Do Dairy Farming Systems Differ in Antimicrobial Use?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Data Editing
2.3. Quantification of Antimicrobial Consumption
2.4. Statistical Analysis
3. Results
3.1. Farm Characteristics
3.2. Treatment Incidences
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Critically Important Antimicrobials for Human Medicine, 6th ed.; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menéndez González, S.; Steiner, A.; Gassner, B.; Regula, G. Antimicrobial use in Swiss dairy farms: Quantification and evaluation of data quality. Prev. Vet. Med. 2010, 95, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Mills, H.T.; Morgans, L.; Massey, J.; Schubert, H.; Rees, G.; Barrett, D.; Dowsey, A.; Reyher, K. Evaluation of metrics for benchmarking antimicrobial use in the UK dairy industry. Vet. Rec. 2018, 182, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Firth, C.; Käsbohrer, A.; Schleicher, C.; Fuchs, K.; Egger-Danner, C.; Mayerhofer, M.; Schobesberger, H.; Köfer, J.; Obritzhauser, W. Antimicrobial consumption on Austrian dairy farms: An observational study of udder disease treatments based on veterinary medication records. PeerJ 2017, 5, e4072. [Google Scholar] [PubMed]
- Saini, V.; McClure, J.; Léger, D.; Dufour, S.; Sheldon, A.; Scholl, D.; Barkema, H. Antimicrobial use on Canadian dairy farms. J. Dairy Sci. 2012, 95, 1209–1221. [Google Scholar] [CrossRef]
- More, S.; Clegg, T.; McCoy, F. The use of national-level data to describe trends in intramammary antimicrobial usage on Irish dairy farms from 2003 to 2015. J. Dairy Sci. 2017, 100, 6400–6413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, M.; Piepers, S.; Supré, K.; Dewulf, J.; De Vliegher, S. Quantification of antimicrobial consumption in adult cattle on dairy herds in Flanders, Belgium, and associations with udder health, milk quality, and production performance. J. Dairy Sci. 2016, 99, 2118–2130. [Google Scholar] [CrossRef] [PubMed]
- Hyde, R.; Remnant, J.; Bradley, A.; Breen, J.; Hudson, C.; Davies, P.; Clarke, T.; Critchell, Y.; Hylands, M.; Linton, E.; et al. Quantitative analysis of antimicrobial use on British dairy farms. Vet. Rec. 2017, 181, 683–691. [Google Scholar] [CrossRef] [PubMed]
- EMA. European Surveillance of Veterinary Antimicrobial Consumption—Sales of Veterinary Antimicrobial Agents in 30 European Countries in 2016; European Medicines Agency: London, UK, 2018. [Google Scholar]
- Serraino, A.; Giacometti, F.; Marchetti, G.; Zambrini, A.; Zanirato, G.; Fustini, M.; Rosmini, R. Survey on Antimicrobial Residues in Raw Milk and Antimicrobial Use in Dairy Farms in the Emilia-Romagna Region, Italy. Ital. J. Anim. Sci. 2013, 12, 422–425. [Google Scholar] [CrossRef] [Green Version]
- Zuliani, A.; Mair, M.; Kraševec, M.; Lora, I.; Brscic, M.; Cozzi, G.; Zupan, M.; Bovolenta, S. A survey of selected animal-based measures of dairy cattle welfare in the Eastern Alps: Toward context-based thresholds. J. Dairy Sci. 2018, 101, 1428–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battaglini, L.; Bovolenta, S.; Gusmeroli, F.; Salvador, S.; Sturaro, E. Environmental sustainability of Alpine livestock farms. Ital. J. Anim. Sci. 2014, 3, 431–443. [Google Scholar] [CrossRef]
- Sturaro, E.; Marchiori, E.; Cocca, G.; Penasa, M.; Ramanzin, M.; Bittante, G. Dairy systems in mountainous areas: Farm animal biodiversity, milk production and destination, and land use. Livest. Sci. 2013, 158, 157–168. [Google Scholar] [CrossRef]
- Sistema Informativo Veterinario. Available online: www.vetinfo.it (accessed on 21 January 2019).
