The Impact of Ammoniation Treatment on the Chemical Composition and In Vitro Digestibility of Rice Straw in Chinese Holsteins
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Silage Preparation
2.2. Chemical Analysis
2.3. Rumen Fluids Collection
2.4. In Vitro Rumen Incubation
2.5. Computation
2.6. Statistical Analysis
3. Results
3.1. The Effect of Ammoniation Treatment on the Chemical Composition of Rice Straw
3.2. Effect of Ammoniation Treatment on In Vitro Digestibility of Rice Straw
3.3. Effect of Ammoniation Treatment on Gas Production of Rice Straw In Vitro
3.4. Effect of Ammoniation on In Vitro Rumen Fermentation Parameters of Rice Straw
3.5. Correlations among the Chemical Composition, Gas Production, Rumen Fermentation Parameters and In Vitro Degradability of Rice Straw
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Department of Energy Statistics, National Bureau of Statistics. China Energy Statistics Yearbook; China Statistics Press: Beijing, China, 2013. [Google Scholar]
- Wang, B.; Shen, X.; Chen, S.; Bai, Y.; Yang, G.; Zhu, J.; Shu, J.; Xue, Z. Distribution characteristics, resource utilization and popularizing demonstration of crop straw in southwest China: A comprehensive evaluation. Ecol. Indic. 2018, 93, 998–1004. [Google Scholar] [CrossRef]
- Nie, S.A.; Lei, X.; Zhao, L.; Brookes, P.C.; Fei, W.; Chen, C.; Yang, W.; Xing, S. Fungal communities and functions response to long-term fertilization in paddy soils. Agric. Ecosyst. Environ. Appl. Soil Ecol. 2018, 130, 251–258. [Google Scholar] [CrossRef]
- Wanapat, M.; Kang, S.; Khejornsa, P. Improvement of whole crop rice silage nutritive value and rumen degradability by molasses and urea supplementation. Trop. Anim. Health Prod. 2013, 45, 1777–1781. [Google Scholar] [CrossRef] [PubMed]
- Martawidjaja, M. Utilization of Rice Straw as Feed Substitution for Small Ruminants. Indones. Bull. Anim. Vet. Sci. 2003, 13, 3–6. [Google Scholar]
- Wang, Q.; Wang, Z.; Shen, F.; Hu, J.; Sun, F.; Lin, L.; Yang, G.; Zhang, Y.; Deng, S. Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: Evaluating the pretreatment flexibility on feedstocks and particle sizes. Bioresour Technol. 2014, 166, 420–428. [Google Scholar] [CrossRef]
- Ma, S.; Yuan, H.; Zhu, B.; Liu, Y.; Zou, D.; Dang, F.; Pang, Y.; Li, X. Effects of ammoniation pretreatment on anaerobic digestion performance of rice straw. Nongye Gongcheng Xuebao Trans. Chin. Soc. Agric. Eng. 2011, 27, 294–299. [Google Scholar]
- Abdel, N.M.A. Performance of sheep offered ammonia, or urea calcium hydroxide treated rice straw as an only feed. Anim. Sci. J. 2015, 75, 411–415. [Google Scholar]
- Selim, A.S.M.; Pan, J.; Takano, T.; Suzuki, T.; Koike, S.; Kobayashi, Y.; Tanaka, K. Effect of ammonia treatment on physical strength of rice straw, distribution of straw particles and particle-associated bacteria in sheep rumen. Anim. Feed. Sci. Technol. 2004, 115, 128. [Google Scholar] [CrossRef]
