A Comparison of Stocking Methods for Pasture-Based Growing-Finishing Pig Production Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Treatments
2.3. Animals
2.4. Pastures
2.5. Samplings and Estimations
2.5.1. Soil Sampling
2.5.2. Vegetative Cover
2.5.3. Botanical Composition
2.5.4. Nutrients Balance
2.6. Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Vegetation
3.3. Animal Performance
4. Discussion
4.1. Soils Physical-Chemical Properties
4.2. Soil Nutrients
4.3. Vegetation
4.4. Animal Performance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Motta-Delgado, P.A.; Ocaña-Martínez, H.E.; Rojas-Vargas, E.P. Indicadores asociados a la sostenibilidad de pasturas: Una revisión. Cienc. Tecnol. Agropecu. 2019, 20, 387–408. [Google Scholar] [CrossRef] [Green Version]
- Boval, M.; Dixon, R.M. The importance of grasslands for animal production and other functions: A review on management and methodological progress in the tropics. Animals 2012, 6, 748–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, L.W.; Hayes, R.C.; Pembleton, K.G.; Waters, C.M. Opportunities and challenges in Australian grasslands: Pathways to achieve future sustainability and productivity imperatives. Crop. Pasture Sci. 2014, 65, 489–507. [Google Scholar] [CrossRef]
- Pietrosemoli, S.; Green, J.T. Pasture Systems for Pigs; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2018; Volume 3, pp. 151–202. [Google Scholar]
- Pietrosemoli, S.; Tang, C. Animal Welfare and Production Challenges Associated with Pasture Pig Systems: A Review. Agriculture 2020, 10, 223. [Google Scholar] [CrossRef]
- Picardy, J.A.; Pietrosemoli, S.; Griffin, T.S.; Peters, C.J. Niche pork: Comparing pig performance and understanding producer benefits, barriers and labeling interest. Renew. Agric. Food Syst. 2017, 34, 7–19. [Google Scholar] [CrossRef]
- Quintern, M.; Sundrum, A. Ecological risks of outdoor pig fattening in organic farming and strategies for their reduction—Results of a field experiment in the centre of Germany. Agric. Ecosyst. Environ. 2006, 117, 238–250. [Google Scholar] [CrossRef]
- Eriksen, J.; Hermansen, J.E.; Strudsholm, K.; Kristensen, K. Potential loss of nutrients from different rearing strategies for fattening pigs on pasture. Soil Use Manag. 2006, 22, 256–266. [Google Scholar] [CrossRef] [Green Version]
- Rachuonyo, H.A.; McGlone, J.J. Impact of Outdoor Gestating Gilts on Soil Nutrients, Vegetative Cover, Rooting Damage, and Pig Performance. J. Sustain. Agric. 2007, 29, 69–87. [Google Scholar] [CrossRef]
- Eriksen, J. Implications of grazing by sows for nitrate leaching from grassland and the succeeding cereal crop. Grass Forage Sci. 2001, 56, 317–322. [Google Scholar] [CrossRef]
- Williams, J.; Chambers, B.; Hartley, A.; Ellis, S.; Guise, H. Nitrogen losses from outdoor pig farming systems. Soil Use Manag. 2000, 16, 237–243. [Google Scholar] [CrossRef]
- Eriksen, J.; Kristensen, K. Nutrient excretion by outdoor pigs: A case study of distribution, utilization and potential for environmental impact. Soil Use Manag. 2006, 17, 21–29. [Google Scholar] [CrossRef]
- Acciaioli, A.; Grifoni, F.; Fontana, G.; Esposito, S.; Franci, O. Evaluation of forest damage derived from the rearing of Apulo-Calabrese pig. Geography 2012, 5, 133–136. [Google Scholar]
- Monteverde, S.; Pino, A.D. Variabilidad espacial en las propiedades químicas del suelo en un sistema de producción con cerdos en pastoreo. Rev. Investig. Fac. Cienc. Agrarias UNR 2014, 23, 037–045. [Google Scholar]
- Pietrosemoli, S.; Green, J.J.T.; Villamide, M.J. Sows-Gilts Stocking Rates and Their Environmental Impact in Rotationally Managed Bermudagrass Paddocks. Animals 2020, 10, 1046. [Google Scholar] [CrossRef]
- Pietrosemoli, S.; Raczkowski, C.; Green, J.J.T.; Villamide, M.J. Effects of Growing-Finishing Pig Stocking Rates on Bermudagrass Ground Cover and Soil Properties. Animals 2020, 10, 1666. [Google Scholar] [CrossRef]
