Effect of Replacement of Synthetic vs. Natural Curing Agents on Quality Characteristics of Cinta Senese Frankfurter-Type Sausage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Natural Mixtures
- grape seeds condensed tannins;
- hydroxytyrosol, hy-derivatives, and tyrosol from olive oil pomace of Olea europaea L.;
- chestnut hydrolysable tannins.
2.2. Sample Manufacturing
- one with addition of nitrite and nitrate (1%) as curing agents forming the first treatment (NIT);
- one with addition of “mix NAT” (1%) to replace nitrite and nitrate and forming the second treatment (NAT).
2.3. Microbiological, Chemical, and Physical Analysis
2.4. Sensory Analysis
2.5. Statistical Analysis
3. Results
3.1. Microbiological Characterization
3.2. Chemical Traits
3.3. Physical Traits
3.4. Sensory Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Food Safety Authority. EFSA Explains Risk Assessment Nitrites and Nitrates Added to Food; European Food Safety Authority: Parma, Italy, 2017; ISBN 978-92-9499-007-5.
- Marco, A.; Navarro, J.L.; Flores, M. The influence of nitrite and nitrate on microbial, chemical and sensory parameters of slow dry fermented sausage. Meat Sci. 2006, 73, 660–673. [Google Scholar] [CrossRef]
- Hammes, W.P. Metabolism of nitrate in fermented meats: The characteristic feature of a specific group of fermented foods. Food Microbiol. 2012, 29, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.-O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Mey, E.D.; Maere, H.D.; Paelinck, H.; Fraeye, I. Volatile N-nitrosamines in meat products: Potential precursors, influence of processing, and mitigation strategies. Crit. Rev. Food Sci. Nutr. 2017, 57, 2909–2923. [Google Scholar] [CrossRef] [PubMed]
- Drabik-Markiewicz, G.; Dejaegher, B.; De Mey, E.; Kowalska, T.; Paelinck, H.; Vander Heyden, Y. Influence of putrescine, cadaverine, spermidine or spermine on the formation of N-nitrosamine in heated cured pork meat. Food Chem. 2011, 126, 1539–1545. [Google Scholar] [CrossRef]
- Herrmann, S.S.; Granby, K.; Duedahl-Olesen, L. Formation and mitigation of N-nitrosamines in nitrite preserved cooked sausages. Food Chem. 2015, 174, 516–526. [Google Scholar] [CrossRef] [Green Version]
- Velasco, V.; Williams, P. Improving meat quality through natural antioxidants. Chil. J. Agric. Res. 2011, 71, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Fasseas, M.K.; Mountzouris, K.C.; Tarantilis, P.A.; Polissiou, M.; Zervas, G. Antioxidant activity in meat treated with oregano and sage essential oils. Food Chem. 2007, 106, 1188–1194. [Google Scholar] [CrossRef]
- Cosentino, S.; Tuberoso, C.I.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. In-Vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett. Appl. Microbiol. 1999, 29, 130–135. [Google Scholar] [CrossRef]
- Rota, M.C.; Herrera, A.; Martinez, R.M.; Sotomayor, J.A.; Jordan, M.J. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Mukai, K.; Nagai, S.; Ohara, K. Kinetic study of the quenching reaction of singlet oxygen by tea catechins in ethanol solution. Free Radic. Biol. Med. 2005, 39, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Andjelkovic, M.; Vancamp, J.; Demeulenaer, B.; Depaemelaere, G.; Socaciu, C.; Verloo, M.; Verhe, R. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006, 98, 23–31. [Google Scholar] [CrossRef]
