The Utility of Grimace Scales for Practical Pain Assessment in Laboratory Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. History of Facial Expression Scoring for Pain in Laboratory Animals
3. Terminology Around Pain Classification and Assessment
4. Clinical Applicability of Grimace Scales in Biomedical Research
4.1. Development of Real-Time Grimace Scores
4.2. Impact of Biology and the Environment
4.2.1. Strain and Sex Differences
4.2.2. Impact of Routine Procedures
4.2.3. Environmental Impacts
4.3. Validity
4.4. Automation of Techniques
5. Practical Considerations
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Mota-Rojas, D.; Velarde, A.; Maris-Huertas, S.; Cajiao, M.N. (Eds.) Animal Welfare, A Global Vision in Ibero-America, 3rd ed.; Elsevier: Barcelona, Spain, 2016; pp. 1–516. [Google Scholar]
- Lewejohann, L.; Schwabe, K.; Häger, C.; Jirkof, P. Impulse for animal welfare outside the experiment. Lab. Anim. 2020, 54, 150–158. [Google Scholar] [CrossRef]
- Taylor, K.; Gordon, N.; Langley, G.; Higgins, W. Estimates for worldwide laboratory animal use in 2005. Altern. Lab. Anim. 2008, 36, 327–342. [Google Scholar] [CrossRef][Green Version]
- Mota-Rojas, D.; Orihuela, A.; Martínez-Burnes, J.; Gómez, J.; Mora-Medina, P.; Alavez, B.; Ramírez, L.; González-Lozano, M. Neurological modulation of facial expressions in pigs and implications for production. J. Anim. Behav. Biometeorol. 2020, 8, 232–243. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Lecona-Butrón, H.; Martínez-Burnes, J.; Mora-Medina, P.; Gómez-Prado, J.; Orihuela, A. Infrared thermal imaging associated with pain in laboratory animals. Exp. Anim. 2020, 70, 20-0052. [Google Scholar] [CrossRef] [PubMed]
- Baumans, V. Science-based assessment of animal welfare: Laboratory animals. Rev. Sci. Tech. OIE 2005, 24, 503–513. [Google Scholar] [CrossRef]
- Lezama-García, K.; Orihuela, A.; Olmos-Hernández, A.; Reyes-Long, S.; Mota-Rojas, D. Facial expressions and emotions in domestic animals. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2019, 14, 1–12. [Google Scholar] [CrossRef]
- Finlayson, K.; Lampe, J.; Hintze, S.; Würbel, H.; Melotti, L. Facial indicators of positive emotions in rats. PLoS ONE 2016, 11, e0166446. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Whittaker, A. The role of behavioural assessment in determining ‘positive’ affective states in animals. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2019, 14, 1–13. [Google Scholar] [CrossRef]
- Boissy, A.; Manteuffel, G.; Jensen, M.B.; Moe, R.O.; Spruijt, B.; Keeling, L.J.; Winckler, C.; Forkman, B.; Dimitrov, I.; Langbein, J.; et al. Assessment of positive emotions in animals to improve their welfare. Physiol. Behav. 2007, 92, 375–397. [Google Scholar] [CrossRef]
- Panksepp, J. Affective consciousness: Core emotional feelings in animals and humans. Conscious. Cogn. 2005, 14, 30–80. [Google Scholar] [CrossRef]
- Carbone, L.; Austin, J. Pain and laboratory animals: Publication practices for better data reproducibility and better animal welfare. PLoS ONE 2016, 11, e0155001. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Peterson, N.C.; Nunamaker, E.A.; Turner, P.V. To treat or not to treat: The effects of pain on experimental parameters. Comp. Med. 2017, 67, 469–482. [Google Scholar] [PubMed]
- Zurlo, J.; Hutchinson, E. Refinement. ALTEX 2014, 31, 4–10. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bennett, V.; Gourkow, N.; Mills, D. Facial correlates of emotional behaviour in the domestic cat (Felis catus). Behav. Process. 2017, 141, 342–350. [Google Scholar] [CrossRef][Green Version]