- Horta, C.; Batista, M.; Roque, N.; Almeida, J. Environmental impact of outdoor pig production: Soil P forms evolution spatial distribution and P losses in drainage waters. Revista Ciências Agrárias 2012, 35, 36–48. [Google Scholar]
- Bordeaux, C.; Grossman, J.; White, J.G.; Osmond, D.; Poore, M.; Pietrosemoli, S. Effects of rotational infrastructure within pasture-raised pig operations on ground cover, soil nutrient distribution, and bulk density. J. Soil Water Conserv. 2014, 69, 120–130. [Google Scholar] [CrossRef]
- Bondi, G.; Peruzzi, E.; Macci, C.; Masciandaro, G.; Pistoia, A. Changes in soil organic matter associated with pig rearing: Influence of stocking densities and land gradient on forest soils in central Italy. Agric. Ecosyst. Environ. 2015, 211, 32–42. [Google Scholar] [CrossRef]
- Jakobsen, M.; Hermansen, J.E.; Andersen, H.M.-L.; Jørgensen, U.; Labouriau, R.; Rasmussen, J.; Kongsted, A.G. Elimination behavior and soil mineral nitrogen load in an organic system with lactating sows—Comparing pasture-based systems with and without access to poplar (Populus sp.) trees. Agroecol. Sustain. Food Syst. 2018, 43, 639–661. [Google Scholar] [CrossRef]
- Sharifi, M.; Messiga, A.J.; Vakilian, K.A.; Stopford, E.; Hutchinson, T. Spatial distribution of soil phosphorous fractions following 1-year farrowing sows in an outdoor hog-rearing farm in Eastern Canada. Environ. Monit. Assess. 2020, 192, 322. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.H.; Glatz, P.C.; Ru, Y.J. Review of Production, Husbandry and Sustainability of Free-range Pig Production Systems. Asian Australas. J. Anim. Sci. 2004, 17, 1615–1634. [Google Scholar] [CrossRef]
- Rivero, J.; López, I.F.; Hodgkinson, S.; Rivero, M.J. Pasture consumption and grazing behaviour of European wild boar (Sus scrofa L.) under continuous and rotational grazing systems. Livest. Sci. 2013, 154, 175–183. [Google Scholar] [CrossRef]
- Allen, V.; Batello, C.; Berretta, E.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Aiken, G.E.; Wallau, M.O. Managing grazing in forage–livestock systems. In Management Strategies for Sustainable Cattle Production in Southern Pastures; Elsevier: Amsterdam, The Netherlands, 2020; pp. 77–100. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580 (accessed on 13 August 2020).
- North Carolina Climate Office. Weather and Climate Database. Available online: https://climate.ncsu.edu/cronos (accessed on 13 August 2020).
- National Research Council. Nutrient Requirements of Swine; The National Academies Press: Washington, DC, USA, 2012.
- NCDA. Soil Test Methodologies. Available online: http://www.ncagr.gov/agronomi/stmethod.htm (accessed on 13 August 2020).
- Drinkwater, L.E.; Cambardella, C.A.; Reeder, J.D.; Rice, C.W. Potentially Mineralizable Nitrogen as an Indicator of Biologically Active Soil Nitrogen. In Erosion and Productivity of Soils Containing Rock Fragments; Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 217–229. [Google Scholar]
- Coulloudon, B.; Eshelman, K.; Gianola, J.; Habich, N.; Hughes, L.; Johnson, C.; Pellant, M.; Podborny, P.; Rasmussen, A.; Robles, B.; et al. Sampling Vegetation Attributes: Interagency Technical Reference; National Applied Resource Sciences Center (U.S.) Bureau of Land Management: Denver, CO, USA, 1999.
- Murphy, S.R.; Lodge, G.M. Ground cover in temperate native perennial grass pastures. I. A comparison of four estimation methods. Rangel. J. 2002, 24, 288–300. [Google Scholar] [CrossRef]
- Fernandez, J.A. Deposition and Content of N, P and K in Slaughter Pigs; Technical Report DIAS; Danish Institute of Agricultural Sciences: Tjele, Denmark, December 1998; PDF; Available online: www.agrsci.dk/djfpublikation/djfpdf/djfhd7.pdf (accessed on 28 March 2020).