- Eskandari, M.H.; Hosseinpour, S.; Mesbahi, G.; Shekarforoush, S. New composite nitrite-free and low-nitrite meat-curing systems using natural colorants. Food Sci. Nutr. 2013, 1, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Bermúdez, R.; Lorenzo, J.M.; Franco, D. Effect of Addition of Natural Antioxidants on the Shelf-Life of “Chorizo”, a Spanish Dry-Cured Sausage. Antioxidants 2015, 4, 42–67. [Google Scholar] [CrossRef] [Green Version]
- Ayo, J.; Carballo, J.; Serrano, J.; Olmedilla-Alonso, B.; Ruiz-Capillas, C.; Jiménez-Colmenero, F. Effect of total replacement of pork backfat with walnut on the nutritional profile of frankfurters. Meat Sci. 2007, 77, 173–181. [Google Scholar] [CrossRef]
- Sebranek, J.G.; Bacus, J.N. Cured meat products without direct addition of nitrate or nitrite: What are the issues? Meat Sci. 2007, 77, 136–147. [Google Scholar] [CrossRef]
- Alirezalu, K.; Hesari, J.; Nemati, Z.; Munekata, P.E.S.; Barba, F.J.; Lorenzo, J.M. Combined effect of natural antioxidants and antimicrobial compounds during refrigerated storage of nitrite-free frankfurter-type sausage. Food Res. Int. 2019, 120, 839–850. [Google Scholar] [CrossRef]
- Romani, A.; Campo, M.; Pinelli, P. HPLC/DAD/ESI-MS analyses and anti-radical activity of hydrolyzable tannins from different vegetal species. Food Chem. 2012, 130, 214–221. [Google Scholar] [CrossRef]
- Romani, A.; Scardigli, A.; Pinelli, P. An environmentally friendly process for the production of extracts rich in phenolic antioxidants from Olea europaea L. and Cynara scolymus L. matrices. Eur. Food Res. Technol. 2017, 243, 1229–1238. [Google Scholar] [CrossRef] [Green Version]
- Romani, A.; Pinelli, P.; Ieri, F.; Bernini, R. Sustainability, Innovation, and Green Chemistry in the Production and Valorization of Phenolic Extracts from Olea europaea L. Sustainability 2016, 8, 1002. [Google Scholar] [CrossRef] [Green Version]
- Campo, M.; Pinelli, P.; Romani, A. Hydrolyzable tannins from sweet chestnut fractions obtained by a sustainable and eco-friendly industrial process. Nat. Prod. Commun. 2016, 11, 409–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucarini, M.; Durazzo, A.; Romani, A.; Campo, M.; Lombardi-Boccia, G.; Cecchini, F. Bio-Based Compounds from Grape Seeds: A Biorefinery Approach. Molecules 2018, 23, 1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO 16649-2:2001. Available online: http://store.uni.com/catalogo/index.php/iso-16649-2-2001 (accessed on 3 December 2019).
- UNI EN ISO 11290-1:2005. Available online: http://store.uni.com/catalogo/uni-en-iso-11290-1-2005?___store=en&___from_store=it (accessed on 3 December 2019).
- UNI EN ISO 6888-1:2004. Available online: http://store.uni.com/catalogo/index.php/uni-en-iso-6888-1-2004 (accessed on 3 December 2019).
- UNI EN ISO 6579-1:2017. Available online: http://store.uni.com/catalogo/index.php/uni-en-iso-6579-1-2017 (accessed on 3 December 2019).
- UNI EN ISO 4833-1:2013. Available online: http://store.uni.com/catalogo/index.php/uni-en-iso-4833-1-2013 (accessed on 3 December 2019).
- AOAC. Official Methods of Analysis; AOAC: Rockville, MD, USA, 2019; Volume 1, p. 771. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Morrison, W.R.; Smith, L.M. PREPARATION OF FATTY ACID METHYL ESTERS AND DIMETHYLACETALS FROM LIPIDS WITH BORON FLUORIDE--METHANOL. J. Lipid Res. 1964, 5, 600–608. [Google Scholar]
