Characterization of ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a Northern Portuguese Hospital: Predominance of CTX-M-15 and High Genetic Diversity
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Antimicrobial Susceptibility Testing
2.3. DNA Extraction and Quantification
2.4. Detection of Antibiotic Resistance Genes
2.5. Molecular Typing of Selected E. coli and K. pneumoniae Isolates
3. Results
3.1. Antimicrobial Resistance Phenotype in E. coli and K. pneumoniae Isolates
3.2. Genetic Characteristics of ESBL- or Carbapenemase-Producing E. coli Isolates
3.3. Genetic Characteristics of ESBL-Producing K. pneumoniae Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carvalho, I.; Silva, N.; Carrola, J.; Silva, V.; Currie, C.; Igrejas, G.; Poeta, P. Antibiotic Resistance; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 239–259. [Google Scholar]
- Chung, Y.S.; Hu, Y.S.; Shin, S.; Lim, S.K.; Yang, S.J.; Park, Y.H.; Park, K.T. Mechanisms of quinolone resistance in Escherichia coli isolated from companion animals, pet-owners, and non-pet-owners. J. Vet. Sci. 2017, 18, 449–456. [Google Scholar] [CrossRef]
- Caneiras, C.; Alises, S.M.; Lito, L.; Cristino, J.M.; Duarte, A. Molecular Epidemiology of Klebsiella pneumoniae: Multiclonal dissemination of CTX-M-15 Extended Spectrum ß-lactamase. Epidemiology 2018, 52, PA3912. [Google Scholar] [CrossRef]
- Caneiras, C.; Lito, L.; Melo-Cristino, J.; Duarte, A. Community- and Hospital-Acquired Klebsiella pneumoniae Urinary Tract Infections in Portugal: Virulence and Antibiotic Resistance. Microorganisms 2019, 7, 138. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.; Chenouf, N.S.; Carvalho, J.A.; Castro, A.P.; Silva, V.; Capita, R.; Alonso-Calleja, C.; Dapkevicius, M.D.L.N.E.; Igrejas, G.; Torres, C.; et al. Multidrug-resistant Klebsiella pneumoniae harboring extended spectrum β-lactamase encoding genes isolated from human septicemias. PLoS ONE 2021, 16, e0250525. [Google Scholar] [CrossRef]
- Zhang, P.L.; Shen, X.; Chalmers, G.; Reid-Smith, R.J.; Slavic, D.; Dick, H.; Boerlin, P. Prevalence and mechanisms of extended-spectrum cephalosporin resistance in clinical and fecal Enterobacteriaceae isolates from dogs in Ontario, Canada. Veter Microbiol. 2018, 213, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Adator, E.H.; Narvaez-Bravo, C.; Zaheer, R.; Cook, S.R.; Tymensen, L.; Hannon, S.J.; Booker, C.W.; Church, D.; Read, R.R.; McAllister, T.A. A One Health Comparative Assessment of Antimicrobial Resistance in Generic and Extended-Spectrum Cephalosporin-Resistant Escherichia coli from Beef Production, Sewage and Clinical Settings. Microorganisms 2020, 8, 885. [Google Scholar] [CrossRef]
- Ribeiro, T.; Novais, Â.; Rodrigues, C.; Nascimento, R.; Freitas, F.; Machado, E.; Peixe, L. Dynamics of clonal and plasmid backgrounds of Enterobacteriaceae producing acquired AmpC in Portuguese clinical settings over time. Int. J. Antimicrob. Agents 2019, 53, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, S.; Cravo, R.I.; Ramalheira, E.; Ferreira, S. Surveillance of ESBL-producing isolates causing urinary tract infections, in elderly, in Aveiro, Portugal. Adv. Clin. Med. Microbiol. 2016, 1, ACMM-1-003. [Google Scholar]
- Younes, A.; Hamouda, A.; Dave, J.; Amyes, S.G.B. Prevalence of transferable blaCTX-M-15 from hospital- and community-acquired Klebsiella pneumoniae isolates in Scotland. J. Antimicrob. Chemother. 2010, 66, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Zogg, A.L.; Simmen, S.; Zurfluh, K.; Stephan, R.; Schmitt, S.N.; Nüesch-Inderbinen, M. High Prevalence of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae Among Clinical Isolates from Cats and Dogs Admitted to a Veterinary Hospital in Switzerland. Front. Vet. Sci. 2018, 5, 62. [Google Scholar] [CrossRef]
- Rodrigues, C.; Machado, E.; Ramos, H.; Peixe, L.; Novais, Â. Expansion of ESBL-producing Klebsiella pneumoniae in hospitalized patients: A successful story of international clones (ST15, ST147, ST336) and epidemic plasmids (IncR, IncFIIK). Int. J. Med. Microbiol. 2014, 304, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Fournier, C.; de Sousa, M.A.; Escriva, B.F.; Sales, L.; Nordmann, P.; Poirel, L. Epidemiology of extended-spectrum β-lactamase-producing Enterobacteriaceae among healthcare students, at the Portuguese Red Cross Health School of Lisbon, Portugal. J. Glob. Antimicrob. Resist. 2020, 22, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.; Safia Chenouf, N.; Cunha, R.; Martins, C.; Pimenta, P.; Pereira, A.R.; Martínez-Álvarez, S.; Ramos, S.; Silva, V.; Igrejas, G.; et al. Antimicrobial Resistance Genes and Diversity of Clones among ESBL- and Acquired AmpC-Producing Escherichia coli Isolated from Fecal Samples of Healthy and Sick Cats in Portugal. Antibiotics 2021, 10, 262. [Google Scholar] [CrossRef]