- Fernández, J.; Poulsen, H.; Boisen, S.; Rom, H. Nitrogen and phosphorus consumption, utilisation and losses in pig production: Denmark. Livest. Prod. Sci. 1999, 58, 225–242. [Google Scholar] [CrossRef]
- SAS 9.4 Product Documentation. Available online: https://support.sas.com/documentation/94/index.html (accessed on 13 August 2020).
- Northup, B.; Starks, P.J.; Turner, K. Stocking Methods and Soil Macronutrient Distributions in Southern Tallgrass Paddocks: Are There Linkages? Agronomy 2019, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Franzluebbers, A.J.; Stuedemann, J.A.; Schomberg, H.H. Spatial Distribution of Soil Carbon and Nitrogen Pools under Grazed Tall Fescue. Soil Sci. Soc. Am. J. 2000, 64, 635–639. [Google Scholar] [CrossRef] [Green Version]
- Sigua, G.C.; Myer, R.O.; Coleman, S.W.; Mackowiak, C.; Adjei, M.; Chase, C.C.; Albano, J. Regional Distribution of Soil Phosphorus Across Congregation-Grazing Zones of Forage-Based Pastures with Cow-Calf Operations in Florida. J. Environ. Prot. 2011, 2, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Pistoia, A.; Bondi, G.; Balestri, G.; Mani, D.; Masciandaro, G. Soil degradation by grazing pig in Mediterranean environment. In Proceedings of the 7th International Symposium on the Mediterranean Pig, Córdoba, Spain, 14–16 October 2010. [Google Scholar]
- Coonan, E.C.; Richardson, A.E.; Kirkby, C.A.; Kirkegaard, J.A.; Amidy, M.R.; Simpson, R.J.; Strong, C.L. Soil carbon sequestration to depth in response to long-term phosphorus fertilization of grazed pasture. Geoderma 2019, 338, 226–235. [Google Scholar] [CrossRef]
- Dubeux, J.; Sollenberger, L.; Vendramini, J.; Interrante, S.; Lira, M. Stocking Method, Animal Behavior, and Soil Nutrient Redistribution: How are They Linked? Crop. Sci. 2014, 54, 2341–2350. [Google Scholar] [CrossRef]
- Andersen, H.M.-L.; Kongsted, A.G.; Jakobsen, M. Pig elimination behavior—A review. Appl. Anim. Behav. Sci. 2020, 222, 104888. [Google Scholar] [CrossRef]
- Dubeux, J.C.; Sollenberger, L.E. Nutrient cycling in grazed pastures. In Management Strategies for Sustainable Cattle Production in Southern Pastures; Elsevier: Amsterdam, The Netherlands, 2020; pp. 59–75. [Google Scholar]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2013, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Whalen, J.K.; Thomas, B.W.; Sharifi, M. Novel Practices and Smart Technologies to Maximize the Nitrogen Fertilizer Value of Manure for Crop Production in Cold Humid Temperate Regions. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 153, pp. 1–85. [Google Scholar]
- Blumetto, O.; Sanz, S.C.; Barber, F.E.; Villagrá, A.; Torres, A.G. Caracterización productiva y ambiental de un sistema semi-extensivo de engorde de cerdos en condiciones de sequía en Uruguay. ITEA, información técnica económica agraria. ITEA Inf. Técnica Económica Agrar. 2012, 108, 256–274. [Google Scholar]
- Cougnon, M.; Baert, J.; Van Waes, C.; Reheul, D. Performance and quality of tall fescue (Festuca arundinacea Schreb.) and perennial ryegrass (Lolium perenne L.) and mixtures of both species grown with or without white clover (Trifolium repens L.) under cutting management. Grass Forage Sci. 2013, 69, 666–677. [Google Scholar] [CrossRef] [Green Version]
- Read, J.J.; Adeli, A.; Lang, D.J.; Oldham, J.L. Nutritive Value and Nutrient Uptake of Summer-Active and Summer-Dormant Tall Fescue under Different Broiler Litter Rates. Agron. J. 2017, 109, 473–482. [Google Scholar] [CrossRef]
- North Carolina Interagency Nutrient Management Committee. Realistic yields and nitrogen application factors for North Carolina crops. North Carolina State University, North Carolina Department of Agriculture and Consumer Services, North Carolina Department of Environment and Natural Resources, Natural Resources Conservation Service: Raleigh, NC, USA, 2014. Available online: https://realisticyields.ces.ncsu.edu/ (accessed on 11 July 2020).