- Novaković, S.; Tomašević, I. A comparison between Warner-Bratzler shear force measurement and texture profile analysis of meat and meat products: A review. IOP Conf. Ser. Earth Environ. Sci. 2017, 85, 012063. [Google Scholar] [CrossRef] [Green Version]
- Braghieri, A.; Piazzolla, N.; Carlucci, A.; Bragaglio, A.; Napolitano, F. Sensory properties, consumer liking and choice determinants of Lucanian dry cured sausages. Meat Sci. 2016, 111, 122–129. [Google Scholar] [CrossRef]
- Ranucci, D.; Miraglia, D.; Branciari, R.; Morganti, G.; Roila, R.; Zhou, K.; Jiang, H.; Braconi, P. Frankfurters made with pork meat, emmer wheat (Triticum dicoccum Schübler) and almonds nut (Prunus dulcis Mill.): Evaluation during storage of a novel food from an ancient recipe. Meat Sci. 2018, 145, 440–446. [Google Scholar] [CrossRef]
- Ahn, J.; Grün, I.U.; Mustapha, A. Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiol. 2007, 24, 7–14. [Google Scholar] [CrossRef]
- Taguri, T.; Tanaka, T.; Kouno, I. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol. Pharm. Bull. 2004, 27, 1965–1969. [Google Scholar] [CrossRef] [Green Version]
- Nirmal, N.P.; Benjakul, S. Retardation of quality changes of Pacific white shrimp by green tea extract treatment and modified atmosphere packaging during refrigerated storage. Int. J. Food Microbiol. 2011, 149, 247–253. [Google Scholar] [CrossRef]
- Maqsood, S.; Abushelaibi, A.; Manheem, K.; Al Rashedi, A.; Kadim, I.T. Lipid oxidation, protein degradation, microbial and sensorial quality of camel meat as influenced by phenolic compounds. LWT Food Sci. Technol. 2015, 63, 953–959. [Google Scholar] [CrossRef]
- Fasolato, L.; Carraro, L.; Facco, P.; Cardazzo, B.; Balzan, S.; Taticchi, A.; Andreani, N.A.; Montemurro, F.; Martino, M.E.; Di Lecce, G.; et al. Agricultural by-products with bioactive effects: A multivariate approach to evaluate microbial and physicochemical changes in a fresh pork sausage enriched with phenolic compounds from olive vegetation water. Int. J. Food Microbiol. 2016, 228, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Franci, O.; Pugliese, C.; Acciaioli, A.; Bozzi, R.; Campodoni, G.; Sirtori, F.; Pianaccioli, L.; Gandini, G. Performance of Cinta Senese pigs and their crosses with Large White 2. Physical, chemical and technological traits of Tuscan dry-cured ham. Meat Sci. 2007, 76, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Estevez, M.; Ventanas, S.; Cava, R. Oxidation of lipids and proteins in frankfurters with different fatty acid compositions and tocopherol and phenolic contents. Food Chem. 2007, 100, 55–63. [Google Scholar] [CrossRef]
- Škrlep, M.; Čandek-Potokar, M.; Tomažin, U.; Batorek Lukač, N.; Flores, M. Properties and aromatic profile of dry-fermented sausages produced from Krškopolje pigs reared under organic and conventional rearing regime. Animal 2018, 12, 1316–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daza, A.; Rey, A.I.; Olivares, A.; Cordero, G.; Toldrá, F.; López-Bote, C.J. Physical activity-induced alterations on tissue lipid composition and lipid metabolism in fattening pigs. Meat Sci. 2009, 81, 641–646. [Google Scholar] [CrossRef]
- Fonseca, S.; Gómez, M.; Domínguez, R.; Lorenzo, J.M. Physicochemical and sensory properties of Celta dry-ripened “salchichón” as affected by fat content. Grasas y Aceites 2015, 66, 059. [Google Scholar]
- Pugliese, C.; Sirtori, F. Quality of meat and meat products produced from southern European pig breeds. Meat Sci. 2012, 90, 511–518. [Google Scholar] [CrossRef]
