 a | 0.07 b | 0.05 b | |||||
7 | 0.23 a | 0.07 b | 0.05 b | |||||
ΣSFA (%) | 0 | 48.14 a | 45.68 b | 45.61 b | 0.98 | 0.0028 | 0.8903 | 0.6894 |
3 | 48.16 a | 45.88 b | 45.86 b | |||||
7 | 48.34 a | 45.73 b | 45.74 b |
Fatty Acid | Day | Breed | SEM | Effects, p | ||||
---|---|---|---|---|---|---|---|---|
Yunling Cattle | Simmental Cattle | Wenshan Cattle | Breed | Aging | Breed × Aging | |||
C14:1 (%) | 0 | 0.64 b | 0.56 b | 0.92 a | 0.01 | <0.0001 | 0.8835 | 0.7684 |
3 | 0.62 b | 0.54 b | 0.87 a | |||||
7 | 0.61 b | 0.57 b | 1.01 a | |||||
C15:1 (%) | 0 | 0.05 b | 0.07 a | 0.05 b | 0.01 | 0.0015 | 0.9612 | 0.0926 |
3 | 0.05 b | 0.08 a | 0.05 b | |||||
7 | 0.04 b | 0.08 a | 0.05 b | |||||
C16:1 (%) | 0 | 3.01 c | 3.59 b | 4.15 a | 0.03 | <0.0001 | 0.8262 | 0.8126 |
3 | 2.96 c | 3.64 b | 4.12 a | |||||
7 | 2.94 c | 3.61 b | 4.10 a | |||||
C17:1 (%) | 0 | 0.32 b | 0.39 ab | 0.43 a | 0.01 | 0.0024 | 0.8609 | 0.6618 |
3 | 0.34 b | 0.39 ab | 0.40 a | |||||
7 | 0.33 b | 0.38 ab | 0.41 a | |||||
C18:1n9c (%) | 0 | 39.65 b | 42.61 a | 41.90 ab | 1.17 | 0.0013 | 0.8966 | 0.8269 |
3 | 39.72 b | 42.49 a | 41.81 ab | |||||
7 | 39.62 b | 42.57 a | 41.85 ab | |||||
C18:1n9t (%) | 0 | 0.49 a | 0.30 b | 0.46 a | 0.01 | <0.0001 | 0.8353 | 0.1265 |
3 | 0.47 a | 0.29 b | 0.44 a | |||||
7 | 0.45 a | 0.29 b | 0.43 a | |||||
C20:1 (%) | 0 | 0.34 b | 0.31 b | 0.41 a | 0.01 | 0.0089 | 0.8735 | 0.1026 |
3 | 0.31 b | 0.34 b | 0.42 a | |||||
7 | 0.34 b | 0.32 b | 0.42 a | |||||
C22:1n9 (%) | 0 | 1.32 a | 1.05 b | 0.83 c | 0.02 | <0.0001 | 0.8195 | 0.5496 |
3 | 1.35 a | 0.98 b | 0.86 c | |||||
7 | 1.37 a | 0.96 b | 0.82 c | |||||
Σ MUFA (%) | 0 | 45.86 b | 48.86 a | 49.20 a | 1.05 | 0.0032 | 0.8303 | 0.2195 |
3 | 45.82 b | 48.69 a | 48.97 a | |||||
7 | 45.70 b | 48.78 a | 49.09 a |
Fatty Acid | Day | Breed | SEM | Effects, p | ||||
---|---|---|---|---|---|---|---|---|
Yunling Cattle | Simmental Cattle | Wenshan Cattle | Breed | Aging | Breed × Aging | |||
C18:2n6c (%) | 0 | 5.18 a | 4.70 ab | 4.36 b | 0.08 | <0.0001 | 0.9103 | 0.8529 |
3 | 5.21 a | 4.63 ab | 4.33 b | |||||
7 | 5.17 a | 4.68 ab | 4.35 b | |||||
C18:2n6t (%) | 0 | 0.52 | 0.50 | 0.51 | 0.02 | 0.9055 | 0.8646 | 0.1237 |
3 | 0.54 | 0.52 | 0.53 | |||||
7 | 0.51 | 0.53 | 0.52 | |||||
C18:3n3 (%) | 0 | 0.25 | 0.22 | 0.27 | 0.01 | 0.8218 | 0.8194 | 0.0988 |
3 | 0.22 | 0.24 | 0.27 | |||||
7 | 0.23 | 0.23 | 0.25 | |||||
C22:6n3 (%) | 0 | 0.05 | 0.04 | 0.05 | 0.01 | 0.9137 | 0.9320 | 0.0784 |
3 | 0.05 | 0.04 | 0.04 | |||||
7 | 0.05 | 0.05 | 0.05 | |||||
ΣPUFA (%) | 0 | 6.00 a | 5.46 ab | 5.19 b | 0.07 | <0.0001 | 0.8508 | 0.8741 |
3 | 6.02 a | 5.43 ab | 5.17 b | |||||
7 | 5.96 a | 5.49 ab | 5.17 b | |||||
ΣPUFA/ΣSFA (P:S) | 0 | 0.12 | 0.12 | 0.11 | 0.01 | 0.8356 | 0.9806 | 0.1128 |
3 | 0.13 | 0.12 | 0.11 | |||||
7 | 0.12 | 0.12 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Han, Z.; ARBAB, A.A.I.; Yang, Y.; Yang, Z. Effect of Aging Time on Meat Quality of Longissimus Dorsi from Yunling Cattle: A New Hybrid Beef Cattle. Animals 2020, 10, 1897. https://doi.org/10.3390/ani10101897
Fan Y, Han Z, ARBAB AAI, Yang Y, Yang Z. Effect of Aging Time on Meat Quality of Longissimus Dorsi from Yunling Cattle: A New Hybrid Beef Cattle. Animals. 2020; 10(10):1897. https://doi.org/10.3390/ani10101897
Chicago/Turabian StyleFan, Yongliang, Ziyin Han, Abdelaziz Adam Idriss ARBAB, Yi Yang, and Zhangping Yang. 2020. "Effect of Aging Time on Meat Quality of Longissimus Dorsi from Yunling Cattle: A New Hybrid Beef Cattle" Animals 10, no. 10: 1897. https://doi.org/10.3390/ani10101897
APA StyleFan, Y., Han, Z., ARBAB, A. A. I., Yang, Y., & Yang, Z. (2020). Effect of Aging Time on Meat Quality of Longissimus Dorsi from Yunling Cattle: A New Hybrid Beef Cattle. Animals, 10(10), 1897. https://doi.org/10.3390/ani10101897