- Renner, B. The Effect of Stocking Rate History on Soil Nutrient Levels and Forage Nutrient Uptake in Pasture Hog Production Systems. Master’s Thesis, Crop Science Department, North Carolina State University, Raleigh, NC, USA, 2011. Available online: http://www.lib.ncsu.edu/resolver/1840.16/7325 (accessed on 13 August 2020).
- NC-NRCS. Conservation Planning Guidelines for Outdoor Swine Operations. 2007. Available online: https://efotg.sc.egov.usda.gov/references/Delete/2008-7-12/OSOTECHNOTE.pdf (accessed on 25 January 2020).
- Souther, S.; Loeser, M.; Crews, T.E.; Sisk, T.D.; Sara, S.; Loeser, M.R.R. Complex response of vegetation to grazing suggests need for coordinated, landscape-level approaches to grazing management. Glob. Ecol. Conserv. 2019, 20, e00770. [Google Scholar] [CrossRef]
- Kongsted, A.; Jakobsen, M. Effect of genotype and level of supplementary concentrate on foraging activity and vegetation cover in an organic free-range pig system. Acta Agric. Scand. Sect. A Anim. Sci. 2015, 65, 139–147. [Google Scholar] [CrossRef]
- Hoveland, C.S.; McCann, M.A.; Hill, N.S. Rotational vs. Continuous Stocking of Beef Cows and Calves on Mixed Endophyte-Free Tall Fescue-Bermudagrass Pasture. J. Prod. Agric. 1997, 10, 245–250. [Google Scholar] [CrossRef]
- Michalk, D.L. Sustainability, Biodiversity and Environmental Issues: A Global Perspective for Livestock Production. 18. In Proceedings of the 23rd International Grassland Congress Proceedings, New Delhi, India, 20–24 November 2015. [Google Scholar]
- Wang, H.; Zhang, Y.; Chen, G.; Hettenhausen, C.; Liu, Z.; Tian, K.; Xiao, D. Domestic pig uprooting emerges as an undesirable disturbance on vegetation and soil properties in a plateau wetland ecosystem. Wetl. Ecol. Manag. 2017, 26, 509–523. [Google Scholar] [CrossRef]
- Sehested, J.; Søegaard, K.; Danielsen, V.; Roepstorff, A.; Monrad, J. Grazing with heifers and sows alone or mixed: Herbage quality, sward structure and animal weight gain. Livest. Prod. Sci. 2004, 88, 223–238. [Google Scholar] [CrossRef] [Green Version]
- Rivero, M.J.; Rodríguez-Estévez, V.; Pietrosemoli, S.; Carballo, C.; Cooke, A.S.; Kongsted, A. Forage Consumption and Its Effects on the Performance of Growing Swine-Discussed in Relation to European Wild Boar (Sus scrofa L.) in Semi-Extensive Systems: A Review. Animals 2019, 9, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velazco, O.R.B.; Sanz, S.C.; Barber, F.E.; García, A.V. Comparison of extensive and intensive pig production systems in Uruguay in terms of ethologic, physiologic and meat quality parameters. Rev. Bras. Zootec. 2013, 42, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, G.M.; Stern, S. Two strategies for meeting energy demands of growing pigs at pasture. Livest. Prod. Sci. 2003, 80, 167–174. [Google Scholar] [CrossRef]
- Nyachoti, C.M.; Zijlstra, R.T.; De Lange, C.F.M.; Patience, J.F. Voluntary feed intake in growing-finishing pigs: A review of the main determining factors and potential approaches for accurate predictions. Can. J. Anim. Sci. 2004, 84, 549–566. [Google Scholar] [CrossRef]