- Sarwar, M.; Khan, M.A.; Nisa, M.U. Nitrogen Retention and Chemical Composition of Urea Treated Wheat Straw Ensiled with Organic Acids or Fermentable Carbohydrates. Asian-Australas. J. Anim. 2003, 16, 1583–1592. [Google Scholar] [CrossRef]
- Sarwar, M.; Khan, M.A.; Nisa, M.; Touqir, N.A. Influence of Berseem and Lucerne Silages on Feed Intake, Nutrient Digestibility and Milk Yield in Lactating Nili Buffaloes. Asian-Australas. J. Anim. 2005, 18, 475–478. [Google Scholar] [CrossRef]
- Recavarren, M.I.; Milano, G.D. The rate and pattern of urea infusion into the rumen of wethers alters nitrogen balance and plasma ammonia. Anim. Physiol. Anim. Nutr. 2014, 98, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Rahal, A.; Singh, A.; Singh, M. Effect of urea treatment and diet composition on, and prediction of nutritive value of rice straw of different cultivars. Anim. Feed Sci. Technol. 1997, 68, 182. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Yang, J.; Zhao, H.; Pan, C.; Ding, X.; Zhang, Y. Effects of applying lactic acid bacteria to the fermentation on a mixture of corn steep liquor and air-dried rice straw. Anim. Nutr. 2016, 2, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Qamar, M.S.; Unnisa, M.; Sarwar, M.; Urrahman, Z. Influence of varying levels of corn steep liquor on nutrients intake, digestibility and growth response in growing buffalo calves. J. Anim. Poult. Sci. 2015, 4, 39–48. [Google Scholar]
- Nisa, M.U.; Khan, M.A.; Sarwar, M.; Lee, W.S.; Kim, H.S. Influence of Corn Steep Liquor on Feeding Value of Urea Treated Wheat Straw in Buffaloes Fed at Restricted Diets. Australas. J. Anim. 2006, 19, 1610–1616. [Google Scholar] [CrossRef]
- Murphy, J.J. The effects of increasing the proportion of molasses in the diet of milking dairy cows on milk production and composition. Anim. Feed Sci. Technol. 1999, 78, 198. [Google Scholar] [CrossRef]
- Ghazali, H.; Mohtar, W.Y.W.; Zahari, M.W. Effects of inoculating Lactobacillus plantarum, molasses and urea on the fermentation of whole crop rice silage. Malays. J. Pathol. 2013, 16, 75–82. [Google Scholar]
- AOAC. Official Methods of Analysis; AOAC: Rockville, MD, USA, 1984; pp. 152–169. [Google Scholar]
- Van Soest, J.P. Use of detergents in the analysis of fibrous feeds. 2. A rapid method for the determination of fiber and lignin. J. Anal. Toxicil. 1963, 49, 546–551. [Google Scholar]
- Cao, B.B.; Wang, R.; Bo, Y.K.; Bai, S.; Yang, H.J. In situ rumen digestibility of ester-linked ferulic and p-coumaric acids in crop stover or straws in comparison with alfalfa and Chinese wild ryegrass hays. Anim. Feed Sci. Technol. 2016, 212, 27–34. [Google Scholar] [CrossRef]
- Menke, K. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production usin rumen fluid. Anim. Res. Dev. 1988, 7, 55. [Google Scholar]
- Zhang, D.F.; Yang, H.J. In vitro ruminal methanogenesis of a hay-rich substrate in response to different combination supplements of nitrocompounds; pyromellitic diimide and 2-bromoethanesulphonate. Anim. Feed Sci. Technol. 2011, 163, 32. [Google Scholar] [CrossRef]