- Carvalho, I.; Cunha, R.; Martins, C.; Martínez-Álvarez, S.; Chenouf, N.S.; Pimenta, P.; Pereira, A.R.; Ramos, S.; Sadi, M.; Martins, Â.; et al. Antimicrobial Resistance Genes and Diversity of Clones among Faecal ESBL-Producing Escherichia coli Isolated from Healthy and Sick Dogs Living in Portugal. Antibiotics 2021, 10, 1013. [Google Scholar] [CrossRef]
- Sengodan, T.; Kannaiyan, D.M.; Sureshkumar, B.; Mickymaray, S. Antibiotic Resistance Mechanism of ESBL Producing Enterobacteriaceae in Clinical Field: A Review. Int. J. Pure Appl. Biosci. 2014, 2, 207–226. [Google Scholar]
- Schmiedel, J.; Falgenhauer, L.; Domann, E.; Bauerfeind, R.; Prenger-Berninghoff, E.; Imirzalioglu, C.; Chakraborty, T. Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol. 2014, 14, 187. [Google Scholar] [CrossRef] [PubMed]
- Domokos, J.; Damjanova, I.; Kristof, K.; Ligeti, B.; Kocsis, B.; Szabo, D. Multiple Benefits of Plasmid-Mediated Quinolone Resistance Determinants in Klebsiella pneumoniae ST11 High-Risk Clone and Recently Emerging ST307 Clone. Front. Microbiol. 2019, 10, 157. [Google Scholar] [CrossRef]
- Mendonça, N.; Leitão, J.; Manageiro, V.; Ferreira, E.; Caniça, M. Spread of extended-spectrum beta-lactamase CTX-M-producing Escherichia coli clinical isolates in community and nosocomial environments in Portugal. Antimicrob. Agents Chemother. 2007, 51, 1946–1955. [Google Scholar] [CrossRef]
- Ribeiro, T.G.; Novais, Â.; Machado, E.; Peixe, L. Acquired AmpC β-Lactamases among Enterobacteriaceae from Healthy Humans and Animals, Food, Aquatic and Trout Aquaculture Environments in Portugal. Pathogens 2020, 9, 273. [Google Scholar] [CrossRef]
- Oliveira, C.; Amador, P.; Prudêncio, C.; Tomaz, C.T.; Ratado, P.; Fernandes, R. ESBL and AmpC β-Lactamases in Clinical Strains of Escherichia coli from Serra da Estrela, Portugal. Medicina 2019, 55, 272. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.; Machado, E.; Fernandes, S.; Peixe, L.; Novais, Â. Different Escherichia coli B2-ST131 clades (B and C) producing extended-spectrum β-lactamases (ESBL) colonizing residents of Portuguese nursing homes. Epidemiol. Infect. 2017, 145, 3303–3306. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, M.; Irrgang, A.; Roschanski, N.; Michael, G.B.; Hamprecht, A.; Rieber, H.; Käsbohrer, A.; Schwarz, S.; Rösler, U.; Kreienbrock, L.; et al. Whole genome analyses of CMY-2-producing Escherichia coli isolates from humans, animals and food in Germany. BMC Genom. 2018, 19, 601. [Google Scholar] [CrossRef]
- Pomba, C.; López-Cerero, L.; Bellido, M.; Serrano, L.; Belas, A.; Couto, N.; Cavaco-Silva, P.; Rodríguez-Baño, J.; Pascual, A. Within-lineage variability of ST131 Escherichia coli isolates from humans and companion animals in the south of Europe. J. Antimicrob. Chemother. 2014, 69, 271–273. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Roer, L.; Overballe-Petersen, S.; Hansen, F.; Schønning, K.; Wang, M.; Røder, B.L.; Hansen, D.S.; Justesen, U.S.; Andersen, L.P.; Fulgsang-Damgaard, D.; et al. Escherichia coli Sequence Type 410 Is Causing New International High-Risk Clones. mSphere 2018, 3, e00337-18. [Google Scholar] [CrossRef]
- Schaufler, K.; Semmler, T.; Wieler, L.H.; Wöhrmann, M.; Baddam, R.; Ahmed, N.; Müller, K.; Kola, A.; Fruth, A.; Ewers, C.; et al. Clonal spread and interspecies transmission of clinically relevant ESBL-producing Escherichia coli of ST410—Another successful pandemic clone? FEMS Microbiol. Ecol. 2015, 92, fiv155. [Google Scholar] [CrossRef] [PubMed]
- Falgenhauer, L.; Imirzalioglu, C.; Ghosh, H.; Gwozdzinski, K.; Schmiedel, J.; Gentil, K.; Bauerfeind, R.; Kampfer, P.; Seifert, H.; Michael, G.B.; et al. Circulation of clonal populations of fluoroquinolone-resistant CTX-M-15-producing Escherichia coli ST410 in humans and animals in Germany. Int. J. Antimicrob. Agents 2016, 47, 457–465. [Google Scholar] [CrossRef]
- Manges, A.R.; Geum, H.M.; Guo, A.; Edens, T.J.; Fibke, C.D.; Pitout, J.D.D. Global Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages. Clin. Microbiol. Rev. 2019, 32, e00135-18. [Google Scholar] [CrossRef] [PubMed]
- Fils, P.E.L.; Cholley, P.; Gbaguidi-Haore, H.; Hocquet, D.; Sauget, M.; Bertrand, X. ESBL-producing Klebsiella pneumoniae in a University hospital: Molecular features, diffusion of epidemic clones and evaluation of cross-transmission. PLoS ONE 2021, 16, e0247875. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Antimicrobial Resistance: Fact Sheets. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 3 July 2021).