- Horita, C.N.; Farias-Campomanes, A.M.; Barbosa, T.S.; Esmerino, E.A.; da Cruz, A.G.; Bolini, H.M.A.; Meireles, M.A.A.; Pollonio, M.A.R. The Antimicrobial, antioxidant and sensory properties of garlic and its derivatives in Brazilian low-sodium frankfurters along shelf-life. Food Res. Int. 2016, 84, 1–8. [Google Scholar]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Effect of added citrus fibre and spice essential oils on quality characteristics and shelf-life of mortadella. Meat Sci. 2010, 85, 568–576. [Google Scholar] [CrossRef]
- Hospital, X.F.; Carballo, J.; Fernández, M.; Arnau, J.; Gratacós, M.; Hierro, E. Technological implications of reducing nitrate and nitrite levels in dry-fermented sausages: Typical microbiota, residual nitrate and nitrite and volatile profile. Food Control 2015, 57, 275–281. [Google Scholar] [CrossRef]
- Özvural, E.B.; Vural, H. Which is the best grape seed additive for frankfurters: Extract, oil or flour? J. Sci. Food Agric. 2014, 94, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; García, C.; Muriel, E.; Andrés, A.I.; Ventanas, J. Influence of sensory characteristics on the acceptability of dry-cured ham. Meat Sci. 2002, 61, 347–354. [Google Scholar] [CrossRef]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, J.; Akter, M.; Honma, F.; Hayakawa, T.; Kumura, H.; Nishimura, T. Optimal pH of zinc protoporphyrin IX formation in porcine muscles: Effects of muscle fiber type and myoglobin content. LWT 2019, 101, 599–606. [Google Scholar] [CrossRef]
- Lücke, F.-K. Utilization of microbes to process and preserve meat. Meat Sci. 2000, 56, 105–115. [Google Scholar] [CrossRef]
- Ribas-Agustí, A.; Gratacós-Cubarsí, M.; Sárraga, C.; Guàrdia, M.D.; García-Regueiro, J.-A.; Castellari, M. Stability of phenolic compounds in dry fermented sausages added with cocoa and grape seed extracts. LWT Food Sci. Technol. 2014, 57, 329–336. [Google Scholar] [CrossRef]
- Özvural, E.B.; Vural, H. Grape seed flour is a viable ingredient to improve the nutritional profile and reduce lipid oxidation of frankfurters. Meat Sci. 2011, 88, 179–183. [Google Scholar] [CrossRef]
Olive Oil Pomace | g/L | Grape Seed | mg/g | Chestnut Tannin | mg/g |
---|---|---|---|---|---|
OH-tyrosol | 11.65 | Catechin | 11.07 | Vescalin | 9.34 |
OH-tyrosol derivatives | 5.13 | Epicatechin | 13.62 | Castalin | 9.00 |
Tyrosol | 16.02 | Catechin dimers | 10.21 | Pedunculagin | 3.88 |
Verbascoside | 5.84 | Catechin trimers | 6.92 | Galloil glucose derivatives | 42.59 |
Epicatechin gallate derivatives | 726.02 | Gallic Acid | 18.50 | ||
Tetramers | 54.88 | Roburin D | 10.51 | ||
Vescalagin | 32.15 | ||||
Castalagin | 31.03 | ||||
Ellagic Acid | 4.08 |
Parameter | Treatment | Days of Storage | T × D | ||
---|---|---|---|---|---|
7 | 30 | 60 | |||
Escherichia coli | NAT | <1.0 | <1.0 | <1.0 | n.s. |
NIT | <1.0 | <1.0 | <1.0 | n.s. | |
Listeria monocytogenes | NAT | − | − | − | n.s. |
NIT | − | − | − | n.s. | |
Coagulase positive Staphilococcus spp. | NAT | <1.0 | <1.0 | <1.0 | n.s. |
NIT | <1.0 | <1.0 | <1.0 | n.s. | |
Salmonella spp. | NAT | − | − | − | n.s. |
NIT | − | − | − | n.s. | |
Total microbial count (30 °C) | NAT | 7.04 a | 8.14 b,A | 10.20 c,A | n.s. |
NIT | 7.04 a | 8.32 b,B | 10.32 c,B | n.s. |
Parameter | Days of Storage | T × D | ||
---|---|---|---|---|
7 | 30 | 60 | ||
Moisture | 52.04 b | 51.71 b | 50.07 a | n.s. |
Protein | 15.26 a | 15.36 a | 15.97 b | n.s. |