- Groot, J.C.; Cone, W.J.; Williams, A.B.; Debersaques, M.F.; Lantinga, A.E. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Xin-yu, J.; Hong-li, W.; Ji-jun, Z. The Exploitation and Utilization of Crop Straw Resource. J. Agric. Mech. Res. 2007, 7, 217–219. [Google Scholar]
- Ribeiro, G.O.; Gruninger, R.J.; Jones, D.R. Effect of ammonia fibre expansion (AFEX) treatment of rice straw on in situ digestibility, microbial colonization, acetamide levels and growth performance of lambs. Anim. Feed Sci. Technol. 2020, 261, 114–411. [Google Scholar]
- Ch, M.; Liamadis, D. Effect of Protein Level, Main Protein and non Forage Fiber Source on Digestibility, N Balance and Energy Value of Sheep Rations. J. Anim. Vet. Adv. 2007, 6, 68–75. [Google Scholar]
- Wanapat, M.; Polyorach, S.; Boonnop, K. Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livest. Sci. 2009, 125, 238–243. [Google Scholar] [CrossRef]
- Eisenhuber, K.; Krennhuber, K.; Steinmuller, V. Comparison of Different Pre-treatment Methods for Separating Hemicellulose from Straw During Lignocellulose Bioethanol Production. Phys. Procedia 2013, 40, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Javad, G.; Farhad, V.M.; Xue-Zhi, D.; Han, J.L.; Salekdeh, G.H. Temporal changes in microbial communities attached to forages with different lignocellulosic compositions in the cattle rumen. FEMS Microbiol. Ecol. 2020, 96, 6. [Google Scholar]
- Silva, A.T.; Ørskov, E.R. Fibre degradation in the rumens of animals receiving hay, untreated or ammonia-treated straw. Anim. Feed Sci. Technol. 1988, 19, 277–287. [Google Scholar] [CrossRef]
- Azizi-Shotorkhoft, A.; Sharifi, A.; Mirmohammadi, D.; Baluch-Gharaei, H.; Rezaei, J. Effects of feeding different levels of corn steep liquor on the performance of fattening lambs. J. Anim. Physiol. Anim. Nutr. 2016, 100, 109–117. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, N.; Shen, W.; Zhao, S.; Wang, J. Synchrony Degree of Dietary Energy and Nitrogen Release Influences Microbial Community, Fermentation, and Protein Synthesis in a Rumen Simulation System. Microorganisms 2020, 8, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanjula, P.; Wanapat, M.; Wachirapakorn, C.; Rowlinson, P. Effffect of Synchronizing Starch Sources and Protein (NPN) in the Rumen on Feed Intake, Rumen Microbial Fermentation, Nutrient Utilization and Performance of Lactating Dairy Cows. J. Anim. Sci. 2004, 17, 1400–1410. [Google Scholar]
- Al-Masri, R.M. An In vitro Evaluation of Some Unconventional Ruminant Feeds in Terms of the Organic Matter Digestibility, Energy and Microbial Biomass. Trop. Anim. Health Prod. 2003, 35, 155–167. [Google Scholar] [CrossRef] [PubMed]
- She, D.; Nie, X.N.; Xu, F.; Geng, Z.C.; Baird, M.S. Physico-chemical characterization of different alcoholsoluble lignins from rice straw. Cellul. Chem. Technol. 2012, 46, 207–219. [Google Scholar]
