Bioaccumulation of Mineral Elements in Different Biological Substrates of Athletic Horse from Messina, Italy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.1.1. Sample Collection
2.1.2. Samples Analysis
2.1.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Al-Fartusie, F.S.; Mohssan, S.N. Essential trace elements and their vital roles in human body. Indian J. Adv. Chem. Sci. 2017, 5, 127–136. [Google Scholar]
- Di Bella, G.; Potortì, A.G.; Lo Turco, V.; Bua, D.; Licata, P.; Cicero, N.; Dugo, G. Trace elements in Thunnus thynnus from Mediterranean Sea and benefit–risk assessment for consumers. Food Addit. Contam. Part B 2015, 8, 175–181. [Google Scholar] [CrossRef]
- Licata, P.; Trombetta, D.; Cristani, M.; Naccari, C.; Martino, D.; Calo, M.; Naccari, F. Heavy metals in liver and muscle of bluefin tunA (Thunnus thynnus) caught in the Straits of Messina (Sicily, Italy). Environ. Monit. Assess. 2005, 107, 239–248. [Google Scholar] [CrossRef]
- Sabath, E.; Robles-Osorio, M.L. Renal health and the environment: Heavy metal nephrotoxicity. Nefrologia 2012, 32, 279–286. [Google Scholar] [CrossRef]
- Cebi, A.; Kaya, Y.; Gungor, H.; Demir, H.; Yoruk, I.H.; Soylemez, N.; Gunes, Y.; Tuncer, M. Trace elements, heavy metals and vitamin levels in patients with coronary artery disease. Int. J. Med. Sci. 2011, 8, 456–460. [Google Scholar] [CrossRef] [Green Version]
- Raab, A.; Hansen, H.R.; Zhuang, L.; Feldmann, J. Arsenic accumulation and speciation analysis in wool from sheep exposed to arsenosugars. Talanta 2002, 58, 67–76. [Google Scholar] [CrossRef]
- Schultze, B.; Lind, P.M.; Larsson, A.; Lind, L. Whole blood and serum concentrations of metals in a Swedish population-based sample. Scand. J. Clin. Lab. Investig. 2014, 74, 143–148. [Google Scholar] [CrossRef]
- Ward, N.I.; Savage, J.M. Elemental status of grazing animals located adjacent to the London Orbital (M25) motorway. Sci. Total Environ. 1994, 146–147, 185–189. [Google Scholar] [CrossRef]
- Patra, R.C.; Swarup, D.; Naresh, R.; Kumar, P.; Nandi, D.; Shekhar, P.; Roy, S.; Ali, S.L. Tail hair as an indicator of environmental exposure of cows to lead and cadmium in different industrial areas. Ecotoxicol. Environ. Saf. 2007, 66, 127–131. [Google Scholar] [CrossRef]
- Souza, M.V.d.; Fontes, M.P.F.; Fernandes, R.B.A. Heavy metals in equine biological components. Rev. Bras. Zootec. 2014, 43, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Fazio, F.; Cicero, N.; Piccione, G.; Giannetto, C.; Licata, P. Blood Response to Mercury Exposure in Athletic Horse From Messina, Italy. J. Equine Vet. Sci. 2020, 84, 102837. [Google Scholar] [CrossRef] [PubMed]
- Soetan, K.; Olaiya, C.; Oyewole, O. The importance of mineral elements for humans, domestic animals and plants-A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Rudy, M.; Znamirowska, A.; Zin, M. Level of accumulation of selected heavy metals in horse tissue as a function of age. Med. Weter. 2007, 63, 1303–1306. [Google Scholar]
- Keil, R.; Salemme, K.; Forrest, B.; Neibauer, J.; Logsdon, M. Differential presence of anthropogenic compounds dissolved in the marine waters of Puget Sound, WA and Barkley Sound, BC. Mar. Pollut. Bull. 2011, 62, 2404–2411. [Google Scholar] [CrossRef] [PubMed]
- Seawright, A.; Hrdlicka, J.; Ng, J. Heavy metal intoxications in horses. In Veterinary Pharmacology and Toxicology; Springer: Berlin/Heidelberg, Germany, 1983; pp. 697–714. [Google Scholar]
- Casteel, S.W. Metal toxicosis in horses. Vet. Clin. N. Am. Equine Pract. 2001, 17, 517–527. [Google Scholar] [CrossRef]
- Etcheverry, S.B.; Crans, D.C.; Keramidas, A.D.; Cortizo, A.M. Insulin-mimetic action of vanadium compounds on osteoblast-like cells in culture. Arch. Biochem. Biophys. 1997, 338, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Duffus, J.H. Carcinogenicity classification of vanadium pentoxide and inorganic vanadium compounds, the NTP study of carcinogenicity of inhaled vanadium pentoxide, and vanadium chemistry. Regul. Toxicol. Pharmacol. 2007, 47, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Nazifi, M.M.; Beschorner, K.E.; Hur, P. Association between Slip Severity and Muscle Synergies of Slipping. Front. Hum. Neurosci. 2017, 11, 536. [Google Scholar] [CrossRef] [Green Version]
