Epigenetic Response of Yarrowia lipolytica to Stress: Tracking Methylation Level and Search for Methylation Patterns via Whole-Genome Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain
2.2. Preculture Development
2.3. Bioreactor Culture Conditions
2.4. Batch and Repeated Batch Cultivations
2.5. Heat Stress Conditions
2.6. Isolation of Genomic DNA, RNAse Treatment and Determination of Global DNA Methylation Level
2.7. Whole Genome ONT Sequencing and Search for DNA Methylation Patterns
2.8. High-Performance Liquid Chromatography
2.9. Statistical Analysis
3. Results
3.1. Global Level of Genomic DNA Methylation in Y. lipolytica Batch Cultivations
3.2. Global Level of Genomic DNA Methylation in Y. lipolytica Repeated-Batch Cultivations
3.3. Whole Genome ONT Sequencing in the Search for Genomic DNA Methylation Pattern in Y. lipolytica Repeated-Batch Cultures
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, P.K.; Baum, M.; Carbon, J. DNA methylation regulates phenotype-dependent transcriptional activity in Candida albicans. Proc. Natl. Acad. Sci. USA 2011, 108, 11965–11970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, J.; Choi, J.; Lee, G.W.; Park, S.Y.; Huh, A.; Dean, R.A.; Lee, Y.H. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lea, A.J.; Vockley, C.M.; Johnston, R.A.; Del Carpio, C.A.; Barreiro, L.B.; Reddy, T.E.; Tung, J. Genome-wide quantification of the effects of DNA methylation on human gene regulation. eLife 2018, 7, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, M.V.C.; Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 2019, 20, 590–607. [Google Scholar] [CrossRef]
- Meng, F.; Li, Y.; Yin, J.; Liu, H.; Chen, X.; Ni, Z.F.; Sun, Q. Analysis of DNA methylation during the germination of wheat seeds. Biol. Plant. 2012, 56, 269–275. [Google Scholar] [CrossRef]
- Garg, P.; Joshi, R.S.; Watson, C.; Sharp, A.J. A survey of inter-individual variation in DNA methylation identifies environmentally responsive co-regulated networks of epigenetic variation in the human genome. PLoS Genet. 2018, 14, 1–24. [Google Scholar] [CrossRef]
- Rajkumar, M.S.; Shankar, R.; Garg, R.; Jain, M. Genomics Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars. Genomics 2020, 112, 3537–3548. [Google Scholar] [CrossRef]
- Proffitt, J.H.; Davie, J.R.; Swinton, D.; Hattman, S. 5-Methylcytosine Is Not Detectable in Saccharomyces cerevisiae DNA. Mol. Cell. Biol. 1984, 4, 985–988. [Google Scholar] [CrossRef] [Green Version]
- Casadesús, J.; Low, D.; Casadesu, J. Epigenetic Gene Regulation in the Bacterial World Epigenetic Gene Regulation in the Bacterial World. Microbiol. Mol. Biol. Rev. 2006, 70, 830–856. [Google Scholar] [CrossRef] [Green Version]
- Reyna-Lopez, G.E.; Simpson, J.; Ruiz-Herrera, J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol. Gen. Genet. 1997, 253, 703–710. [Google Scholar] [CrossRef]
- Saéz-Laguna, E.; Guevara, M.Á.; Diáz, L.M.; Sańchez-Gómez, D.; Collada, C.; Aranda, I.; Cervera, M.T. Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLoS ONE 2014, 9, e103145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gryzinska, M.; Blaszczak, E.; Strachecka, A.; Jezewska-Witkowska, G. Analysis of age-related global DNA methylation in chicken. Biochem. Genet. 2013, 51, 554–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnegan, A.I.; Kim, S.; Jin, H.; Gapinske, M.; Woods, W.S.; Perez-Pinera, P.; Song, J.S. Epigenetic engineering of yeast reveals dynamic molecular adaptation to methylation stress and genetic modulators of specific DNMT3 family members. Nucleic Acids Res. 2020, 48, 4081–4099. [Google Scholar] [CrossRef] [PubMed]
- Hattman, S.; Kenny, C.; Berger, L.; Pratt, K. Comparative study of DNA methylation in three unicellular eucaryotes. J. Bacteriol. 1978, 135, 1156–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Gao, X.-D.; Wang, Y.; Yuan, B.-F.; Feng, Y.-Q. Widespread Existence of Cytosine Methylation in Yeast DNA Measured by Gas Chromatography/Mass Spectrometry. Anal. Chem. 2012, 84, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Antequera, F.; Tamame, M.; Villanueva, J.R.; Santos, T. DNA methylation in the fungi. J. Biol. Chem. 1984, 259, 8033–8036. [Google Scholar] [CrossRef]
- Li, B.; Carey, M.; Workman, J.L. The Role of Chromatin during Transcription. Cell 2007, 128, 707–719. [Google Scholar] [CrossRef] [Green Version]
- Rebhan, M.; Weber, M.; Hellmann, I.; Stadler, M.B.; Ramos, L.; Pa, S.; Schu, D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 2007, 39, 457–466. [Google Scholar] [CrossRef]
- Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 2010, 28, 1057–1068. [Google Scholar] [CrossRef]