- Liakopoulos, A.; Mevius, D.; Ceccarelli, D. A Review of SHV Extended-Spectrum β-Lactamases: Neglected Yet Ubiquitous. Front. Microbiol. 2016, 7, 1374. [Google Scholar] [CrossRef] [PubMed]
- Vubil, D.; Figueiredo, R.; Reis, T.; Canha, C.; Boaventura, L.; Da Silva, G.J. Outbreak of KPC-3-producing ST15 and ST348 Klebsiella pneumoniae in a Portuguese hospital. Epidemiol. Infect. 2017, 145, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.; Amador, P.; Oliveira, C.; Prudêncio, C. Molecular Characterization of ESBL-Producing Enterobacteriaceae in Northern Portugal. Sci. World J. 2014, 2014, 782897. [Google Scholar] [CrossRef]
- Freitas, F.; Machado, E.; Ribeiro, T.G.; Novais, Â.; Peixe, L. Long-term dissemination of acquired AmpC β-lactamases among Klebsiella spp. and Escherichia coli in Portuguese clinical settings. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Menezes, J.; Belas, A.; Aboim, C.; Cavaco-Silva, P.; Trigueiro, G.; Gama, L.; Pomba, C. Klebsiella pneumoniae causing urinary tract infections in companion animals and humans: Population structure, antimicrobial resistance and virulence genes. J. Antimicrob. Chemother. 2019, 74, 594–602. [Google Scholar] [CrossRef]
- Machado, E.; Coque, T.; Canton, R.; Sousa, J.; Peixe, L. Emergence of CTX-M β-lactamase-producing Enterobacteriaceae in Portugal: Report of an Escherichia coli isolate harbouring blaCTX-M-14. Clin. Microbiol. Infect. 2004, 10, 755–757. [Google Scholar] [CrossRef][Green Version]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [PubMed]
- Bruker. MALDI-TOF MS. Available online: https://www.bruker.com/en/products-and-solutions/mass-spectrometry/maldi-tof.html (accessed on 23 July 2021).
- CLSI (Clinical and Laboratory Standards Institute). Performed Standards for Antimicrobial Susceptibility Testing, 29th ed.; CLSI Supplement; CLSI: Wayne, PA, USA, 2019. [Google Scholar]
- Holmes, D.; Quigley, M. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 1981, 114, 193–197. [Google Scholar] [CrossRef]
- Zong, Z.; Partridge, S.R.; Thomas, L.; Iredell, J.R. Dominance of blaCTX-M within an Australian Extended-Spectrum β-Lactamase Gene Pool. Antimicrob. Agents Chemother. 2008, 52, 4198–4202. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.; Thomson, K.S.; Hanson, N.D.; Ehrhardt, A.F.; Moland, E.S.; Sanders, C.C. beta-Lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob. Agents Chemother. 1998, 42, 1350–1354. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ellington, M.J.; Kistler, J.J.; Livermore, D.M.; Woodford, N. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J. Antimicrob. Chemother. 2007, 59, 321–322. [Google Scholar] [CrossRef] [PubMed]
- Porres-Osante, N.; Azcona-Gutiérrez, J.M.; Rojo-Bezares, B.; Undabeitia, E.; Torres, C.; Sáenz, Y. Emergence of a multiresistant KPC-3 and VIM-1 carbapenemase-producing Escherichia coli strain in Spain. J. Antimicrob. Chemother. 2014, 69, 1792–1795. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information (NCBI). Basic Local Alignment Search Tool (BLAST). Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 30 January 2021).
