Gas Production, Digestibility and Efficacy of Stored or Fresh Plant Extracts to Reduce Methane Production on Different Substrates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Plant Extracts
2.2. Substrates and Chemical Analyses
2.3. In Vitro Gas, Methane and Organic Matter Digestibility
2.4. Measurement of Total Gas, Methane, VFA and IVOMD
2.5. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Menale, B.; De Castro, O.; Cascone, C.; Muoio, R. Ethnobotanical investigation on medicinal plants in the Vesuvio National Park (Campania Southern Italy). J. Ethnopharmacol. 2016, 192, 320–349. [Google Scholar] [CrossRef] [PubMed]
- Akanmu, A.M.; Hassen, A. The use of certain medicinal plant extracts reduced in vitro methane production while improving in vitro organic matter digestibility. Anim. Prod. Sci. 2018, 58, 900–908. [Google Scholar] [CrossRef] [Green Version]
- Adejoro, F.A.; Hassen, A.; Akanmu, A.M. Effect of lipid-encapsulated acacia tannin extract on feed intake, nutrient digestibility and methane emission in sheep. Animals 2019, 9, 863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramiah, S.K.; Zulkifli, I.; Rahim, N.A.A.; Ebrahimi, M.; Meng, G.Y. Effects of two herbal extracts and virginiamycin supplementation on growth performance, intestinal microflora population and fatty acid composition in broiler chickens. Asian-Australas. J. Anim. Sci. 2014, 27, 375–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahromi, M.F.; Altaher, Y.W.; Shokryazdan, P.; Ebrahimi, R.; Ebrahimi, M.; Idrus, Z.; Tufarelli, V.; Liang, J.B. Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. Int. J. Biometeorol. 2016, 60, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Kim, D.H.; Guan, L.L.; Ahn, S.K.; Cho, K.W.; Lee, S.S. Effect of medicinal plant by-products supplementation to total mixed ration on growth performance carcass characteristics and economic efficacy in the late fattening period of hanwoo steers. Asian-Australas. J. Anim. Sci. 2015, 28, 1729–1735. [Google Scholar] [CrossRef] [Green Version]
- Mama, O.M.; Gómez, P.; Ruiz-Ripa, L.; Gómez-Sanz, E.; Zarazaga, M.; Torres, C. Antimicrobial Resistance, Virulence, and Genetic Lineages of Staphylococci from Horses Destined for Human Consumption: High Detection of S. aureus Isolates of Lineage ST1640 and Those Carrying the lukPQ Gene. Animals 2019, 9, 900. [Google Scholar] [CrossRef] [Green Version]
- Wanapat, M.; Cherdthong, A.; Phesatcha, K.; Kang, S. Dietary sources and their effects on animal production and environmental sustainability. Anim. Nutr. 2015, 1, 96–103. [Google Scholar] [CrossRef]