- World Health Organization Collaborating Centre for Drug Statistics and Methodology. Guidelines for ATC Classification and DDD Assignment 2019; WHO: Oslo, Norway, 2018. [Google Scholar]
- Collineau, L.; Belloc, C.; Stärk, K.; Hémonic, A.; Postma, M.; Dewulf, J.; Chauvin, C. Guidance on the Selection of Appropriate Indicators for Quantification of Antimicrobial Usage in Humans and Animals. Zoonoses Public Health 2017, 64, 165–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardon, B.; Catry, B.; Dewulf, J.; Persoons, D.; Hostens, M.; De Bleecker, K.; Deprez, P. Prospective study on quantitative and qualitative antimicrobial and anti-inflammatory drug use in white veal calves. J. Antimicrob. Chemother. 2012, 67, 1027–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EMA. Defined Daily doses for Animals (DDDVet) and Defined Course doses for Animals (DCDVet), ESVAC; European Medicines Agency: London, UK, 2016. [Google Scholar]
- Oltenacu, P.A.; Broom, D.M. The impact of genetic selection for increased milk yield on the welfare of dairy cow. Anim. Welf. 2010, 19, 39–49. [Google Scholar]
- OIE. OIE List of Antimicrobials Agents of Veterinary Importance; World Organisation for Animal Health: Paris, France, 2018. [Google Scholar]
- Guiomar, N.; Godinho, S.; Pinto-Correia, T.; Almeida, M.; Bartolini, F.; Bezák, P.; Biró, M.; Bjørkhaug, H.; Bojnec, Š.; Brunori, G.; et al. Typology and distribution of small farms in Europe: Towards a better picture. Land Use Policy 2018, 75, 784–798. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on the assessment of dairy cow welfare in small-scale farming systems. EFSA J. 2015, 13, 4137–4239. [Google Scholar]
- Zuliani, A.; Esbjerg, L.; Grunert, K.; Bovolenta, S. Animal welfare and mountain products from traditional dairy farms: How do consumers perceive complexity? Animals 2018, 8, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, P.; Marier, E.; Tranter, R.; Wu, G.; Watson, E.; Teale, C. Factors affecting dairy farmers’ attitudes towards antimicrobial medicine usage in cattle in England and Wales. Prev. Vet. Med. 2015, 121, 30–40. [Google Scholar] [CrossRef] [PubMed]
Characteristic 1 | Farm Group | |||
---|---|---|---|---|
LH | LS | MH | MS | |
Farmers’ age | 43 ± 11 | 44 ± 12 | 44 ± 5 | 42 ± 16 |
Farm altitude (mt asl) | 133 ± 79 | 104 ± 93 | 873 ± 127 | 672 ± 218 |
Number of cows | 112 ± 47 | 75 ± 14 | 46 ± 16 | 30 ± 10 |
Same breed type (%) | 93.7 ± 10.7 | 96.7 ± 3.1 | 85.7 ± 14.0 | 96.9 ± 8.3 |
Cow housing (% of free-stalls) | 100 | 100 | 86 | 14 |
Summer pasture (% of farms) | 0 | 0 | 29 | 57 |
Mature equivalent milk yield (kg) | 11,343 ± 1,743 | 8504 ± 656 | 9695 ± 874 | 5707 ± 1,052 |
Number of lactations | 2.4 ± 0.2 | 2.5 ± 0.4 | 2.5 ± 0.2 | 3.7 ± 0.6 |
Somatic cell count (cells/mL × 1000) | 210 ± 82 | 281 ± 92 | 203 ± 96 | 269 ± 110 |
Drug Class 1 | Farm Type (Median, Min, and Max) | ||||
---|---|---|---|---|---|
LH | LS | MH | MS | p-Value | |
HP-CIA | |||||
Cephalosporins (3rd and 4th generation) | 0.3 (0.0–2.7) a | 0.1 (0.0–0.7) a,b | 0.0 (0.0–1.0) a,b | 0.0 (0.0–0.2) b | 0.008 |
Fluoroquinolones | 0.5 (0.2–2.1) a | 0.1 (0.0–0.5) a,b | 0.1 (0.0–1.2) a,b | 0.0 (0.0–0.2) b | 0.004 |