- Adelowo, O.; Fagade, O. The tetracycline resistance genetet39is present in both Gram-negative and Gram-positive bacteria from a polluted river, Southwestern Nigeria. Lett. Appl. Microbiol. 2009, 48, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Huang, Y.; Chan, E.W.-C.; Zhou, H.; Chen, S. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis. 2016, 16, 291–292. [Google Scholar] [CrossRef]
- Lévesque, C.; Piché, L.; Larose, C.; Roy, P.H. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob. Agents Chemother. 1995, 39, 185–191. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2012, 5, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Doumith, M.; Day, M.; Ciesielczuk, H.; Hope, R.; Underwood, A.; Reynolds, R.; Wain, J.; Livermore, D.M.; Woodford, N. Rapid Identification of Major Escherichia coli Sequence Types Causing Urinary Tract and Bloodstream Infections. J. Clin. Microbiol. 2015, 53, 160–166. [Google Scholar] [CrossRef] [PubMed]
- PubMLST. Escherichia coli (Achtman) MLST locus/sequence definitions database. Available online: https://pubmlst.org/bigsdb?db=pubmlst_ecoli_achtman_seqdef (accessed on 30 January 2021).
- Institute Pasteur. MLST and Whole Genome MLST Databases. Available online: https://bigsdb.pasteur.fr/klebsiella/klebsiella.html (accessed on 30 March 2021).
- Zhang, L.; Foxman, B.; Marrs, C. Both Urinary and Rectal Escherichia coli Isolates Are Dominated by Strains of Phylogenetic Group B2. J. Clin. Microbiol. 2002, 40, 3951–3955. [Google Scholar] [CrossRef]
- Rodríguez-Navarro, J.; Miró, E.; Brown-Jaque, M.; Hurtado, J.C.; Moreno, A.; Muniesa, M.; González-López, J.J.; Vila, J.; Espinal, P.; Navarro, F. Comparison of Commensal and Clinical Isolates for Diversity of Plasmids in Escherichia coli and Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2020, 64, e02064-19. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.; Machado, E.; Fernandes, S.; Peixe, L.; Novais, Â. An update on faecal carriage of ESBL-producing Enterobacteriaceae by Portuguese healthy humans: Detection of theH30 subclone of B2-ST131 Escherichia coli producing CTX-M-27: Table 1. J. Antimicrob. Chemother. 2016, 71, 1120–1122. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Belas, A.; Marques, C.; Aboim, C.; Pomba, C. Emergence of Escherichia coli ST131 H30/H30-Rx subclones in companion animals. J. Antimicrob. Chemother. 2018, 74, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Nicolas-Chanoine, M.-H.; Blanco, J.; Leflon-Guibout, V.; Demarty, R.; Alonso, M.P.; Caniça, M.; Park, Y.-J.; Lavigne, J.-P.; Pitout, J.; Johnson, J.R. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother. 2008, 61, 273–281. [Google Scholar] [CrossRef]
- Bortolami, A.; Zendri, F.; Maciuca, E.I.; Wattret, A.; Ellis, C.; Schmidt, V.; Pinchbeck, G.; Timofte, D. Diversity, Virulence, and Clinical Significance of Extended-Spectrum β-Lactamase- and pAmpC-Producing Escherichia coli From Companion Animals. Front. Microbiol. 2019, 10, 1260. [Google Scholar] [CrossRef]
- Dahmen, S.; Haenni, M.; Châtre, P.; Madec, J.-Y. Characterization of blaCTX-M IncFII plasmids and clones of Escherichia coli from pets in France. J. Antimicrob. Chemother. 2013, 68, 2797–2801. [Google Scholar] [CrossRef] [PubMed]
- Brilhante, M.; Menezes, J.; Belas, A.; Feudi, C.; Schwarz, S.; Pomba, C.; Perreten, V. OXA-181-Producing Extraintestinal Pathogenic Escherichia coli Sequence Type 410 Isolated from a Dog in Portugal. Antimicrob. Agents Chemother. 2020, 64, e02298-19. [Google Scholar] [CrossRef] [PubMed]