- Ekman, P. Are there basic emotions? Psychol. Rev. 1992, 99, 550–553. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Orihuela, A.; Strappini-Asteggiano, A.; Cajiao-Pachón, M.N.; Agüera-Buendía, E.; Mora-Medina, P.; Ghezzi, M.; Alonso-Spilsbury, M. Teaching animal welfare in veterinary schools in Latin America. Int. J. Vet. Sci. Med. 2018, 6, 131–140. [Google Scholar] [CrossRef]
- Langford, D.J.; Bailey, A.L.; Chanda, M.L.; Clarke, S.E.; Drummond, T.E.; Echols, S.; Glick, S.; Ingrao, J.; Klassen-Ross, T.; LaCroix-Fralish, M.L.; et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 2010, 7, 447–449. [Google Scholar] [CrossRef]
- Langford, D.J. Social modulation of pain as evidence for empathy in mice. Science 2006, 312, 1967–1970. [Google Scholar] [CrossRef][Green Version]
- Dolensek, N.; Gehrlach, D.A.; Klein, A.S.; Gogolla, N. Facial expressions of emotion states and their neuronal correlates in mice. Science 2020, 368, 89–94. [Google Scholar] [CrossRef]
- Sotocinal, S.G.; Sorge, R.E.; Zaloum, A.; Tuttle, A.H.; Martin, L.J.; Wieskopf, J.S.; Mapplebeck, J.C.S.; Wei, P.; Zhan, S.; Zhang, S.; et al. The Rat Grimace Scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol. Pain 2011, 7, 55. [Google Scholar] [CrossRef][Green Version]
- Keating, S.C.J.; Thomas, A.A.; Flecknell, P.A.; Leach, M.C. Evaluation of EMLA cream for preventing pain during tattooing of rabbits: Changes in physiological, behavioural and facial expression responses. PLoS ONE 2012, 7, e44437. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hampshire, V.; Robertson, S. Using the facial grimace scale to evaluate rabbit wellness in post-procedural monitoring. Lab. Anim. 2015, 44, 259–260. [Google Scholar] [CrossRef] [PubMed]
- Häger, C.; Biernot, S.; Buettner, M.; Glage, S.; Keubler, L.M.; Held, N.; Bleich, E.M.; Otto, K.; Müller, C.W.; Decker, S.; et al. The Sheep Grimace Scale as an indicator of post-operative distress and pain in laboratory sheep. PLoS ONE 2017, 12, e0175839. [Google Scholar] [CrossRef] [PubMed][Green Version]
- McLennan, K.M.; Rebelo, C.J.; Corke, M.J.; Holmes, M.A.; Leach, M.C.; Constantino-Casas, F. Development of a facial expression scale using footrot and mastitis as models of pain in sheep. Appl. Anim. Behav. Sci. 2016, 176, 19–26. [Google Scholar] [CrossRef][Green Version]
- Reijgwart, M.L.; Schoemaker, N.J.; Pascuzzo, R.; Leach, M.C.; Stodel, M.; De Nies, L.; Hendriksen, C.F.M.; Van Der Meer, M.; Vinke, C.M.; Van Zeeland, Y.R.A. The composition and initial evaluation of a grimace scale in ferrets after surgical implantation of a telemetry probe. PLoS ONE 2017, 12, e0187986. [Google Scholar] [CrossRef]
- Evangelista, M.C.; Watanabe, R.; Leung, V.S.Y.; Monteiro, B.P.; O’Toole, E.; Pang, D.S.J.; Steagall, P.V. Facial expressions of pain in cats: The development and validation of a Feline Grimace Scale. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef][Green Version]
- Costa, E.D.; Minero, M.; Lebelt, D.; Stucke, D.; Canali, E.; Leach, M.C. Development of the horse grimace scale (HGS) as a pain assessment tool in horses undergoing routine castration. PLoS ONE 2014, 9, e92281. [Google Scholar] [CrossRef][Green Version]
- Apkarian, A.V.; Hashmi, J.A.; Baliki, M.N. Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain. Pain 2011, 152, S49–S64. [Google Scholar] [CrossRef]
- Blackburn-Munro, G. Pain-like behaviours in animals—How human are they? Trends Pharmacol. Sci. 2004, 25, 299–305. [Google Scholar] [CrossRef]
- Nagakura, Y. The need for fundamental reforms in the pain research field to develop innovative drugs. Expert Opin. Drug Discov. 2016, 12, 39–46. [Google Scholar] [CrossRef]