- Senthilkumar, S.; Valli, C.; Balakrishnan, V. in vitroruminal gas production of enzyme treated versus urea treated paddy straw. Indian Vet. J. 2010, 87, 584–586. [Google Scholar]
- Depeters, E.J.; Bath, D.L. Canola Meal Versus Cottonseed Meal as the Protein Supplement in Dairy Diets. J. Dairy Sci. 1986, 69, 148–154. [Google Scholar] [CrossRef]
- Al-Masri, M.R. In vitro rumen fermentation kinetics and nutritional evaluation of Kochia indica as affected by harvest time and cutting regimen. Anim. Feed Sci. Technol. 2010, 157, 55–63. [Google Scholar] [CrossRef]
- Atef, M.S.; Gibriel, O.R.; Haley, S.; Daryoush, A.; Tassilo, B.; Martin, H.; Wenzhu, Z.Y.; Laize, V.S.; Tim, A.M. Effect of exogenous fibrolytic enzymes and ammonia fiber expansion on the fermentation of wheat straw in an artificial rumen system (RUSITEC)1. J. Anim. Sci. 2019, 97, 3535–3549. [Google Scholar]
- Kumar, A.K.; Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess. 2017, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Datt, C.; Singh, G.P. In Vitro Digestibility and Gas Production as Affected by Supplementation of Protein to Urea-Treated Wheat Straw. Indian. J. Anim. Res. 1995, 12, 151–156. [Google Scholar]
- Man, N.V.; Wiktorsson, H. The Effect of Replacing Grass with Urea Treated Fresh Rice Straw in Dairy Cow Diet. Asian-australas. J. Anim. Sci. 2001, 14, 1090–1097. [Google Scholar]
- Nguyen, V.T.; Wanapat, M.; Khejornsart, P. Nutrient digestibility and ruminal fermentation characteristic in swamp buffaloes fed on chemically treated rice straw and urea. Trop. Anim. Health Prod. 2012, 44, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Polyorach, S.; Wanapat, M. Improving the quality of rice straw by urea and calcium hydroxide on rumen ecology, microbial protein synthesis in beef cattle. J. Anim. Physiol. Anim. Nutr. 2015, 99, 449–456. [Google Scholar] [CrossRef] [PubMed]
Item | Rice Straw | Corn Steep Liquor |
---|---|---|
DM (%) | 92.3 | 41.5 |
EE (%) | 1.5 | - |
CP (%) | 4.9 | 43.0 |
NDF (%) | 70.6 | - |
ADF (%) | 41.2 | - |
Ash (%) | 16.9 | 17.0 |
Item | Content | Nutrient Levels 4 | Content |
---|---|---|---|
Oat hay | 5.6 | NEL (MJ/Kg) | 6.50 |
Alfalfa hay | 11.5 | CP | 18.01 |
Alfalfa silage | 8.3 | EE | 2.96 |
Corn silage | 24.5 | NDF | 32.33 |
Steam-flaked corn | 13.7 | ADF | 21.80 |
Corn | 5.0 | Ca | 0.50 |
Soybean meal | 8.4 | P | 0.35 |
Soybean hull | 5.2 | ||
Corn DDGS | 4.4 | ||
Sprayed corn skin | 3.3 | ||
Cottonseed meal | 3.3 | ||
Molasses | 2.9 | ||
Berg + Schmidt 1 | 0.5 | ||
XP XPC | 0.3 | ||
Premix 2 | 2.4 | ||
NaHPO 3 | 0.4 | ||
OPTIGEN 3 | 0.3 |
Item | DM | CP | Ash | NDF | ADF | ADL |
---|---|---|---|---|---|---|
RS | 95.96 ± 0.90 | 5.79 c ± 0.15 | 13.91 b ± 0.08 | 65.41 a ± 0.78 | 54.64 a ± 1.05 | 1.30 ab ± 0.07 |
5U | 95.87 ± 0.01 | 9.27 b ± 0.06 | 12.94 e ± 0.04 | 65.30 a ± 0.82 | 53.19 b ± 0.13 | 1.35 a ± 0.08 |
9C5U | 95.69 ± 0.06 | 11.38 a ± 0.57 | 13.32 c ± 0.02 | 62.02 c ± 0.01 | 47.84 d ± 0.16 | 1.22 b ± 0.00 |