- Edwards, S.A. Intake of nutrients from pasture by pigs. In Proceedings of the Nutrition Society; CABI Publishing: Wallingford, UK, 2003; Volume 62, pp. 257–265. [Google Scholar]
- Kongsted, A.; Nørgaard, J.V.; Jensen, S.K.; Lauridsen, C.; Juul-Madsen, H.R.; Norup, L.; Engberg, R.; Horsted, K.; Hermansen, J. Influence of genotype and feeding strategy on pig performance, plasma concentrations of micro nutrients, immune responses and faecal microbiota composition of growing-finishing pigs in a forage-based system. Livest. Sci. 2015, 178, 263–271. [Google Scholar] [CrossRef]
- Leite, D.M.G.; Da Silva, M.A.; De Medeiros, R.B.; De Saibro, J.C.; Pavan, M.A.; Barrey, M.A.A. Efeito de diferentes sistemas de pastejo sobre o desempenho de suínos mantidos em pastagem de trevo-branco (Trifolium repens L.). Rev. Bras. Zootec. 2006, 35, 792–796. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, M.; Kongsted, A.G.; Hermansen, J.E. Foraging behaviour, nutrient intake from pasture and performance of free-range growing pigs in relation to feed CP level in two organic cropping systems. Animals 2015, 9, 2006–2016. [Google Scholar] [CrossRef] [Green Version]
- Carlson, D.; Lærke, H.N.; Poulsen, H.D.; Jørgensen, H. Roughages for Growing Pigs, with Emphasis on Chemical Composition, Ingestion and Faecal Digestibility. Acta Agric. Scand. Sect. A Anim. Sci. 1999, 49, 129–136. [Google Scholar] [CrossRef]
- Aquilani, C.; Sirtori, F.; Franci, O.; Acciaioli, A.; Bozzi, R.; Benvenuti, D.; Čandek-Potokar, M.; Pugliese, C. Potokar, Čandek- Effects of Different Protein Levels on the Nitrogen Balance, Performance and Slaughtering Traits of Cinta Senese Growing Pigs. Animals 2019, 9, 1021. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.C.; Evans, T.J.; Nicholson, S.S. Ergot and Fescue Toxicoses. In Veterinary Toxicology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 995–1001. [Google Scholar]
- Leuchtmann, A.; Bacon, C.W.; Schardl, C.L.; White, J.F.; Tadych, M. Nomenclatural realignment ofNeotyphodiumspecies with genusEpichloë. Mycologia 2014, 106, 202–215. [Google Scholar] [CrossRef]
- Daniel, A.; McIntosh, B.; Plunk, J.; Webb, M.; McIntosh, D.; Parks, A. 7 Effects of rotational grazing on water-soluble carbohydrate and energy content of horse pastures. J. Equine Veter. Sci. 2015, 35, 385–386. [Google Scholar] [CrossRef]
- Rutherford, K.M.; Haskell, M.J.; Glasbey, C.; Lawrence, A.B. The responses of growing pigs to a chronic-intermittent stress treatment. Physiol. Behav. 2006, 89, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Andresen, N.; Redbo, I. Foraging behaviour of growing pigs on grassland in relation to stocking rate and feed crude protein level. Appl. Anim. Behav. Sci. 1999, 62, 183–197. [Google Scholar] [CrossRef]