- Broucek, J. Production of Methane Emissions from Ruminant Husbandry: A Review. J. Environ. Prot. 2014, 5, 1482–1493. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Swain, P.S.; Dominic, G.; Bhakthavatsalam, K.V.S.; Terhuja, M.; Swain, P.S.; Dominic, Á.G. Impact of Ruminants on Global Warming: Indian and Global Context. In Environmental Science and Engineering; Springer: Cham, Switzerland, 2016; pp. 83–97. [Google Scholar]
- Wang, W.J.; Wang, S.P.; Luo, D.M.; Zhao, X.L.; Yin, M.J.; Zhou, C.F.; Liu, G.W. Effect of Chinese herbal medicines on rumen fermentation, methanogenesis and microbial flora in vitro. S. Afr. J. Anim. Sci. 2019, 49, 63–70. [Google Scholar] [CrossRef]
- Patra, A.K. (Ed.) Dietary Phytochemicals and Microbes; Springer Science & Business Media: Dordrecht, The Netherlands, 2012; ISBN 9789400739260. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Ottenstein, D.M.; Bartley, D.A. Improved Gas Chromatography Separation of Free Acids C2-C5 in Dilute Solution. Anal. Chem. 1971, 43, 952–955. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Engels, E.A.N.; Van der Merwe, F.J. Application of an in vitro technique to South African forages with special reference to the effect to certain factors on the results. S. Afr. J. Agric. Sci. 1967, 10, 983–992. [Google Scholar]
- Ikhimioya, I. Acceptability of selected common shrubs/tree leaves in Nigeria by West African Dwarf goats. Livest. Res. Rural. Dev. 2019, 20, 90. [Google Scholar]
- Taranto, F.; Pasqualone, A.; Mangini, G.; Tripodi, P.; Miazzi, M.M.; Pavan, S.; Montemurro, C. Polyphenol Oxidases in Crops: Biochemical Physiological and Genetic Aspects. Int. J. Mol. Sci. 2017, 18, 377. [Google Scholar] [CrossRef] [PubMed]
- Mediani, A.; Abas, F.; Tan, C.; Khatib, A. Effects of Different Drying Methods and Storage Time on Free Radical Scavenging Activity and Total Phenolic Content of Cosmos Caudatus. Antioxidants 2014, 3, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh Amoli, Z.; Mehdizadeh, T.; Tajik, H.; Azizkhani, M. Shelf life extension of refrigerated, vacuum-packed rainbow trout dipped in an alginate coating containing an ethanolic extract and/or the essential oil of Mentha Aquatica. Chem. Pap. 2019, 73, 2541–2550. [Google Scholar] [CrossRef]
- Stafford, G.I.; Jäger, A.K.; van Staden, J. Effect of storage on the chemical composition and biological activity of several popular South African medicinal plants. J. Ethnopharmacol. 2005, 97, 107–115. [Google Scholar] [CrossRef]
- Amoo, S.O.; Aremu, A.O.; Moyo, M.; Van Staden, J. Antioxidant and acetylcholinesterase-inhibitory properties of long-term stored medicinal plants. BMC Complement. Altern. Med. 2012, 12, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forabosco, F.; Chitchyan, Z.; Mantovani, R. Methane nitrous oxide emissions and mitigation strategies for livestock in developing countries: A review. S. Afr. J. Anim. Sci. 2017, 47, 268–280. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. JAST 2018, 60, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, C.M.; Chung, Y.-H.; Ishler, V.A.; Bailey, K.W.; Varga, G.A. Effects of dietary forage level and monensin on lactation performance, digestibility and fecal excretion of nutrients, and efficiency of feed nitrogen utilization of Holstein dairy cows. J. Dairy Sci. 2009, 92, 3211–3221. [Google Scholar] [CrossRef] [PubMed]