Macrolides | 0.1 (0.0–1.6) | 0.0 (0.0–0.4) | 0.1 (0.0–1.7) | 0.0 (0.0–0.0) | NA 2 |
H-CIA | |||||
Penicillins | 0.3 (0.0–2.3) | 0.2 (0.0–0.4) | 0.3 (0.0–1.3) | 0.0 (0.0–0.3) | 0.033 |
HIA | |||||
Lyncosamides and Spectinomycin | 0.1 (0.0–1.2) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–0.4) | NA |
Sulfonamides | 0.0 (0.0–0.3) | 0.0 (0.0–0.2) | 0.0 (0.0–0.6) | 0.0 (0.0–0.2) | NA |
Tetracyclines | 0.2 (0.0–2.1) | 0.0 (0.0–0.7) | 0.1 (0.0–0.7) | 0.0 (0.0–0.1) | NA |
Drug Class 1 | Farm Type (Median, Min, and Max) | ||||
---|---|---|---|---|---|
LH | LS | MH | MS | p-Value | |
Dry cows | |||||
HP-CIA | |||||
Cephalosporins (3rd and 4th generation) | 1.9 (0.0–2.4) | 0.0 (0.0–1.3) | 0.0 (0.0–0.2) | 0.0 (0.0–0.0) | NA 2 |
H-CIA | |||||
Penicillins | 0.0 (0.0–2.2) | 0.0 (0.0–1.7) | 0.4 (0.0–1.5) | 0.0 (0.0–1.0) | NA |
Rifamycins | 0.0 (0.0–0.4) | 0.0 (0.0–1.5) | 0.0 (0.0–0.1) | 0.0 (0.0–1.2) | NA |
HIA | |||||
Cephalosporins (1st and 2nd generation) | 0.0 (0.0–0.8) | 0.0 (0.0–2.0) | 0.0 (0.0–1.5) | 1.1 (0.0–2.4) | NA |
Penicillins | 0.0 (0.0–0.8) | 0.0 (0.0–0.2) | 0.0 (0.0–0.0) | 0.0 (0.0–1.2) | NA |
Lactating cows (mastitis therapy) | |||||
HP-CIA | |||||
Cephalosporins (3rd and 4th generation) | 0.0 (0.0–0.2) | 0.0 (0.0–1.6) | 0.0 (0.0–2.4) | 0.0 (0.0–0.0) | NA |
H-CIA | |||||
Penicillins | 0.0 (0.0–0.8) | 0.1 (0.0–1.7) | 0.2 (0.0–1.3) | 0.0 (0.0–1.2) | NA |
HIA | |||||
Amphenicols | 0.0 (0.0–0.0) | 0.0 (0.0–0.2) | 0.0 (0.0–0.1) | 0.0 (0.0–0.0) | NA |
Cephalosporins (1st and 2nd generation) | 0.9 (0.2–2.1) a | 0.1 (0.0–2.4) a,b | 0.0 (0.0–1.8) a,b | 0.0 (0.0–0.3) b | 0.034 |
Penicillins | 0.0 (0.0–0.0) | 0.0 (0.0–0.2) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | NA |
Sulfonamides | 0.0 (0.0–0.0) | 0.0 (0.0–0.1) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | NA |
Drug Class 1 | Farm Type (Median, Min, and Max) | ||||
---|---|---|---|---|---|
LH | LS | MH | MS | p-Value | |
H-CIA | |||||
Rifamycins | 0.0 (0.0–0.7) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–0.2) | NA 2 |
HIA | |||||
Cephalosporins (1st and 2nd generation) | 0.0 (0.0–0.3) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | NA |
Tetracyclines | 0.5 (0.0–0.9) | 0.0 (0.0–0.0) | 0.1 (0.0–2.0) | 0.0 (0.0–0.1) | NA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuliani, A.; Lora, I.; Brščić, M.; Rossi, A.; Piasentier, E.; Gottardo, F.; Contiero, B.; Bovolenta, S. Do Dairy Farming Systems Differ in Antimicrobial Use? Animals 2020, 10, 47. https://doi.org/10.3390/ani10010047
Zuliani A, Lora I, Brščić M, Rossi A, Piasentier E, Gottardo F, Contiero B, Bovolenta S. Do Dairy Farming Systems Differ in Antimicrobial Use? Animals. 2020; 10(1):47. https://doi.org/10.3390/ani10010047
Chicago/Turabian StyleZuliani, Anna, Isabella Lora, Marta Brščić, Andrea Rossi, Edi Piasentier, Flaviana Gottardo, Barbara Contiero, and Stefano Bovolenta. 2020. "Do Dairy Farming Systems Differ in Antimicrobial Use?" Animals 10, no. 1: 47. https://doi.org/10.3390/ani10010047
APA StyleZuliani, A., Lora, I., Brščić, M., Rossi, A., Piasentier, E., Gottardo, F., Contiero, B., & Bovolenta, S. (2020). Do Dairy Farming Systems Differ in Antimicrobial Use? Animals, 10(1), 47. https://doi.org/10.3390/ani10010047