- Rodríguez-Estévez, V.; Sánchez-Rodríguez, M.; García, A.R.; Gómez-Castro, A.G. Average daily weight gain of Iberian fattening pigs when grazing natural resources. Livest. Sci. 2011, 137, 292–295. [Google Scholar] [CrossRef]
- Stern, S.; Andresen, N. Performance, site preferences, foraging and excretory behaviour in relation to feed allowance of growing pigs on pasture. Livest. Prod. Sci. 2003, 79, 257–265. [Google Scholar] [CrossRef]
Grazing Period | Stocking Method | Area in Use (%) | Stocking Density (m2 pig−1) |
---|---|---|---|
Weeks 1 to 8 | Continuous | 100 | 211 |
Rotational | 22.2 1 | 47 | |
Strip | 12.5 | 26 | |
Weeks 9 to 12 | Continuous | 100 | 211 |
Rotational | 33.3 2 | 70 | |
Strip | 25 3 | 53 |
HM | BD | CEC | BS | AC | pH | |
---|---|---|---|---|---|---|
(%) | (g cc−1) | (Meq 100 cc−1) | (%) | (Meq 100 cc−1) | ||
Initial value | ||||||
0 to 15 cm | 0.36 | 1.04 | 6.33 | 79.04 | 1.28 | 5.61 |
15 to 30 cm | 0.28 | 1.1 | 5.13 | 79.49 | 1.0 | 5.6 |
SE | 0.01 | 0.01 | 0.12 | 0.81 | 0.04 | 0.05 |
Stocking method SM | ||||||
Continuous | 0.33 | 1.12 a | 5.89 | 79.54 | 1.13 | 5.56 |
Rotational | 0.32 | 1.09 b | 5.77 | 80.9 | 1.13 | 5.61 |
Strip Grazing | 0.32 | 1.08 b | 6.05 | 78.42 | 1.29 | 5.64 |
SE | 0.02 | 0.02 | 0.19 | 2.59 | 0.18 | 0.07 |
Soil depth SD | ||||||
0 to 15 cm | 0.38 a | 1.08 b | 5.93 | 79.69 | 1.25 a | 5.57 |
15 to 30 cm | 0.26 b | 1.11 a | 5.87 | 79.55 | 1.12 b | 5.64 |
SE | 0.02 | 0.01 | 0.17 | 2.2 | 0.18 | 0.04 |
Stocking method SM | ||||||
p | 0.6877 | 0.0400 | 0.2415 | 0.6152 | 0.2703 | 0.6879 |
Soil depth SD | ||||||
p | 0.0046 | <0.0001 | 0.5411 | 0.7865 | 0.0002 | 0.1319 |
SM × SD | ||||||
p | 0.2454 | <0.0001 | 0.6382 | 0.7641 | 0.6223 | 0.6380 |
NO3 2 | P | K | Ca | Mg | S | Mn | Zn | Cu | Na | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|
(mg kg−1) | |||||||||||
Initial value 1 | |||||||||||
0 to 15 cm | 3.44 | 51.8 | 55.2 | 698.1 | 172.1 | 13.4 | 62 | 5.3 | 2.5 | 18.5 | 606 |
15 to 30 cm | 2.33 | 22.2 | 26.8 | 602.6 | 128.2 | 10.2 | 47.7 | 2.5 | 1.5 | 16 | 654.6 |
SE | 0.8 | 2 | 1.5 | 17.9 | 5.8 | 0.4 | 1.9 | 0.1 | 0.1 | 0.6 | 11.6 |
Stocking method SM | |||||||||||
Continuous | 21.8 a | 49.5 a | 92.4 a | 643.4 | 152.3 | 13.7 | 45.9 a | 4.3 a | 1.9 a | 22.6 | 693.9 |
Rotational | 16.9 b | 41.0 b | 72.4 b | 650.3 | 155.3 | 13.6 | 39.3 b | 3.6 b | 1.7 b | 25.2 | 660.9 |
Strip Grazing | 18.1 a,b | 40.1 b | 75.9 b | 655.1 | 157.1 | 13.1 | 45.8 a,b | 3.8 b | 1.8 a,b | 25.2 | 670.7 |
SE | 1.5 | 2.2 | 4.6 | 20.8 | 5.6 | 0.8 | 2.7 | 0.3 | 0.1 | 2.3 | 33.6 |
Soil depth SD | |||||||||||
0 to 15 cm | 25.2 a | 50.9 a | 109.7 a | 654.2 | 150.3 | 15.0 a | 45.3 a | 4.7 a | 2.1 a | 26.1 a | 657.2 b |
15 to 30 cm | 12.8 b | 36.2 b | 50.8 b | 645.1 | 159.6 | 11.9 b | 42.1 b | 3.1 b | 1.5 b | 22.5 b | 692.9 a |
SE | 1 | 2.1 | 4.6 | 14.1 | 6.1 | 0.8 | 1.8 | 0.3 | 0.1 | 1.4 | 27.4 |
Stocking method SM | |||||||||||
p | 0.0627 | 0.0052 | 0.0037 | 0.9195 | 0.6309 | 0.6236 | 0.0701 | 0.0016 | 0.0077 | 0.6879 | 0.6468 |