- Balsamo, R.A.; Willigen, C.V.; Bauer, A.M.; Farrant, J. Drought tolerance of selected Eragrostis species correlates with leaf tensile properties. Ann. Bot. 2006, 97, 985–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hundal, J.S.; Singh, I.; Wadhwa, M.; Singh, C.; Uppal, C.; Kaur, G. Effect of Punica granatum and Tecomella undulata supplementation on nutrient utilization enteric methane emission and growth performance of Murrah male buffaloes. J. Anim. Feed Sci. 2019, 73, 389. [Google Scholar] [CrossRef]
- Kumar Singh, R.; Dey, A.; Punia, B.; Paul, S.; Singh, M.; Kumar, R. Supplementing blends of plant secondary metabolites as phytobiotics for modulation of in vitro methanogenesis and rumen fermentation in buffalo. Bull. Environ. Pharmacol. Life Sci. 2017, 6, 444–447. [Google Scholar]
- Elghandour, M.M.Y.; Salem, A.Z.M.; Khusro, A.; Cipriano-Salazar, M.; Olivares-Pérez, J.; Barros-Rodriguez, M.A.; Lugo Coyote, R. Assessment of some browse tree leaves on gas production and sustainable mitigation of CH4 and CO2 emissions in dairy calves at different age. J. Clean. Prod. 2017, 162, 1192–1199. [Google Scholar] [CrossRef]
- Faniyi, T.O.; Prates, E.R.; Adegbeye, M.J.; Adewumi, M.K.; Elghandour, M.M.Y.; Salem, A.Z.M.; Ritt, L.A.; Zubieta, A.S.; Stella, L.; Ticiani, E. Prediction of biogas and pressure from rumen fermentation using plant extracts to enhance biodigestibility and mitigate biogases. ESPR 2019, 26, 27043–27051. [Google Scholar] [CrossRef]
- Linda, J.; Okon, E.O. Comparative Study of the Phytochemical Properties of Jatropha curcas and Azadirachta indica Plant Extracts. J. Poisonous Med. Plants Res. 2014, 2, 20–24. [Google Scholar]
- Cieslak, A.; Zmora, P.; Pers-Kamczyc, E.; Szumacher-Strabel, M. Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo. Anim. Feed Sci. Technol. 2012, 176, 102–106. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Combinations of nitrate saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion fermentation or microbial communities. Bioresour. Technol. 2014, 155, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Delgado, D.C.; Galindo, J.; Gonzalez, R.; Savon, L.; Scull, I.; Gonzalez, N.; Marrero, Y. Potential of tropical plants to exert defaunating effects on the rumen and to reduce methane production. In Proceedings of the Sustainable Improvement of Animal Production and Health, Vienna, Austria, 8–11 June 2009; pp. 49–54. [Google Scholar]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Kim, E.T.; Guan, L.L.; Lee, S.J.; Lee, S.M.; Lee, S.S.; Lee, I.D.; Lee, S.K.; Lee, S.S. Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics. Asian-Australas. J. Anim. Sci. 2015, 28, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Adejoro, F.A.; Hassen, A.; Akanmu, A.M.; Morgavi, D.P. Replacing urea with nitrate as a non-protein nitrogen source increases lambs’ growth and reduces methane production, whereas acacia tannin has no effect. Anim. Feed Sci. Technol. 2020, 259, 114360. [Google Scholar] [CrossRef]
- Castro-Montoya, J.M.; Makkar, H.P.S.; Becker, K. Chemical composition of rumen microbial fraction and fermentation parameters as affected by tannins and saponins using an in vitro rumen fermentation system. Can. J. Anim. Sci. 2011, 91, 433–448. [Google Scholar] [CrossRef]
Composition in DM (g/kg DM) | TMR | Lucerne | Eragrostis |
---|---|---|---|
Crude protein | 192 | 185 | 56.1 |
NDF | 301 | 406 | 784 |
ADF | 214 | 321 | 492 |
ADL | 48 | 55 | 78 |
Ether extract | 59 | 19 | 12 |
Ash | 78 | 76 | 45 |
Parameters | Substrates | Extracts | Cntrl | Mon | AV | AZ | MO | TD | JA | CP | SEM | p-Values | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | S | p*S | ||||||||||||
TGP, mL | TMR | Stored | 89.6 | 86.2 | 85.6 | 85.1 | 83.4 | 80.4 | 82.1 | 85.6 | 0.59 | 0.02 | 0.53 | 0.91 |
Fresh | 89.6 | 86.2 | 83.4 | 81.5 | 82.6 | 82.3 | 82.0 | 85.9 | ||||||
Lucerne | Stored | 63.8 | 56.2 | 60.1 | 57.3 | 56.2 | 58.2 | 62.8 | 61.1 | 0.49 | <0.01 | 0.61 | 0.29 | |
Fresh | 63.8 | 56.2 | 60.4 | 55.1 | 59.6 | 57.8 | 59.4 | 60.8 | ||||||
Eragrostis | Stored | 55.3 | 53.6 | 54.2 | 49.7 | 50.8 | 49.2 | 47.3 | 50.1 | 0.58 | <0.01 | 0.06 | 0.72 | |
Fresh | 55.3 | 53.6 | 54.4 | 47.9 | 47.7 | 48.5 | 45.7 | 48.7 | ||||||
Methane, mL | TMR | Stored | 30.6 | 25.4 | 22.7 | 26.7 | 24.8 | 22.3 | 25.1 | 22.6 | 0.51 | 0.01 | 0.96 | 0.85 |
Fresh | 30.6 | 25.4 | 24.1 | 24.2 | 24.4 | 25.3 | 25.4 | 22.1 | ||||||
Lucerne | Stored | 22.7 | 21.1 | 23.4 | 18.0 | 17.8 | 15.8 | 20.1 | 18.6 | 0.41 | 0.01 | 0.37 | 0.29 | |
Fresh | 22.7 | 21.1 | 21.8 | 19.8 | 20.1 | 18.2 | 18.3 | 19.2 | ||||||
Eragrostis | Stored | 17.9 | 14.5 | 8.72 | 9.22 | 7.72 | 7.87 | 7.18 | 6.56 | 0.76 | <0.01 | 0.20 | 0.23 | |
Fresh | 17.9 | 14.5 | 8.88 | 7.91 | 7.25 | 5.81 | 5.87 | 7.63 | ||||||
IVOMD, % | TMR | Stored | 71.1 | 76.1 | 80.8 | 77.2 | 77.5 | 76.1 | 73.4 | 76.4 | 0.76 | <0.01 | <0.01 | 0.01 |
Fresh | 71.1 | 76.1 | 88.2 | 83.1 | 80.3 | 79.8 | 77.3 | 77.7 | ||||||
Lucerne | Stored | 61.6 | 68.6 | 63.4 | 63.7 | 59.6 | 64.4 | 62.5 | 64.7 | 1.55 | 0.22 | 0.35 | 0.49 | |
Fresh | 61.6 | 68.6 | 62.5 | 63.1 | 63.7 | 62.7 | 61.9 | 64.2 | ||||||
Eragrostis | Stored | 33.6 | 35.4 | 44.6 | 41.5 | 44.4 | 42.5 | 40.2 | 42.8 | 0.72 | <0.01 | 0.42 | 0.97 | |