9C2.5U | 95.86 ± 0.06 | 11.02 a ± 0.09 | 14.20 a ± 0.07 | 64.07 b ± 0.02 | 48.90 cd ± 0.00 | 1.36 a ± 0.02 |
9C2.5U3M | 95.96 ± 0.17 | 9.51 b ± 0.01 | 13.18 d ± 0.01 | 62.37 c ± 0.20 | 49.72 c ± 0.98 | 1.30 ab ± 0.01 |
p-value | 0.930 | <0.001 | <0.001 | <0.001 | <0.001 | 0.032 |
Item | IVDMD | IVNDFD |
---|---|---|
RS | 52.49 c ± 0.71 | 41.73 c ± 1.37 |
5U | 63.49 b ± 0.08 | 55.15 b ± 2.95 |
9C5U | 69.43 a ± 0.46 | 62.85 a ± 1.15 |
9C2.5U | 59.96 b ± 0.69 | 48.35 b ± 0.47 |
9C2.5U3M | 59.83 b ± 0.08 | 50.39 b ± 0.21 |
p-value | <0.001 | <0.001 |
Item | Aerodynamic Parameters | ||||
---|---|---|---|---|---|
GP48 (mL/g DM) | A (mL/g DM) | B | C/h | AGPR (mL/g DM) | |
RS | 31.33 c ± 0.25 | 41.66 c ± 0.09 | 1.35 ± 0.04 | 33.55 a ± 1.12 | 0.42 d ± 0.04 |
5U | 46.00 a ± 0.25 | 56.89 a ± 1.05 | 1.39 ± 0.11 | 16.76 c ± 0.05 | 1.19 a ± 0.21 |
9C5U | 47.13 a ± 0.79 | 58.41 a ± 0.54 | 1.36 ± 0.12 | 16.27 c ± 0.05 | 1.25 a ± 0.02 |
9C2.5U | 39.07 b ± 0.88 | 49.83 b ± 0.81 | 1.32 ± 0.27 | 17.33 c ± 0.48 | 0.95 b ± 0.03 |
9C2.5U3M | 36.44 b ± 0.79 | 47.34 bc ± 0.24 | 1.34 ± 0.06 | 20.43 b ± 0.54 | 0.78 c ± 0.04 |
p-value | <0.001 | <0.001 | 0.270 | <0.001 | <0.001 |
Item | Acetate (mmol/L) | Propionic (mmol/L) | Butyrate (mmol/L) | TVFA (mmol/L) | pH |
---|---|---|---|---|---|
RS | 41.48 d ± 1.54 | 18.62 c ± 5.01 | 5.35 c ± 0.79 | 67.07 d ± 6.22 | 6.80 ± 0.03 |
5U | 54.44 a ± 2.38 | 22.59 a ± 2.23 | 7.54 a ± 1.22 | 87.76 a ± 2.97 | 6.75 ± 0.04 |
9C5U | 53.56 ab ± 2.70 | 22.32 a ± 2.27 | 6.61 b ± 1.33 | 85.53 ab ± 4.15 | 6.79 ± 0.06 |
9C2.5U | 51.45 b ± 1.66 | 20.26 b ± 1.56 | 6.91 b ± 0.68 | 81.78 bc ± 3.24 | 6.82 ± 0.10 |
9C2.5U3M | 47.81 c ± 0.90 | 21.85 a ± 3.30 | 6.96 b ± 0.97 | 79.65 c ± 2.78 | 6.77 ± 0.03 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | 0.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Chen, X.; Zahoor Khan, M.; Xiao, J.; Liu, S.; Wang, J.; He, Z.; Li, C.; Cao, Z. The Impact of Ammoniation Treatment on the Chemical Composition and In Vitro Digestibility of Rice Straw in Chinese Holsteins. Animals 2020, 10, 1854. https://doi.org/10.3390/ani10101854
Ma Y, Chen X, Zahoor Khan M, Xiao J, Liu S, Wang J, He Z, Li C, Cao Z. The Impact of Ammoniation Treatment on the Chemical Composition and In Vitro Digestibility of Rice Straw in Chinese Holsteins. Animals. 2020; 10(10):1854. https://doi.org/10.3390/ani10101854
Chicago/Turabian StyleMa, Yulin, Xu Chen, Muhammad Zahoor Khan, Jianxin Xiao, Shuai Liu, Jingjun Wang, Zhiyuan He, Congcong Li, and Zhijun Cao. 2020. "The Impact of Ammoniation Treatment on the Chemical Composition and In Vitro Digestibility of Rice Straw in Chinese Holsteins" Animals 10, no. 10: 1854. https://doi.org/10.3390/ani10101854
APA StyleMa, Y., Chen, X., Zahoor Khan, M., Xiao, J., Liu, S., Wang, J., He, Z., Li, C., & Cao, Z. (2020). The Impact of Ammoniation Treatment on the Chemical Composition and In Vitro Digestibility of Rice Straw in Chinese Holsteins. Animals, 10(10), 1854. https://doi.org/10.3390/ani10101854