- Nagakura, Y.; Miwa, M.; Yoshida, M.; Miura, R.; Tanei, S.; Tsuji, M.; Takeda, H. Spontaneous pain-associated facial expression and efficacy of clinically used drugs in the reserpine-induced rat model of fibromyalgia. Eur. J. Pharmacol. 2019, 864, 172716. [Google Scholar] [CrossRef] [PubMed]
- Serizawa, K.; Tomizawa-Shinohara, H.; Yasuno, H.; Yogo, K.; Matsumoto, Y. Anti-IL-6 receptor antibody inhibits spontaneous pain at the pre-onset of experimental autoimmune encephalomyelitis in Mice. Front. Neurol. 2019, 10, 341. [Google Scholar] [CrossRef] [PubMed]
- LeResche, L. Facial expression in pain: A study of candid photographs. J. Nonverbal Behav. 1982, 7, 46–56. [Google Scholar] [CrossRef]
- Williams, A.C.D.C. Facial expression of pain: An evolutionary account. Behav. Brain Sci. 2002, 25, 439–455. [Google Scholar] [CrossRef][Green Version]
- Mogil, J.S.; Pang, D.S.; Dutra, G.G.S.; Chambers, C.T. The development and use of facial grimace scales for pain measurement in animals. Neurosci. Biobehav. Rev. 2020, 116, 480–493. [Google Scholar] [CrossRef]
- Viscardi, A.V.; Hunniford, M.; Lawlis, P.; Leach, M.; Turner, P.V. Development of a piglet grimace scale to evaluate piglet pain using facial expressions following castration and tail docking: A pilot study. Front. Vet. Sci. 2017, 4, 51. [Google Scholar] [CrossRef][Green Version]
- Di Giminiani, P.; Brierley, V.L.; Scollo, A.; Gottardo, F.; Malcolm, E.M.; Edwards, S.A.; Leach, M.C. The assessment of facial expressions in piglets undergoing tail docking and castration: Toward the development of the piglet grimace scale. Front. Vet. Sci. 2016, 3, 100. [Google Scholar] [CrossRef][Green Version]
- Bateson, P. Assessment of pain in animals. Anim. Behav. 1991, 42, 827–839. [Google Scholar] [CrossRef]
- Whittaker, A.L.; Howarth, G.S. Use of spontaneous behaviour measures to assess pain in laboratory rats and mice: How are we progressing? Appl. Anim. Behav. Sci. 2014, 151, 1–12. [Google Scholar] [CrossRef]
- Rutherford, K. Assessing pain in animals. Anim. Welf. 2002, 11, 31–53. [Google Scholar]
- De C Williams, A.C. Persistence of pain in humans and other mammals. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190276. [Google Scholar] [CrossRef] [PubMed]
- Walters, E.T.; De C Williams, A.C. Evolution of mechanisms and behaviour important for pain. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20190275. [Google Scholar] [CrossRef]
- McLennan, K.M.; Miller, A.L.; Costa, E.D.; Stucke, D.; Corke, M.J.; Broom, D.M.; Leach, M.C. Conceptual and methodological issues relating to pain assessment in mammals: The development and utilisation of pain facial expression scales. Appl. Anim. Behav. Sci. 2019, 217, 1–15. [Google Scholar] [CrossRef]
- Bendinger, T.; Plunkett, N. Measurement in pain medicine. BJA Educ. 2016, 16, 310–315. [Google Scholar] [CrossRef][Green Version]
- Good, M.; Stiller, C.; Zauszniewski, J.A.; Anderson, G.C.; Stanton-Hicks, M.; Grass, J.A. Sensation and distress of pain scales: Reliability, validity, and sensitivity. J. Nurs. Meas. 2001, 9, 219–238. [Google Scholar] [CrossRef]
- Chartier, L.C.; Hebart, M.L.; Howarth, G.S.; Whittaker, A.L.; Mashtoub, S. Affective state determination in a mouse model of colitis-associated colorectal cancer. PLoS ONE 2020, 15, e0228413. [Google Scholar] [CrossRef][Green Version]
- George, R.P.; Howarth, G.S.; Whittaker, A.L. Use of the rat grimace scale to evaluate visceral pain in a model of chemotherapy-induced mucositis. Animals 2019, 9, 678. [Google Scholar] [CrossRef] [PubMed][Green Version]