Fresh | 33.6 | 35.4 | 45.8 | 41.8 | 45.1 | 42.6 | 41.5 | 42.3 | ||||||
TVFA, mmol/L | TMR | Stored | 121 | 115 | 129 | 117 | 120 | 118 | 119 | 117 | 0.67 | <0.01 | 0.18 | 0.08 |
Fresh | 121 | 115 | 127 | 117 | 119 | 117 | 118 | 119 | ||||||
Lucerne | Stored | 95.9 | 91.8 | 96.9 | 93.9 | 94.7 | 96.4 | 97.9 | 94.2 | 0.36 | <0.01 | 0.98 | 0.89 | |
Fresh | 95.9 | 91.5 | 96.9 | 93.1 | 94.8 | 97.2 | 97.5 | 94.5 | ||||||
Eragrostis | Stored | 82.0 | 76.1 | 78.8 | 77.1 | 80.1 | 78.9 | 78.9 | 79.0 | 0.31 | 0.07 | 0.42 | 0.48 | |
Fresh | 82.0 | 76.1 | 78.7 | 77.8 | 78.1 | 78.5 | 78.0 | 80.1 |
Parameters | Substrates | Extracts | Cntrl | Mon | AV | AZ | MO | TD | JA | CP | SEM | p-Values | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | S | p*S | ||||||||||||
CH4/TGP | TMR | Stored | 34.1 | 29.5 | 26.5 | 31.4 | 29.5 | 30.7 | 30.5 | 26.4 | 0.49 | 0.01 | 0.71 | 0.88 |
Fresh | 34.1 | 29.5 | 28.6 | 29.7 | 29.4 | 28.5 | 30.9 | 25.7 | ||||||
Lucerne | Stored | 35.5 | 34.7 | 38.9 | 31.4 | 31.2 | 27.3 | 32.1 | 30.4 | 0.58 | 0.01 | 0.22 | 0.28 | |
Fresh | 35.5 | 34.7 | 36.0 | 36.1 | 33.6 | 31.5 | 30.8 | 31.7 | ||||||
Eragrostis | Stored | 28.9 | 33.5 | 16.1 | 18.6 | 15.1 | 15.9 | 15.2 | 13.1 | 1.29 | <0.01 | 0.31 | 0.25 | |
Fresh | 28.9 | 33.5 | 16.3 | 16.5 | 15.3 | 12.0 | 12.9 | 15.7 | ||||||
CH4/IVOMD, mL/kg | TMR | Stored | 42.9 | 33.4 | 28.1 | 34.7 | 31.9 | 30.2 | 34.2 | 29.7 | 0.87 | <0.01 | 0.21 | 0.71 |
Fresh | 42.9 | 33.4 | 27.2 | 29.1 | 30.3 | 31.6 | 32.8 | 28.3 | ||||||
Lucerne | Stored | 36.8 | 30.7 | 36.9 | 28.3 | 29.9 | 24.6 | 32.2 | 28.8 | 3.52 | 0.23 | 0.29 | 0.50 | |
Fresh | 36.8 | 30.7 | 34.7 | 31.6 | 31.5 | 29.1 | 29.6 | 30.1 | ||||||
Eragrostis | Stored | 47.7 | 51.0 | 19.8 | 22.2 | 17.4 | 18.5 | 17.9 | 15.4 | 2.50 | <0.01 | 0.20 | 0.25 | |
Fresh | 47.7 | 51.0 | 19.4 | 18.9 | 16.1 | 13.6 | 14.1 | 18.0 | ||||||
TGP/IVOMD, mL/kg | TMR | Stored | 1.26 | 1.13 | 1.06 | 1.10 | 1.08 | 1.07 | 1.11 | 1.12 | 0.02 | <0.01 | 0.02 | 0.18 |
Fresh | 1.26 | 1.13 | 0.95 | 0.97 | 1.03 | 1.02 | 1.06 | 1.10 | ||||||
Lucerne | Stored | 1.04 | 0.88 | 0.94 | 0.89 | 0.94 | 0.91 | 1.00 | 0.94 | 0.09 | 0.32 | 0.35 | 0.48 | |
Fresh | 1.04 | 0.8 | 0.96 | 0.87 | 0.93 | 0.92 | 0.95 | 0.94 | ||||||
Eragrostis | Stored | 1.65 | 1.52 | 1.22 | 1.19 | 1.14 | 1.16 | 1.18 | 1.17 | 0.04 | <0.01 | 0.15 | 0.96 | |
Fresh | 1.65 | 1.52 | 1.19 | 1.15 | 1.06 | 1.14 | 1.09 | 1.15 | ||||||
CH4/TVFA | TMR | Stored | 25.2 | 22.0 | 17.5 | 22.7 | 20.7 | 19.3 | 21.1 | 19.4 | 0.43 | <0.01 | 0.91 | 0.78 |
Fresh | 25.2 | 22.1 | 18.9 | 20.5 | 20.4 | 21.5 | 21.4 | 18.5 | ||||||
Lucerne | Stored | 23.6 | 23.0 | 24.1 | 19.2 | 18.8 | 16.4 | 20.5 | 19.7 | 0.44 | <0.01 | 0.38 | 0.37 | |
Fresh | 23.6 | 23.1 | 22.5 | 21.3 | 21.1 | 18.7 | 18.8 | 20.4 | ||||||
Eragrostis | Stored | 21.9 | 19.1 | 11.1 | 10.6 | 9.65 | 9.98 | 9.11 | 8.31 | 0.96 | <0.01 | 0.29 | 0.26 | |