- Nadimpalli, M.L.; De Lauzanne, A.; Phe, T.; Borand, L.; Jacobs, J.; Fabre, L.; Naas, T.; Le Hello, S.; Stegger, M. Escherichia coli ST410 among humans and the environment in Southeast Asia. Int. J. Antimicrob. Agents 2019, 54, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Xercavins, M.; Jiménez, E.; Padilla, E.; Riera, M.; Freixas, N.; Boix-Palop, L.; Pérez, J.; Calbo, E. High clonal diversity of ESBL-producing Klebsiella pneumoniae isolates from clinical samples in a non-outbreak situation. A cohort study. Antimicrob. Resist. Infect. Control. 2020, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Haenni, M.; Ponsin, C.; Métayer, V.; Médaille, C.; Madec, J.-Y. Veterinary hospital-acquired infections in pets with a ciprofloxacin-resistant CTX-M-15-producing Klebsiella pneumoniae ST15 clone. J. Antimicrob. Chemother. 2012, 67, 770–771. [Google Scholar] [CrossRef] [PubMed]
- Sartori, L.; Sellera, F.; Moura, Q.; Cardoso, B.; Cerdeira, L.; Lincopan, N. Multidrug-resistant CTX-M-15-positive Klebsiella pneumoniae ST307 causing urinary tract infection in a dog in Brazil. J. Glob. Antimicrob. Resist. 2019, 19, 96–97. [Google Scholar] [CrossRef]
- Carvalho, I.; Alonso, C.A.; Silva, V.; Pimenta, P.; Cunha, R.; Martins, C.; Igrejas, G.; Torres, C.; Poeta, P. Extended-Spectrum Beta-Lactamase-Producing Klebsiella pneumoniae Isolated from Healthy and Sick Dogs in Portugal. Microb. Drug Resist. 2020, 26, 709–715. [Google Scholar] [CrossRef]
- Rodrigues, C.; Bavlovič, J.; Machado, E.; Amorim, J.; Peixe, L.; Novais, Â. KPC-3-Producing Klebsiella pneumoniae in Portugal Linked to Previously Circulating Non-CG258 Lineages and Uncommon Genetic Platforms (Tn4401d-IncFIA and Tn4401d-IncN). Front. Microbiol. 2016, 7, 1000. [Google Scholar] [CrossRef]
- Donati, V.; Feltrin, F.; Hendriksen, R.S.; Svendsen, C.A.; Cordaro, G.; García-Fernández, A.; Lorenzetti, S.; Lorenzetti, R.; Battisti, A.; Franco, A. Extended-Spectrum-Beta-Lactamases, AmpC Beta-Lactamases and Plasmid Mediated Quinolone Resistance in Klebsiella spp. from Companion Animals in Italy. PLoS ONE 2014, 9, e90564. [Google Scholar] [CrossRef] [PubMed]
- Jemima, A.S.; Verghese, S. SHV-28, an extended-spectrum beta-lactamase produced by a clinical isolate of Klebsiella pneumoniae in south India. Indian J. Med. Microbiol. 2009, 27, 51–54. [Google Scholar] [CrossRef]
- Corkill, J.E.; Cuevas, L.E.; Gurgel, R.Q.; Greensill, J.; Hart, C.A. SHV-27, a novel cefotaxime-hydrolysing beta-lactamase, identified in Klebsiella pneumoniae isolates from a Brazilian hospital. J. Antimicrob. Chemother. 2001, 47, 463–465. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Romero, L.; López, L.; Rodríguez-Baño, J.; Hernández, J.R.; Martínez, L.M.; Pascual, A. Long-term study of the frequency of Escherichia coli and Klebsiella pneumoniae isolates producing extended-spectrum β-lactamases. Clin. Microbiol. Infect. 2005, 11, 625–631. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Chen, J.; Wang, Z.; Wang, X.; Yan, X.; Li, J.; Chen, Y.; Wang, Q.; Xu, X.; Li, J.; et al. Predominant characteristics of CTX-M-producing Klebsiella pneumoniae isolates from patients with lower respiratory tract infection in multiple medical centers in China. FEMS Microbiol. Lett. 2012, 332, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Veldman, K.; Van Tulden, P.; Kant, A.; Testerink, J.; Mevius, D. Characteristics of Cefotaxime-Resistant Escherichia coli from Wild Birds in The Netherlands. Appl. Environ. Microbiol. 2013, 79, 7556–7561. [Google Scholar] [CrossRef]
- Alcalá, L.; Alonso, C.A.; Simón, C.; González-Esteban, C.; Orós, J.; Rezusta, A.; Ortega, C.; Torres, C. Wild Birds, Frequent Carriers of Extended-Spectrum β-Lactamase (ESBL) Producing Escherichia coli of CTX-M and SHV-12 Types. Microb. Ecol. 2016, 72, 861–869. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC). Surveillance Atlas of Infectious Diseases. Available online: https://atlas.ecdc.europa.eu/ (accessed on 21 April 2021).