- De Almeida, A.S.; Rigo, F.K.; De Prá, S.D.T.; Milioli, A.M.; Dalenogare, D.P.; Pereira, G.C.; Ritter, C.D.S.; Peres, D.S.; Antoniazzi, C.T.D.; Stein, C.; et al. Characterization of cancer-induced nociception in a murine model of breast carcinoma. Cell. Mol. Neurobiol. 2019, 39, 605–617. [Google Scholar] [CrossRef]
- De Almeida, A.S.; Rigo, F.K.; De Prá, S.D.T.; Milioli, A.M.; Pereira, G.C.; Lückemeyer, D.D.; Antoniazzi, C.T.; Kudsi, S.Q.; Araújo, D.; Oliveira, S.M.; et al. Role of transient receptor potential ankyrin 1 (TRPA1) on nociception caused by a murine model of breast carcinoma. Pharmacol. Res. 2020, 152, 104576. [Google Scholar] [CrossRef]
- Mai, S.H.C.; Sharma, N.; Kwong, A.C.; Dwivedi, D.J.; Khan, M.; Grin, P.; Fox-Robichaud, A.E.; Liaw, P.C. Body temperature and mouse scoring systems as surrogate markers of death in cecal ligation and puncture sepsis. Intensiv. Care Med. Exp. 2018, 6, 20. [Google Scholar] [CrossRef][Green Version]
- Akintola, T.; Raver, C.; Studlack, P.; Uddin, O.; Masri, R.; Keller, A. The grimace scale reliably assesses chronic pain in a rodent model of trigeminal neuropathic pain. Neurobiol. Pain 2017, 2, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Akintola, T.; Tricou, C.; Raver, C.; Castro, A.; Colloca, L.; Keller, A. In search of a rodent model of placebo analgesia in chronic orofacial neuropathic pain. Neurobiol. Pain 2019, 6, 100033. [Google Scholar] [CrossRef] [PubMed]
- Duffy, S.S.; Perera, C.J.; Makker, P.G.S.; Lees, J.G.; Carrive, P.; Moalem-Taylor, G. Peripheral and central neuroinflammatory changes and pain behaviors in an animal model of multiple sclerosis. Front. Immunol. 2016, 7, 369. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hassler, S.N.; Ahmad, F.B.; Burgos-Vega, C.C.; Boitano, S.; Vágner, J.; Price, T.J.; Dussor, G. Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice. Cephalalgia 2018, 39, 111–122. [Google Scholar] [CrossRef]
- Mittal, A.; Gupta, M.; Lamarre, Y.; Jahagirdar, B.; Gupta, K. Quantification of pain in sickle mice using facial expressions and body measurements. Blood Cells Mol. Dis. 2016, 57, 58–66. [Google Scholar] [CrossRef][Green Version]
- Gao, M.; Long, H.; Ma, W.; Liao, L.; Yang, X.; Zhou, Y.; Shan, D.; Huang, R.; Jian, F.; Wang, Y.; et al. The role of periodontal ASIC3 in orofacial pain induced by experimental tooth movement in rats. Eur. J. Orthod. 2015, 38, 577–583. [Google Scholar] [CrossRef][Green Version]
- Miller, A.L.; Leach, M.C. The mouse grimace scale: A clinically useful tool? PLoS ONE 2015, 10, e0136000. [Google Scholar] [CrossRef]
- Sorge, R.E.; Martin, L.J.; Isbester, K.A.; Sotocinal, S.G.; Rosen, S.; Tuttle, A.H.; Wieskopf, J.S.; Acland, E.L.; Dokova, A.; Kadoura, B.; et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat. Methods 2014, 11, 629–632. [Google Scholar] [CrossRef]
- Leung, V.; Zhang, E.; Pang, D.S. Real-time application of the Rat Grimace Scale as a welfare refinement in laboratory rats. Sci. Rep. 2016, 6, 31667. [Google Scholar] [CrossRef]
- Leung, V.S.; Benoit-Biancamano, M.O.; Pang, D.S. Performance of behavioral assays: The Rat Grimace Scale, burrowing activity and a composite behavior score to identify visceral pain in an acute and chronic colitis model. PAIN Rep. 2019, 4, e718. [Google Scholar] [CrossRef]
- Wardill, H.R.; Gibson, R.J.; Van Sebille, Y.Z.; Secombe, K.R.; Coller, J.K.; White, I.A.; Manavis, J.; Hutchinson, M.R.; Staikopoulos, V.; Logan, R.; et al. Irinotecan-induced gastrointestinal dysfunction and pain are mediated by common TLR4-dependent mechanisms. Mol. Cancer Ther. 2016, 15, 1376–1386. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gibson, R.J.; Coller, J.K.; Wardill, H.R.; Hutchinson, M.R.; Smid, S.; Bowen, J.M. Chemotherapy-induced gut toxicity and pain: Involvement of TLRs. Support. Care Cancer 2015, 24, 2251–2258. [Google Scholar] [CrossRef] [PubMed]