Fresh | 21.9 | 19.1 | 11.2 | 10.1 | 9.26 | 7.41 | 7.52 | 9.51 | ||||||
TGP/TVFA | TMR | Stored | 73.9 | 74.8 | 66.1 | 72.3 | 69.8 | 67.9 | 69.0 | 73.3 | 0.59 | <0.01 | 0.70 | 0.85 |
Fresh | 73.9 | 74.8 | 66.0 | 68.8 | 69.3 | 70.2 | 69.3 | 72.2 | ||||||
Lucerne | Stored | 66.6 | 66.4 | 61.9 | 61.1 | 59.3 | 60.3 | 64.2 | 64.8 | 0.55 | <0.01 | 0.66 | 0.54 | |
Fresh | 66.6 | 66.4 | 62.3 | 59.2 | 62.8 | 59.5 | 60.9 | 64.3 | ||||||
Eragrostis | Stored | 67.3 | 70.5 | 68.7 | 66.5 | 63.5 | 62.3 | 60.1 | 63.4 | 0.73 | <0.01 | 0.06 | 0.64 | |
Fresh | 67.3 | 70.5 | 69.1 | 61.6 | 61.1 | 61.7 | 58.5 | 60.7 |
VFA Molar Proportions | Extracts | Cntrl | Mon | AV | AZ | MO | TD | JA | CP | SEM | p-Values | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | S | p*S | ||||||||||||
Acetate | TMR | Stored | 45.5 | 44.5 | 33.6 | 33.9 | 31.3 | 31.5 | 33.5 | 33.2 | 1.00 | <0.01 | 0.38 | 0.47 |
Fresh | 45.5 | 44.5 | 34.1 | 35.3 | 30.6 | 29.7 | 32.5 | 32.2 | ||||||
Lucerne | Stored | 43.3 | 41.9 | 37.3 | 34.1 | 33.1 | 36.5 | 32.6 | 36.1 | 0.66 | <0.01 | 0.95 | 0.34 | |
Fresh | 43.3 | 41.9 | 35.4 | 35.5 | 34.1 | 34.5 | 34.6 | 35.6 | ||||||
Eragrostis | Stored | 44.4 | 42.2 | 35.8 | 36.2 | 38.2 | 39.1 | 38.5 | 38.1 | 0.55 | <0.01 | 0.26 | 0.28 | |
Fresh | 44.4 | 42.0 | 37.6 | 36.1 | 39.0 | 37.9 | 34.5 | 36.8 | ||||||
Propionate | TMR | Stored | 22.7 | 23.2 | 20.3 | 20.2 | 21.3 | 19.6 | 19.7 | 21.8 | 0.32 | 0.04 | 0.62 | 0.92 |
Fresh | 22.7 | 23.2 | 20.3 | 19.9 | 22.6 | 21.8 | 18.9 | 21.6 | ||||||
Lucerne | Stored | 21.0 | 19.4 | 20.8 | 20.3 | 19.7 | 20.6 | 19.6 | 20.7 | 0.13 | 0.82 | 0.60 | 0.14 | |
Fresh | 20.1 | 20.9 | 19.4 | 19.7 | 19.4 | 20.2 | 20.7 | 19.6 | ||||||
Eragrostis | Stored | 17.9 | 20.1 | 21.9 | 22.1 | 21.4 | 21.5 | 22.5 | 21.6 | 0.30 | 0.01 | 0.25 | 0.49 | |
Fresh | 17.9 | 20.1 | 22.7 | 21.7 | 22.9 | 23.3 | 21.8 | 22.6 | ||||||
Iso-butyrate | TMR | Stored | 2.92 | 3.97 | 7.66 | 6.57 | 6.46 | 7.42 | 7.06 | 9.26 | 0.43 | <0.01 | 0.79 | 0.19 |
Fresh | 2.92 | 3.97 | 5.80 | 4.72 | 6.84 | 8.63 | 10.2 | 9.21 | ||||||
Lucerne | Stored | 3.00 | 13.1 | 8.3 | 9.59 | 8.98 | 7.51 | 9.16 | 8.62 | 0.49 | <0.01 | 0.82 | 0.86 | |
Fresh | 3.00 | 12.5 | 9.69 | 9.14 | 7.39 | 7.83 | 8.51 | 9.28 | ||||||
Eragrostis | Stored | 4.89 | 5.91 | 12.5 | 8.97 | 9.39 | 9.19 | 8.63 | 9.35 | 0.40 | <0.01 | 0.52 | 0.10 | |
Fresh | 4.89 | 5.91 | 7.54 | 9.26 | 10.3 | 8.42 | 9.96 | 10.1 | ||||||
Butyrate | TMR | Stored | 12.8 | 14.5 | 18.9 | 19.7 | 20.3 | 20.4 | 19.4 | 18.5 | 0.51 | <0.01 | 0.32 | 0.94 |
Fresh | 12.8 | 14.6 | 19.1 | 20.6 | 20.7 | 21.4 | 18.8 | 19.5 | ||||||
Lucerne | Stored | 15.8 | 10.9 | 13.5 | 14.1 | 14.6 | 14.2 | 15.6 | 13.9 | 0.27 | <0.01 | 0.68 | 0.62 | |
Fresh | 15.8 | 10.4 | 14.1 | 14.3 | 14.8 | 14.7 | 14.8 | 14.1 | ||||||