- Lopes, E.; Saavedra, M.J.; Costa, E.; de Lencastre, H.; Poirel, L.; Aires-De-Sousa, M. Epidemiology of carbapenemase-producing Klebsiella pneumoniae in northern Portugal: Predominance of KPC-2 and OXA-48. J. Glob. Antimicrob. Resist. 2020, 22, 349–353. [Google Scholar] [CrossRef]
- Zhou, K.; Lokate, M.; Deurenberg, R.H.; Arends, J.; Foe, J.L.-T.; Grundmann, H.; Rossen, J.; Friedrich, A.W. Characterization of a CTX-M-15 Producing Klebsiella pneumoniae Outbreak Strain Assigned to a Novel Sequence Type (1427). Front. Microbiol. 2015, 6, 1250. [Google Scholar] [CrossRef]
- Marques, C.; Belas, A.; Aboim, C.; Cavaco-Silva, P.; Trigueiro, G.; Gama, L.; Pomba, C. Evidence of Sharing of Klebsiella pneumoniae Strains between Healthy Companion Animals and Cohabiting Humans. J. Clin. Microbiol. 2019, 57, e01537-18. [Google Scholar] [CrossRef]
- Ahn, C.; Yoon, S.S.; Yong, T.-S.; Jeong, S.H.; Lee, K. The Resistance Mechanism and Clonal Distribution of Tigecycline-Nonsusceptible Klebsiella pneumoniae Isolates in Korea. Yonsei Med. J. 2016, 57, 641–646. [Google Scholar] [CrossRef]
- Wang, G.; Huang, T.; Surendraiah, P.K.M.; Wang, K.; Komal, R.; Zhuge, J.; Chern, C.-R.; Kryszuk, A.A.; King, C.; Wormser, G.P. CTX-M β-Lactamase–producing Klebsiella pneumoniae in Suburban New York City, New York, USA. Emerg. Infect. Dis. 2013, 19, 1803–1810. [Google Scholar] [CrossRef] [PubMed]
Sample | Origin | Date (Month Year) | Resistance Phenotype a | ESBL Production b | Β-lactamases | MLST c | Resistant Genes/Integrons d | PG e |
---|---|---|---|---|---|---|---|---|
X1068 | Blood | March 2017 | AMC, CTX, CAZ, CIP, SXT | P | CTX-M-15, TEM | ST131 | int1 | B2 |
X1080 | Blood | July 2018 | AMC, CTX, CAZ, TET, TOB, CIP, GEN, SXT | P | CTX-M-15, TEM | ST131 | int1, tetA | B2 |
X1062 | Blood | December 2016 | AMC, CTX, CAZ, TET, TOB, CIP, GEN, SXT | P | CTX-M-15 | ST131 | int1, tetA | B2 |
X1063 | Blood | December 2016 | AMC, CTX, CAZ, TET, TOB, CIP, GEN, SXT | P | CTX-M-15 | ST131 | int1, tetA | B2 |
X1064 | Blood | December 2016 | AMC, CTX, CAZ, TET, TOB, CIP, GEN, SXT | P | CTX-M-15 | ST131 | int1 | B2 |
X1065 | Blood | June 2017 | AMC, CTX, CAZ, TET, TOB, CIP, GEN, SXT | P | CTX-M-15 | ST131 | int1, tetA | B2 |
X1066 | Blood | June 2017 | AMC, CTX, CAZ, TOB, CIP, GEN | P | CTX-M-15 | ST131 | ND | B2 |
X1067 | Blood | February 2017 | AMC, CTX, CAZ, TET, TOB, CIP, GEN, SXT | P | CTX-M-15 | ST131 | int1, tetA | B2 |
X1069 | Blood | March 2017 | AMC, CTX, CAZ, TOB, CIP, GEN | P | CTX-M-15 | ST131 | ND | B2 |
X1070 | Blood | March 2017 | AMC, CTX, CAZ, CIP, GEN | P | CTX-M-15 | ST131 | ND | B2 |
X1071 | Blood | April 2017 | AMC, CTX, CAZ, TET, TOB, CIP, SXT | P | CTX-M-15 | ST131 | int1, tetA | B2 |
X1072 | Blood | April 2017 | AMC, CTX, CAZ, TET, TOB, CIP, GEN, SXT | P | CTX-M-15 | ST131 | int1, tetA | B2 |
X1073 | Blood | April 2017 | AMC, CTX, CAZ, TET, TOB, CIP, GEN, SXT | P | CTX-M-15 | ST131 | int1, tetA | B2 |
X1074 | Blood | April 2017 | AMC, CTX, CAZ, TET, TOB, CIP, GEN, SXT | P | CTX-M-15 | ST131 | int1, tetA | B2 |
X1075 | Blood | May 2017 | AMC, CTX, CAZ, CIP | P | CTX-M-15 | ST410 | ND | A |
X1076 | Blood | May 2017 | AMC, CTX, CAZ, TET, TOB, CIP | P | CTX-M-15 | ST131 | ND | B2 |
X1105 | Blood | May 2017 | AMC, CTX, CAZ, CIP | P | CTX-M-15 | ST410 | ND | A |