- Hsi, Z.Y.; Stewart, L.A.; Lloyd, K.C.K.; Grimsrud, K.N. Hypoglycemia after bariatric surgery in mice and optimal dosage and efficacy of glucose supplementation. Comp. Med. 2020, 70, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.; Michalidis, V.; Lecker, I.; Collymore, C.; Hanwell, D.; Loka, M.; Danesh, M.; Pham, C.; Urban, P.; Bonin, R.P.; et al. Evaluating analgesic efficacy and administration route following craniotomy in mice using the grimace scale. Sci. Rep. 2019, 9, 359. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Miller, A.L.; Kitson, G.; Skalkoyannis, B.; Leach, M. The effect of isoflurane anaesthesia and buprenorphine on the mouse grimace scale and behaviour in CBA and DBA/2 mice. Appl. Anim. Behav. Sci. 2015, 172, 58–62. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Miller, A.L.; Leach, M.C. The effect of handling method on the mouse grimace scale in two strains of laboratory mice. Lab. Anim. 2016, 50, 305–307. [Google Scholar] [CrossRef]
- Costa, E.D.; Pascuzzo, R.; Leach, M.C.; Dai, F.; Lebelt, D.; Vantini, S.; Minero, M. Can grimace scales estimate the pain status in horses and mice? A statistical approach to identify a classifier. PLoS ONE 2018, 13, e0200339. [Google Scholar] [CrossRef][Green Version]
- Roughan, J.V.; Sevenoaks, T. Welfare and scientific considerations of tattooing and ear tagging for mouse identification. J. Am. Assoc. Lab. Anim. Sci. 2019, 58, 142–153. [Google Scholar] [CrossRef]
- Waite, M.E.; Tomkovich, A.; Quinn, T.L.; Schumann, A.P.; Dewberry, L.S.; Totsch, S.K.; Sorge, R.E. Efficacy of common analgesics for postsurgical pain in rats. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 420–425. [Google Scholar]
- Wang, S.; Kim, M.; Ali, Z.; Ong, K.; Pae, E.K.; Chung, M.K. Trpv1 and trpv1-expressing nociceptors mediate orofacial pain behaviors in a mouse model of orthodontic tooth movement. Front Physiol 2019, 10, 1207. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, S.; Long, H.; Zhu, J.; Jian, F.; Ye, N.; Lai, W. Effect of static magnetic field on pain level and expression of P2X3 receptors in the trigeminal ganglion in mice following experimental tooth movement. Bioelectromagnetics 2016, 38, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.L.; Golledge, H.D.R.; Leach, M.C. The influence of isoflurane anaesthesia on the rat grimace scale. PLoS ONE 2016, 11, e0166652. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sorge, R.E.; Mapplebeck, J.C.S.; Rosen, S.; Beggs, S.; Taves, S.; Alexander, J.K.; Martin, L.J.; Austin, J.-S.; Sotocinal, S.G.; Chen, D.; et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 2015, 18, 1081–1083. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hohlbaum, K.; Bert, B.; Dietze, S.; Palme, R.; Fink, H.; Thöne-Reineke, C. Severity classification of repeated isoflurane anesthesia in C57BL/6JRj mice—Assessing the degree of distress. PLoS ONE 2017, 12, e0179588. [Google Scholar] [CrossRef]
- Hohlbaum, K.; Bert, B.; Dietze, S.; Palme, R.; Fink, H.; Thöne-Reineke, C. Impact of repeated anesthesia with ketamine and xylazine on the well-being of C57BL/6JRj mice. PLoS ONE 2018, 13, e0203559. [Google Scholar] [CrossRef][Green Version]
- Gouveia, K.; Hurst, J.L. Optimising reliability of mouse performance in behavioural testing: The major role of non-aversive handling. Sci. Rep. 2017, 7, 44999. [Google Scholar] [CrossRef][Green Version]