Soil depth SD | |||||||||||
p | <0.0001 | <0.0001 | <0.0001 | 0.4807 | 0.2700 | <0.0001 | <0.0001 | <0.0001 | 0.0095 | 0.0003 | 0.0007 |
SM × SD | |||||||||||
p | 0.8020 | 0.4003 | 0.8689 | 0.3080 | 0.7000 | 0.9907 | 0.5556 | 0.1329 | 0.1168 | 0.2527 | 0.9256 |
N kg ha−1 | P kg ha−1 | K kg ha−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Continuous | Rotational | Strip Grazing | Continuous | Rotational | Strip Grazing | Continuous | Rotational | Strip Grazing | ||
Input | December to March | 200 | 196 | 188 | 32 | 31 | 30 | 49 | 49 | 47 |
May to August | 181 | 184 | 163 | 44 | 44 | 39 | 50 | 51 | 45 | |
TOTAL | 381 | 380 | 351 | 76 | 76 | 69 | 99 | 100 | 92 | |
Output | December to March | 79 | 89 | 81 | 15 | 17 | 15 | 6 | 7 | 6 |
May to August | 85 | 88 | 80 | 16 | 17 | 15 | 6 | 7 | 6 | |
TOTAL | 165 | 177 | 161 | 31 | 34 | 31 | 12 | 13 | 12 | |
Excreted | December to March | 121 | 107 | 107 | 17 | 14 | 14 | 43 | 43 | 41 |
May to August | 96 | 95 | 83 | 28 | 28 | 24 | 43 | 44 | 39 | |
TOTAL | 216 | 202 | 190 | 45 | 42 | 39 | 87 | 87 | 80 |
Live Weight | Weight Gain | Feed | ||||
---|---|---|---|---|---|---|
Initial | Final | Total | Daily | Disappearance | Gain to feed | |
(kg pig−1) | (kg pig−1) | (kg pig−1) | (kg pig−1 d−1) | (kg pig−1 d−1) | (kg kg−1) | |
Grazing period GP | ||||||
December to March | 17.5 b | 78.66 b | 60.9 | 0.73 | 2.01 a | 0.36 b |
May to August | 29.14 a | 90.98 a | 62.09 | 0.74 | 1.86 b | 0.40 a |
SE | 0.59 | 1.37 | 1.66 | 0.02 | 0.03 | 0.01 |
Stocking method SM | ||||||
Continuous | 23.18 | 83.56 a,b | 60.37 b | 0.72 b | 1.99 a | 0.37 b |
Rotational | 23.30 | 88.29 a | 64.99 a | 0.77 a | 1.98 a | 0.40 a |
Strip Grazing | 23.47 | 82.60 b | 59.13 b | 0.70 b | 1.83 b | 0.39 a,b |
SE | 0.72 | 1.68 | 1.54 | 0.02 | 0.04 | 0.01 |
Grazing period GP | ||||||
p | <0.0001 | <0.0001 | 0.6717 | 0.6717 | 0.0100 | 0.0040 |
Stocking method SM | ||||||
p | 0.9585 | 0.0414 | 0.0208 | 0.0208 | 0.0404 | 0.0714 |
GP × SM | ||||||
p | 0.9975 | 0.4937 | 0.3707 | 0.3707 | 0.5723 | 0.3966 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrosemoli, S.; Green, J.T., Jr.; Villamide, M.J. A Comparison of Stocking Methods for Pasture-Based Growing-Finishing Pig Production Systems. Animals 2020, 10, 1885. https://doi.org/10.3390/ani10101885
Pietrosemoli S, Green JT Jr., Villamide MJ. A Comparison of Stocking Methods for Pasture-Based Growing-Finishing Pig Production Systems. Animals. 2020; 10(10):1885. https://doi.org/10.3390/ani10101885
Chicago/Turabian StylePietrosemoli, Silvana, James T. Green, Jr., and Maria Jesús Villamide. 2020. "A Comparison of Stocking Methods for Pasture-Based Growing-Finishing Pig Production Systems" Animals 10, no. 10: 1885. https://doi.org/10.3390/ani10101885
APA StylePietrosemoli, S., Green, J. T., Jr., & Villamide, M. J. (2020). A Comparison of Stocking Methods for Pasture-Based Growing-Finishing Pig Production Systems. Animals, 10(10), 1885. https://doi.org/10.3390/ani10101885