X1079 | Blood | July 2018 | AMC, CTX, CAZ, TOB, CIP, GEN, SXT | P | CTX-M-15 | ST131 | int1 | B2 |
X1081 | Blood | August 2018 | AMC, CTX, CAZ, TET, TOB, CIP | P | CTX-M-15 | ST131 | tetA | B2 |
X1078 | Blood | July 2018 | CTX, TET, CIP, SXT | P | CTX-M-27 | ST131 | ND | B2 |
X3158 | Urine | February 2017 | CTX, CAZ, TET, TOB, SXT, S | P | CTX-M-15 | NT | ND | B2 |
X3159 | Urine | February 2017 | CTX, CAZ, TOB, CIP, GEN, S | P | CTX-M-15 | NT | ND | B2 |
X3160 | Urine | February 2017 | CTX, CAZ, TET, TOB, CIP, GEN, S | P | CTX-M-15 | NT | ND | B2 |
X3161 | Urine | March 2017 | CTX, CAZ, TOB, CIP, GEN, S | P | CTX-M-15 | NT | ND | B2 |
X3162 | Urine | April 2017 | CTX, CAZ, TOB, CIP, GEN, S | P | CTX-M-15 | NT | ND | D |
X3163 | Urine | May 2017 | CTX, CAZ, TET, CIP, SXT, S | P | CTX-M-15 | NT | tetA, tetB | D |
X3164 | Urine | May 2017 | CTX, CAZ, CIP, SXT, S | P | CTX-M-15 | NT | ND | B2 |
X3165 | Urine | May 2017 | CTX, CAZ, CIP, S | P | CTX-M-15 | NT | ND | B2 |
X3167 | Urine | June 2018 | CTX, CAZ, TET, TOB, CIP, GEN, SXT, S | P | CTX-M-15 | NT | tetA | B2 |
X3168 | Urine | August 2018 | CTX, CAZ, TET, TOB, CIP, GEN, SXT, S | P | CTX-M-15 | NT | tetA | B2 |
X3169 | Urine | August 2018 | CTX, CAZ, TOB, CIP, GEN, SXT, S | P | CTX-M-15 | NT | tetA | B2 |
X3170 | Urine | August 2018 | CTX, CAZ, TET, CIP, S | P | CTX-M-15 | NT | tetB | B2 |
X3173 | Urine | June 2018 | AMC, FOX, CTX, CAZ, IMP, TET, CIP, SXT, S | P | CTX-M-15, KPC2/3 | NT | tetB | A |
X3157 | Urine | February 2017 | CTX, TET, SXT, S | P | CTX-M-1 | NT | tetA | C |
X3155 | Urine | December 2016 | CTX, TOB, CIP, SXT, S | P | CTX-M-variant | NT | ND | B2 |
X3166 | Urine | May 2018 | ERT, TOB, CIP, GEN, SXT, S | P | CTX-M-variant | NT | ND | B2 |
X3171 | Urine | December 2016 | CTX, TOB, CIP, SXT, S | P | CTX-M-variant | NT | ND | NC |
X3156 | Urine | June 2017 | AMC, FOX, CTX, CAZ, IMP, TET, TOB, CIP, GEN, SXT, S | P | KPC2/3 | NT | tetA | B2 |
Sample | Origin | Date (Month Year) | Antimicrobial Resistance Phenotype a | ESBL Production b | β-lactamases | MLST c | Other Genes/Int d |
---|---|---|---|---|---|---|---|
X2175 | Urine | June 2017 | AMC, CTX, CAZ, IMP, MRP, ERT, CIP, SXT, S | P | CTX-M-15, KPC-2/3, SHV-12, TEM | ST15 | ND |
X2143 | Urine | December 2016 | AMC, FOX, CTX, CAZ, IMP, MRP, ERT, TET, CIP, GEN, SXT, S | P | CTX-M-15, KPC-2/3, SHV-27, TEM | ST280 | tetA |
X2153 | Urine | June 2017 | AMC, FOX, CTX, CAZ, IMP, MRP, ERT, TET, CIP, GEN, SXT, S | P | CTX-M-15, KPC-2/3, SHV-27, TEM | NT | tetA |
X2155 | Urine | February 2017 | AMC, CTX, CAZ, IMP, MRP, ERT, TET, CIP, GEN, SXT, S | P | CTX-M-15, KPC-2/3, SHV-27, TEM | NT | tetA |
X2166 | Urine | May 2017 | AMC, CTX, CAZ, IMP, MRP, ERT, TET, CIP, GEN, SXT, S | P | CTX-M-15, KPC-2/3, SHV-27, TEM | NT | tetA |
X3098 | Urine | December 2016 | CTX, CAZ, TET, CIP, TOB, GEN, SXT, S | P | CTX-M-15, SHV-27 | NT | tetA |
X3100 | Urine | March 2017 | CTX, CAZ, IMP, TET, CIP, TOB, SXT, S | P | CTX-M-15, SHV-27 | NT | tetA |
X3104 | Urine | May 2017 | AMC, CTX, CAZ, IMP, MRP, ERT, TET, CIP, TOB, SXT, S | P | CTX-M-15, SHV-11 | NT | ND |
X2157 | Urine | April 2017 | AMC, FOX, CTX, CAZ, IMP, MRP, ERT, CHF, CIP, GEN, SXT, S | P | CTX-M-15, KPC-2/3, SHV-28, TEM | ST15 | ND |
X3095 | Urine | December 2016 | CTX, CAZ, MRP, TET, CIP, TOB, GEN, SXT, S | P | CTX-M-15, SHV-28 | NT | tetA |