- Hurst, J.L.; West, R.S. Taming anxiety in laboratory mice. Nat. Methods 2010, 7, 825–826. [Google Scholar] [CrossRef]
- Gouveia, K.; Hurst, J.L. Reducing mouse anxiety during handling: Effect of experience with handling tunnels. PLoS ONE 2013, 8, e66401. [Google Scholar] [CrossRef][Green Version]
- Henderson, L.J.; Smulders, T.V.; Roughan, J.V. Identifying obstacles preventing the uptake of tunnel handling methods for laboratory mice: An international thematic survey. PLoS ONE 2020, 15, e0231454. [Google Scholar] [CrossRef][Green Version]
- Miller, A.L.; Leach, M. Using the mouse grimace scale to assess pain associated with routine ear notching and the effect of analgesia in laboratory mice. Lab. Anim. 2014, 49, 117–120. [Google Scholar] [CrossRef]
- Kasanen, I.H.E.; Voipio, H.-M.; Leskinen, H.; Luodonpää, M.; Nevalainen, T.O. Comparison of ear tattoo, ear notching and microtattoo in rats undergoing cardiovascular telemetry. Lab. Anim. 2011, 45, 154–159. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rea, B.J.; Wattiez, A.-S.; Waite, J.S.; Castonguay, W.C.; Schmidt, C.M.; Fairbanks, A.M.; Robertson, B.R.; Brown, C.J.; Mason, B.N.; Moldovan-Loomis, M.-C.; et al. Peripherally administered calcitonin gene–related peptide induces spontaneous pain in mice. Pain 2018, 159, 2306–2317. [Google Scholar] [CrossRef] [PubMed]
- Matsumiya, L.C.; Sorge, R.E.; Sotocinal, S.G.; Tabaka, J.M.; Wieskopf, J.S.; Zaloum, A.; King, O.D.; Mogil, J.S. Using the mouse grimace scale to reevaluate the efficacy of postoperative analgesics in laboratory mice. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 42–49. [Google Scholar] [PubMed]
- Jirkof, P.; Abdelrahman, A.; Bleich, A.; Durst, M.; Keubler, L.M.; Potschka, H.; Struve, B.; Talbot, S.R.; Vollmar, B.; Zechner, D.; et al. A safe bet? Inter-laboratory variability in behaviour-based severity assessment. Lab. Anim. 2019, 54, 73–82. [Google Scholar] [CrossRef]
- Mogil, J.S. Laboratory environmental factors and pain behavior: The relevance of unknown unknowns to reproducibility and translation. Lab. Anim. 2017, 46, 136–141. [Google Scholar] [CrossRef]
- Burgos-Vega, C.C.; Quigley, L.D.; Dos Santos, G.T.; Yan, F.; Asiedu, M.; Jacobs, B.; Motina, M.; Safdar, N.; Yousuf, H.; Avona, A.; et al. Non-invasive dural stimulation in mice: A novel preclinical model of migraine. Cephalalgia 2018, 39, 123–134. [Google Scholar] [CrossRef]
- Hassan, A.M.; Jain, P.; Mayerhofer, R.; Fröhlich, E.E.; Farzi, A.; Reichmann, F.; Herzog, H.; Holzer, P. Visceral hyperalgesia caused by peptide YY deletion and Y2 receptor antagonism. Sci. Rep. 2017, 7, 40968. [Google Scholar] [CrossRef][Green Version]
- Bu, X.; Liu, Y.; Lu, Q.; Jin, Z. Effects of “Danzhi Decoction” on chronic pelvic pain, hemodynamics, and proinflammatory factors in the murine model of sequelae of pelvic inflammatory disease. Evid. Based Complement. Altern. Med. 2015, 2015, 1–12. [Google Scholar] [CrossRef][Green Version]
- Whittaker, A.L.; Leach, M.C.; Preston, F.L.; Lymn, K.A.; Howarth, G.S. Effects of acute chemotherapy-induced mucositis on spontaneous behaviour and the grimace scale in laboratory rats. Lab. Anim. 2015, 50, 108–118. [Google Scholar] [CrossRef]
- Toscano, M.G.; Ganea, I.; Gamero, A.M. Cecal ligation puncture procedure. J. Vis. Exp. 2011. [Google Scholar] [CrossRef]