Lipid | 30.26 a | 30.51 a | 31.42 b | n.s. |
Ash | 2.44 a | 2.42 a | 2.54 b | n.s. |
Parameter | Treatment | Days of Storage | T × D | ||
---|---|---|---|---|---|
7 | 30 | 60 | |||
C16:0 | NAT | 23.17 | 23.09 | 23.19 A | n.s. |
NIT | 23.31 a | 23.27 a | 23.61 b,B | n.s. | |
C16:1 | NAT | 2.63 A | 2.64 A | 2.64 A | n.s. |
NIT | 2.70 a,B | 2.70 a,B | 2.75 b,B | n.s. | |
C18:0 | NAT | 12.17 b | 11.96 a | 12.06 a,b | n.s. |
NIT | 12.16 | 12.09 | 12.07 | n.s. | |
C18:1 | NAT | 41.85 A | 42.16 | 41.94 | n.s. |
NIT | 42.62 B | 42.40 | 42.31 | n.s. | |
C18:2n6 | NAT | 14.44 B | 14.45 B | 14.44 B | n.s. |
NIT | 13.58 A | 13.80 A | 13.65 A | n.s. | |
C18:3n3 | NAT | 0.94 B | 0.94 B | 0.94 B | n.s. |
NIT | 0.88 A | 0.90 A | 0.89 A | n.s. | |
SFA | NAT | 37.38 | 37.03 | 37.29 | n.s. |
NIT | 37.51 | 37.45 | 37.73 | n.s. | |
MUFA | NAT | 45.70 A | 46.04 A | 45.79 A | n.s. |
NIT | 46.59 B | 46.35 B | 46.30 B | n.s. | |
PUFA | NAT | 16.90 B | 16.92 B | 16.91 B | n.s. |
NIT | 15.90 A | 16.20 A | 16.00 A | n.s. | |
n3PUFA | NAT | 1.20 B | 1.21 B | 1.21 B | n.s. |
NIT | 1.14 A | 1.17 A | 1.14 A | n.s. | |
n6PUFA | NAT | 15.67 B | 15.68 B | 15.67 B | n.s. |
NIT | 14.72 A | 14.98 A | 14.80 A | n.s. | |
PUFA/SFA | NAT | 0.45 B | 0.46 B | 0.45 B | n.s. |
NIT | 0.42 A | 0.43 A | 0.42 A | n.s. |
Parameter | Treatment | Days of Storage | T × D | ||
---|---|---|---|---|---|
7 | 30 | 60 | |||
pH | NAT | 6.07 c,A | 5.62 b,A | 5.39 a,A | n.s. |
NIT | 6.19 c,B | 5.74 b,B | 5.53 a,B | n.s. | |
Water activity (aW) | NAT | 0.977 | 0.977 | 0.978 | n.s. |
NIT | 0.989 | 0.989 | 0.988 | n.s. | |
L* | NAT | 66.84 A | 66.84 A | 67.00 A | n.s. |
NIT | 69.62 b,B | 69.97 b,B | 67.89 a,A | n.s. | |
a* | NAT | 8.22 a,A | 9.77 bA | 11.22 c,A | * |
NIT | 17.02 B | 17.03 B | 17.27 B | ||
b* | NAT | 12.43 a,B | 11.55 b,B | 11.61 b | * |
NIT | 11.17 a,A | 11.13 a,A | 11.46 b | ||
Warner–Bratzler shear force (kg) | NAT | 29.48 A | 30.54 A | 31.22 A | n.s. |
NIT | 37.78 B | 39.86 B | 39.55 B | n.s. | |
TPA | |||||
hardness (N) | NAT | 71.54 A | 70.21 A | 74.76 A | * |
NIT | 78.02 a,B | 86.20 a,b,B | 93.28 b,B | ||
Cohesiveness | NAT | 0.55 a,b,A | 0.51 a,A | 0.59 b | * |
NIT | 0.67 B | 0.66 B | 0.62 | ||
Springiness (mm) | NAT | 7.59 | 7.69 | 7.33 | n.s. |
NIT | 7.65 | 7.69 | 7.67 | n.s. | |
Chewiness (Nx mm) | NAT | 300.03 A | 284.77 A | 300.05 A | n.s. |
NIT | 398.97 B | 434.53 B | 441.85 B | n.s. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parrini, S.; Sirtori, F.; Acciaioli, A.; Becciolini, V.; Crovetti, A.; Franci, O.; Romani, A.; Scardigli, A.; Bozzi, R. Effect of Replacement of Synthetic vs. Natural Curing Agents on Quality Characteristics of Cinta Senese Frankfurter-Type Sausage. Animals 2020, 10, 14. https://doi.org/10.3390/ani10010014
Parrini S, Sirtori F, Acciaioli A, Becciolini V, Crovetti A, Franci O, Romani A, Scardigli A, Bozzi R. Effect of Replacement of Synthetic vs. Natural Curing Agents on Quality Characteristics of Cinta Senese Frankfurter-Type Sausage. Animals. 2020; 10(1):14. https://doi.org/10.3390/ani10010014
Chicago/Turabian StyleParrini, Silvia, Francesco Sirtori, Anna Acciaioli, Valentina Becciolini, Alessandro Crovetti, Oreste Franci, Annalisa Romani, Arianna Scardigli, and Riccardo Bozzi. 2020. "Effect of Replacement of Synthetic vs. Natural Curing Agents on Quality Characteristics of Cinta Senese Frankfurter-Type Sausage" Animals 10, no. 1: 14. https://doi.org/10.3390/ani10010014