X3105 | Urine | May 2017 | AMC, CTX, CAZ, ERT, TET, CIP, TOB, GEN, SXT, S | P | CTX-M-15, SHV-28 | NT | tetA |
X3106 | Urine | May 2017 | CTX, CAZ, ERT, TET, CIP, TOB, GEN, SXT, S | P | CTX-M-55, SHV-11 | NT | tetA |
X2142 | Urine | December 2016 | AMC, FOX, CTX, CAZ, IMP, MRP, ERT, CHF, CIP, GEN, SXT, S | P | SHV-12, KPC-2/3, TEM | ST147 | ND |
X3092 | Urine | December 2016 | AMC, CTX, CAZ, IMP, TET, TOB, CIP, GEN, SXT, S | P | SHV-12 | NT | ND |
X3096 | Urine | December 2016 | CTX, CAZ, IMP, TET, CIP, SXT, S | P | SHV-12 | NT | tetA |
X3097 | Urine | December 2016 | CTX, CAZ, IMP, TET, TOB, CIP, GEN, SXT, S | P | SHV-12 | NT | tetA |
X3107 | Urine | May 2017 | AMC, FOX, ERT, CTX, CAZ, TET, CIP, SXT, S | P | SHV-12 | NT | tetA |
X2232 | Urine | January 2017 | AMC, CTX, CAZ, IMP, MRP, ERT, TET, CIP, GEN, SXT, S | P | SHV-27, KPC-2/3, TEM | ST280 | tetA |
X3085 | Bronchial secretion | December 2017 | AMC, FOX, CTX, CAZ, IMP, MRP, ERT, TOB, CIP, GEN, SXT, S | P | CTX-M-15, KPC-2/3, SHV-11 | NT | ND |
X3094 | Pus | December 2017 | CTX, CAZ, TET, TOB, GEN, SXT, S | P | CTX-M-15, SHV-11 | NT | tetA |
X3102 | Biopsy | May 2017 | AMC, CTX, CAZ, TOB, GEN, SXT, S | P | CTX-M-15, SHV-11 | NT | ND |
X3087 | Bronchial secretion | December 2016 | AMC, FOX, CTX, CAZ, IMP, MRP, ERT, TET, TOB, CIP, GEN, SXT, S | P | CTX-M-15, SHV-27 | NT | tetA |
X3088 | Bronchial secretion | June 2017 | AMC, CTX, CAZ, IMP, MRP, ERT, TOB, CIP, GEN, SXT, S | P | CTX-M-15, KPC-2/3, SHV-28 | NT | ND |
X3101 | Catheter | April 2017 | AMC, CTX, CAZ, IMP, MRP, ERT, TET, TOB, CIP, SXT, S | P | CTX-M-55, SHV-11 | NT | tetA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, I.; Carvalho, J.A.; Martínez-Álvarez, S.; Sadi, M.; Capita, R.; Alonso-Calleja, C.; Rabbi, F.; Dapkevicius, M.d.L.N.E.; Igrejas, G.; Torres, C.; et al. Characterization of ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a Northern Portuguese Hospital: Predominance of CTX-M-15 and High Genetic Diversity. Microorganisms 2021, 9, 1914. https://doi.org/10.3390/microorganisms9091914
Carvalho I, Carvalho JA, Martínez-Álvarez S, Sadi M, Capita R, Alonso-Calleja C, Rabbi F, Dapkevicius MdLNE, Igrejas G, Torres C, et al. Characterization of ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a Northern Portuguese Hospital: Predominance of CTX-M-15 and High Genetic Diversity. Microorganisms. 2021; 9(9):1914. https://doi.org/10.3390/microorganisms9091914
Chicago/Turabian StyleCarvalho, Isabel, José António Carvalho, Sandra Martínez-Álvarez, Madjid Sadi, Rosa Capita, Carlos Alonso-Calleja, Fazle Rabbi, Maria de Lurdes Nunes Enes Dapkevicius, Gilberto Igrejas, Carmen Torres, and et al. 2021. "Characterization of ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a Northern Portuguese Hospital: Predominance of CTX-M-15 and High Genetic Diversity" Microorganisms 9, no. 9: 1914. https://doi.org/10.3390/microorganisms9091914
APA StyleCarvalho, I., Carvalho, J. A., Martínez-Álvarez, S., Sadi, M., Capita, R., Alonso-Calleja, C., Rabbi, F., Dapkevicius, M. d. L. N. E., Igrejas, G., Torres, C., & Poeta, P. (2021). Characterization of ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a Northern Portuguese Hospital: Predominance of CTX-M-15 and High Genetic Diversity. Microorganisms, 9(9), 1914. https://doi.org/10.3390/microorganisms9091914