- Nguyen, H.B.; Rivers, E.P.; Abrahamian, F.M.; Moran, G.J.; Abraham, E.; Trzeciak, S.; Huang, D.T.; Osborn, T.M.; Stevens, D.; Talan, D.A. Severe sepsis and septic shock: Review of the literature and emergency department management guidelines. Ann. Emerg. Med. 2006, 48, 54. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, D.J.; Grin, P.; Khan, M.; Prat, A.; Zhou, J.; Fox-Robichaud, A.E.; Seidah, N.G.; Liaw, P.C. Differential expression of PCSK9 modulates infection, inflammation, and coagulation in a murine model of sepsis. Shock 2016, 46, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Tatsutani, S.; Ishida, T. Detection of nausea-like response in rats by monitoring facial expression. Front. Pharmacol. 2017, 7, 100. [Google Scholar] [CrossRef][Green Version]
- Herrera, C.; Bolton, F.; Arias, A.; Harrison, R.A.; Gutiérrez, J.M. Analgesic effect of morphine and tramadol in standard toxicity assays in mice injected with venom of the snake Bothrops asper. Toxicon 2018, 154, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.M.; Tan, S.J.X.; Koh, J.; Zainul, M.; Phang, G.S.S.; Toh, A.; Babu, K.R.; Chooi, K.F. The Rat Face Finder and Improved Assessment of Visceral Pain. In Proceedings of the 9th SALAS Annual Regional Conference—Neuroscience: A New Frontier, New York, NY, USA, 4–6 December 2013. [Google Scholar]
- Ernst, L.; Kopaczka, M.; Schulz, M.; Talbot, S.R.; Zieglowski, L.; Meyer, M.; Bruch, S.; Merhof, D.; Tolba, R.H. Improvement of the Mouse Grimace Scale set-up for implementing a semi-automated Mouse Grimace Scale scoring (Part 1). Lab. Anim. 2019, 54, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Ernst, L.; Kopaczka, M.; Schulz, M.; Talbot, S.R.; Struve, B.; Häger, C.; Bleich, A.; Durst, M.; Jirkof, P.; Arras, M.; et al. Semi-automated generation of pictures for the Mouse Grimace Scale: A multi-laboratory analysis (Part 2). Lab. Anim. 2019, 54, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, A.H.; Molinaro, M.J.; Jethwa, J.F.; Sotocinal, S.G.; Prieto, J.C.; Styner, M.A.; Mogil, J.S.; Zylka, M.J. A deep neural network to assess spontaneous pain from mouse facial expressions. Mol. Pain 2018, 14, 1744806918763658. [Google Scholar] [CrossRef]
- Andresen, N.; Wöllhaf, M.; Hohlbaum, K.; Lewejohann, L.; Hellwich, O.; Thöne-Reineke, C.; Belik, V. Towards a fully automated surveillance of well-being status in laboratory mice using deep learning: Starting with facial expression analysis. PLoS ONE 2020, 15, e0228059. [Google Scholar] [CrossRef][Green Version]
- Eral, M.; Aktas, C.C.; Kocak, E.E.; Dalkara, T.; Halici, U. Assessment of pain in mouse facial images. In Proceedings of the 2016 20th National Biomedical Engineering Meeting (BIYOMUT), Izmir, Turkey, 3–5 November 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Mahmoud, M.; Lu, Y.; Hou, X.; McLennan, K.; Robinson, P. Estimation of Pain in Sheep Using Computer Vision. In Handbook of Pain and Palliative Care; Springer: Berlin/Heidelberg, Germany, 2018; pp. 145–157. [Google Scholar]
- McLennan, K.M.; Mahmoud, M. Development of an automated pain facial expression detection system for sheep (ovis aries). Animals 2019, 9, 196. [Google Scholar] [CrossRef][Green Version]
- Bartlett, M.; Littlewort, G.; Frank, M.; Lainscsek, C.; Fasel, I.; Movellan, J. Recognizing Facial Expression: Machine Learning and Application to Spontaneous Behavior. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)—Workshops, San Diego, CA, USA, 21–23 September 2005; Volume 2, pp. 568–573. [Google Scholar] [CrossRef]
- Oliver, V.; De Rantere, D.; Ritchie, R.; Chisholm, J.; Hecker, K.G.; Pang, D.S. Psychometric assessment of the rat grimace scale and development of an analgesic intervention score. PLoS ONE 2014, 9, e97882. [Google Scholar] [CrossRef][Green Version]