Eragrostis | Stored | 15.9 | 12.1 | 8.72 | 12.1 | 11.1 | 11.4 | 11.1 | 11.4 | 0.40 | 0.03 | 0.15 | 0.18 | |
Fresh | 15.6 | 12.1 | 14.7 | 11.6 | 9.7 | 11.6 | 11.6 | 13.7 | ||||||
Iso-valerate | TMR | Stored | 11.7 | 9.52 | 10.3 | 10.1 | 11.1 | 11.3 | 10.5 | 11.1 | 0.16 | 0.04 | 0.65 | 0.99 |
Fresh | 11.7 | 9.52 | 1.1 | 10.6 | 11.1 | 11.1 | 10.5 | 11.1 | ||||||
Lucerne | Stored | 12.9 | 8.16 | 10.1 | 10.8 | 12.1 | 10.8 | 12.3 | 10.3 | 0.33 | 0.01 | 0.60 | 0.95 | |
Fresh | 12.9 | 12.8 | 11.3 | 10.8 | 12.9 | 11.8 | 11.2 | 11.1 | ||||||
Eragrostis | Stored | 11.9 | 10.7 | 9.91 | 10.7 | 9.79 | 9.14 | 9.43 | 9.81 | 0.24 | 0.45 | 0.23 | 0.81 | |
Fresh | 11.9 | 10.7 | 9.25 | 10.9 | 10.8 | 11.2 | 11.5 | 9.56 | ||||||
Valerate | TMR | Stored | 4.06 | 4.21 | 9.13 | 9.34 | 9.50 | 9.82 | 9.87 | 6.83 | 0.43 | <0.01 | 0.21 | 0.80 |
Fresh | 4.05 | 4.21 | 9.6 | 8.99 | 8.13 | 7.51 | 9.14 | 6.58 | ||||||
Lucerne | Stored | 4.76 | 4.72 | 10.0 | 11.1 | 11.7 | 10.2 | 10.6 | 10.4 | 0.47 | <0.01 | 0.42 | 0.76 | |
Fresh | 4.76 | 4.72 | 10.0 | 10.4 | 11.4 | 10.9 | 10.1 | 10.2 | ||||||
Eragrostis | Stored | 5.22 | 6.61 | 11.2 | 10.0 | 10.2 | 9.65 | 9.86 | 9.81 | 0.43 | 0.03 | 0.19 | 0.71 | |
Fresh | 5.22 | 6.61 | 8.16 | 10.4 | 7.64 | 7.52 | 11.3 | 7.61 | ||||||
A: p ratio | TMR | Stored | 1.99 | 1.92 | 1.65 | 1.67 | 1.46 | 1.60 | 1.69 | 1.52 | 0.04 | <0.01 | 0.63 | 0.81 |
Fresh | 1.99 | 1.92 | 1.67 | 1.79 | 1.36 | 1.39 | 1.71 | 1.48 | ||||||
Lucerne | Stored | 2.16 | 2.17 | 1.78 | 1.67 | 1.68 | 1.76 | 1.66 | 1.75 | 0.03 | <0.01 | 0.74 | 0.45 | |
Fresh | 2.16 | 2.17 | 1.82 | 1.79 | 1.75 | 1.71 | 1.67 | 1.81 | ||||||
Eragrostis | Stored | 2.48 | 2.02 | 1.63 | 1.64 | 1.78 | 1.82 | 1.71 | 1.76 | 0.05 | <0.01 | 0.03 | 0.42 | |
Fresh | 2.48 | 2.02 | 1.65 | 1.66 | 1.70 | 1.63 | 1.63 | 1.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akanmu, A.M.; Hassen, A.; Adejoro, F.A. Gas Production, Digestibility and Efficacy of Stored or Fresh Plant Extracts to Reduce Methane Production on Different Substrates. Animals 2020, 10, 146. https://doi.org/10.3390/ani10010146
Akanmu AM, Hassen A, Adejoro FA. Gas Production, Digestibility and Efficacy of Stored or Fresh Plant Extracts to Reduce Methane Production on Different Substrates. Animals. 2020; 10(1):146. https://doi.org/10.3390/ani10010146
Chicago/Turabian StyleAkanmu, Abiodun Mayowa, Abubeker Hassen, and Festus Adeyemi Adejoro. 2020. "Gas Production, Digestibility and Efficacy of Stored or Fresh Plant Extracts to Reduce Methane Production on Different Substrates" Animals 10, no. 1: 146. https://doi.org/10.3390/ani10010146
APA StyleAkanmu, A. M., Hassen, A., & Adejoro, F. A. (2020). Gas Production, Digestibility and Efficacy of Stored or Fresh Plant Extracts to Reduce Methane Production on Different Substrates. Animals, 10(1), 146. https://doi.org/10.3390/ani10010146