- Trevino, S.; Diaz, A.; Sanchez-Lara, E.; Sanchez-Gaytan, B.L.; Perez-Aguilar, J.M.; Gonzalez-Vergara, E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol. Trace Elem. Res. 2019, 188, 68–98. [Google Scholar] [CrossRef] [Green Version]
- Alqhazo, M.; Rashaid, A.B. The concentrations of bioelements in the hair samples of Jordanian children who stutter. Int. J. Pediatr. Otorhinolaryngol. 2018, 112, 158–162. [Google Scholar] [CrossRef]
- Borovicka, J.; Randa, Z.; Jelinek, E. Antimony content of macrofungi from clean and polluted areas. Chemosphere 2006, 64, 1837–1844. [Google Scholar] [CrossRef]
- Aloupi, M.; Koutrotsios, G.; Koulousaris, M.; Kalogeropoulos, N. Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotoxicol. Environ. Saf. 2012, 78, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.P. Lead poisoning combined with cadmium in sheep and horses in the vicinity of non-ferrous metal smelters. Sci. Total Environ. 2003, 309, 117–126. [Google Scholar] [CrossRef]
- Wichert, B.; Frank, T.; Kienzle, E. Zinc, copper and selenium intake and status of horses in Bavaria. J. Nutr. 2002, 132, 1776S–1777S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knych, H.K.; Arthur, R.M.; Mitchell, M.M.; Holser, I.; Poppenga, R.; Smith, L.L.; Helm, M.N.; Sams, R.A.; Gaskill, C.L. Pharmacokinetics and selected pharmacodynamics of cobalt following a single intravenous administration to horses. Drug Test. Anal. 2015, 7, 619–625. [Google Scholar] [CrossRef]
- Ho, E.N.; Chan, G.H.; Wan, T.S.; Curl, P.; Riggs, C.M.; Hurley, M.J.; Sykes, D. Controlling the misuse of cobalt in horses. Drug Test. Anal. 2015, 7, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Dwivedi, S.K. Lead in blood of urban Indian horses. Vet. Hum. Toxicol. 2004, 46, 194–195. [Google Scholar] [PubMed]
- Hutson, J.C. Effects of bismuth citrate on the viability and function of Leydig cells and testicular macrophages. J. Appl. Toxicol. 2005, 25, 234–238. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Heavy Metal Concentration in Feed and Water | |||
---|---|---|---|
Hay | Concentrate | Water | |
Vanadium | 0.053 ± 0.005 | 0.0022 ± 0.0003 | 0.008 ± 0.001 |
Chromium | 0.043 ± 0.006 | 0.010 ± 0.001 | 0.008 ± 0.001 |
Cobalt | 0.04 ± 0.04 | 0.01 ± 0.00 | 0.008 ± 0.001 |
Copper | 0.28 ± 0.02 | 0.19 ± 0.01 | 0.008 ± 0.001 |
Zinc | 1.02 ± 0.10 | 0.73 ± 0.01 | 0.003 ± 0.0002 |
Cadmium | 0.004 ± 0.005 | 0.001 ± 0.0005 | 0.007 ± 0.001 |
Lead | 0.0233 ± 0.01 | 0.0041 ± 0.0003 | 0.008 ± 0.001 |
Bismuth | 0.004 ± 0.001 | 0.004 ± 0.0003 | 0.009 ± 0.001 |
Heavy Metal Concentration in Biological Substrate (mg/kg of Dry Weight for Mane and Tail) | ||||
---|---|---|---|---|
Whole Blood | Serum | Mane Hair | Tail Hair | |
Vanadium | 0.05 ± 0.01 a | 0.008 ± 0.001 b | 0.012 ± 0.01 b | 0.050 ± 0.013 a |
Chromium | 0.008 ± 0.001 a | 0.008 ± 0.001 a | 0.017 ± 0.01 a | 0.060 ± 0.02 b |
Cobalt | 0.005 ± 0.0029 a | 0.008 ± 0.001 b | 0.001 ± 0.0005 c | 0.010 ± 0.004 d |
Copper | 1.47 ± 0.51 a | 0.68 ± 0.22 b | 0.11 ± 0.03 c | 0.15 ± 0.08 cd |
Zinc | 4.74 ± 0.79 a | 2.16 ± 0.64 b | 1.86 ± 0.34 b | 2.07 ± 0.18 b |
Cadmium | 0.0031 ± 0.0020 a | 0.008 ± 0.001 b | 0.002 ± 0.001 a | 0.010 ± 0.003 b |
Lead | 0.10 ± 0.07 a | 0.11 ± 0.07 a | 0.02 ± 0.01 b | 0.04 ± 0.02 b |
Bismuth | 0.008 ± 0.001 a | 0.008 ± 0.001 a | 0.005 ± 0.001 b | 0.005 ± 0.001 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazio, F.; Gugliandolo, E.; Nava, V.; Piccione, G.; Giannetto, C.; Licata, P. Bioaccumulation of Mineral Elements in Different Biological Substrates of Athletic Horse from Messina, Italy. Animals 2020, 10, 1877. https://doi.org/10.3390/ani10101877
Fazio F, Gugliandolo E, Nava V, Piccione G, Giannetto C, Licata P. Bioaccumulation of Mineral Elements in Different Biological Substrates of Athletic Horse from Messina, Italy. Animals. 2020; 10(10):1877. https://doi.org/10.3390/ani10101877
Chicago/Turabian StyleFazio, Francesco, Enrico Gugliandolo, Vincenzo Nava, Giuseppe Piccione, Claudia Giannetto, and Patrizia Licata. 2020. "Bioaccumulation of Mineral Elements in Different Biological Substrates of Athletic Horse from Messina, Italy" Animals 10, no. 10: 1877. https://doi.org/10.3390/ani10101877
APA StyleFazio, F., Gugliandolo, E., Nava, V., Piccione, G., Giannetto, C., & Licata, P. (2020). Bioaccumulation of Mineral Elements in Different Biological Substrates of Athletic Horse from Messina, Italy. Animals, 10(10), 1877. https://doi.org/10.3390/ani10101877