- Baliki, M.N.; Chialvo, D.R.; Geha, P.Y.; Levy, R.M.; Harden, R.N.; Parrish, T.B.; Apkarian, A.V. Chronic pain and the emotional brain: Specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J. Neurosci. 2006, 26, 12165–12173. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Roughan, J.V.; Bertrand, H.G.; Isles, H.M. Meloxicam prevents COX-2-mediated post-surgical inflammation but not pain following laparotomy in mice. Eur. J. Pain 2015, 20, 231–240. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, E.Q.; Leung, V.S.; Pang, D.S. Influence of rater training on inter- and intrarater reliability when using the rat grimace scale. J. Am. Assoc. Lab. Anim. Sci. 2019, 58, 178–183. [Google Scholar] [CrossRef] [PubMed]
Species | Validation Method | Action Units | Study |
---|---|---|---|
Mouse Grimace Scale (MGS) | Fourteen commonly used preclinical pain assays. | Five Units: (1) Orbital tightening, (2) Nose bulge, (3) Cheek bulge, (4) Ear position and (5) Whisker change | [18] |
Rat Grimace Scale (RGS) | Three pain-eliciting procedures performed. (1) intraplantar administration of Complete Freund’s adjuvant (CFA); (2) intra-articular administration of kaolin/carrageenan; and (3) post-operative pain after laparotomy. | Four Units: (1) Orbital tightening, (2) Nose/cheek flattening, (3) Ear changes, (4) Whisker change | [21] |
Rabbit Grimace Scale (RbtGS) | Pain caused by ear tattooing, a routine procedure used to identify rabbits. Analgesic test applied in the form of prilocaine/lidocaine (EMLA) local anesthetic | Five Units: (1) Orbital tightening, (2) Cheek flattening, (3) Nose shape, (4) Whisker position, (5) Ear position. | [22] |
Sheep Grimace Scales (Sheep Pain Facial Expression Scale—SPFES) | Clinical model based on mastitis and footrot | Five Units: (1) Orbital tightening, (2) Cheek tightness, (3) Ear position, (4) Lip and jaw profile, (5) Nostril and philtrum position | [25] |
Ferret (FGS) | Surgery involving the implantation of an intraperitoneal telemetry catheter | Five Units: (1) Orbital tightening, (2) Nose bulging, (3) Cheek bulging, (4) ear changes, (5) Whisker retraction | [26] |
Piglets (PGS) | Castration and tail docking. Validated orbital tightening for tail docking but remarked that further validation needed. | Ten used for development, later study [37] modified to three: (1) Ear Position, (2) Cheek Tightening/Nose bulge, (3) Orbital Tightening | [37,38] |
Cat (FGS) | Acute pain arising as a result of a variety of clinical conditions | Five units: (1) Ear position, (2) Orbital tightening, (3) Muzzle tension, (4) Whisker change, (5) Head position | [27] |
Horse (HGS) | Surgical castration | Six units: (1) Stiffly backward ears, (2) Orbital tightening, (3) Tension above the eye area, (4) Prominent strained chewing muscles, (5) Mouth strained and pronounced chin, (6) Strained nostrils and flattening of the profile | [28] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota-Rojas, D.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Hernández, E.; Martínez-Burnes, J.; Whittaker, A.L. The Utility of Grimace Scales for Practical Pain Assessment in Laboratory Animals. Animals 2020, 10, 1838. https://doi.org/10.3390/ani10101838
Mota-Rojas D, Olmos-Hernández A, Verduzco-Mendoza A, Hernández E, Martínez-Burnes J, Whittaker AL. The Utility of Grimace Scales for Practical Pain Assessment in Laboratory Animals. Animals. 2020; 10(10):1838. https://doi.org/10.3390/ani10101838
Chicago/Turabian StyleMota-Rojas, Daniel, Adriana Olmos-Hernández, Antonio Verduzco-Mendoza, Elein Hernández, Julio Martínez-Burnes, and Alexandra L. Whittaker. 2020. "The Utility of Grimace Scales for Practical Pain Assessment in Laboratory Animals" Animals 10, no. 10: 1838. https://doi.org/10.3390/ani10101838