- Ehrlich, M.; Lacey, M. DNA methylation and differentiation: Silencing, upregulation and modulation of gene expression. Epigenomics 2013, 5, 553–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, C.M.; Pozo, M.I.; Bazaga, P. Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol. Ecol. 2012, 21, 2602–2616. [Google Scholar] [CrossRef] [PubMed]
- Turchetti, B.; Marconi, G.; Sannino, C.; Buzzini, P. DNA Methylation Changes Induced by Cold in Psychrophilic and Psychrotolerant Naganishia Yeast Species. Microorganisms 2020, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Lang-Mladek, C.; Popova, O.; Kiok, K.; Berlinger, M.; Rakic, B. Transgenerational Inheritance and Resetting of Stress-Induced Loss of Epigenetic Gene Silencing in Arabidopsis. Mol. Plant 2010, 3, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.B.; Dai, X.M.; Zheng, Z.Y.; Zhu, L.; Zhan, X.B.; Lin, C.C. Proteomic analysis of erythritol-producing Yarrowia lipolytica from glycerol in response to osmotic pressure. J. Microbiol. Biotechnol. 2015, 25, 1056–1069. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, R.; Akama, K.; Rakwal, R.; Iwahashi, H. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae. BMC Genom. 2005, 6, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcrae, A.F.; Powell, J.E.; Henders, A.K.; Bowdler, L.; Hemani, G.; Shah, S.; Painter, J.N.; Martin, N.G.; Visscher, P.M.; Montgomery, G.W. Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biol. 2014, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Martienssen, R.A.; Colot, V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 2001, 293, 1070–1073. [Google Scholar] [CrossRef] [Green Version]
- Chinnusamy, V.; Zhu, J.-K. Epigenetic regulation of stress responses in plants. Curr. Opin. Plant Biol. 2009, 12, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Skvortsova, K.; Iovino, N.; Bogdanovi, O. Functions and mechanisms of epigenetic inheritance in animals. Nat. Rev. Mol. Cell Biol. 2018, 19, 774–790. [Google Scholar] [CrossRef] [Green Version]
- Trerotola, M.; Relli, V.; Simeone, P.; Alberti, S. Epigenetic inheritance and the missing heritability. Hum. Genom. 2015, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kane, C.J.O.; Hyland, E.M. Yeast epigenetics: The inheritance of histone modification states. Biosci. Rep. 2019, 39, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Barth, G.; Gaillardin, C. Yarrowia lipolytica. In Nonconventional Yeasts in Biotechnology; Springer: Berlin/Heidelberg, Germany, 1996; pp. 313–388. [Google Scholar]
- Gonçalves, F.A.G.; Colen, G.; Takahashi, J.A. Yarrowia lipolytica and Its Multiple Applications in the Biotechnological Industry. Sci. World J. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Celińska, E.; Borkowska, M.; Korpys-Woźniak, P.; Kubiak, M.; Nicaud, J.M.; Kubiak, P.; Gorczyca, M.; Białas, W. Optimization of Yarrowia lipolytica-based consolidated biocatalyst through synthetic biology approach: Transcription units and signal peptides shuffling. Appl. Microbiol. Biotechnol. 2020, 104, 5845–5859. [Google Scholar] [CrossRef] [PubMed]
- Hapeta, P.; Kerkhoven, E.J.; Lazar, Z. Nitrogen as the major factor influencing gene expression in Yarrowia lipolytica. Biotechnol. Rep. 2020, 27, e00521. [Google Scholar] [CrossRef] [PubMed]
- Morín, M.; Monteoliva, L.; Insenser, M.; Gil, C.; Domínguez, Á. Proteomic analysis reveals metabolic changes during yeast to hypha transition in Yarrowia lipolytica. J. Mass Spectrom. 2007, 42, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Grigoriev, I.; Nikitin, R.; Haridas, S.; Kuo, A.; Ohm, R.; Otillar, R.; Riley, R.; Salamov, A.; Zhao, X.; Korzeniewski, F.; et al. MycoCosm portal: Gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014, 42, 699–704. [Google Scholar] [CrossRef]
- Magnan, C.; Yu, J.; Chang, I.; Jahn, E.; Kanomata, Y. Sequence Assembly of Yarrowia lipolytica Strain W29/CLIB89 Shows Transposable Element Diversity. PLoS ONE 2016, 11, 1–28. [Google Scholar] [CrossRef]
- Biryukova, E.N.; Medentsev, A.G.; Arinbasarova, A.Y.; Akimenko, V.K. Adaptation of the Yeast Yarrowia lipolytica to Heat Shock. Microbiology 2007, 76, 158–163. [Google Scholar] [CrossRef]
- Li, T.; Wang, L.; Du, Y.; Xie, S.; Yang, X.; Lian, F.; Zhou, Z.; Qian, C. Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation. Nucleic Acids Res. 2018, 46, 3218–3231. [Google Scholar] [CrossRef] [Green Version]
- Panikar, C.S.; Rajpathak, S.N.; Abhyankar, V.; Deshmukh, S.; Deobagkar, D.D. Presence of DNA methyltransferase activity and CpC methylation in Drosophila melanogaster. Mol. Biol. Rep. 2015, 42, 1615–1621. [Google Scholar] [CrossRef]
- Singh, A.; Vancura, A.; Woycicki, R.K.; Hogan, D.J.; Hendrick, A.G.; Nowacki, M. Determination of the presence of 5-methylcytosine in Paramecium tetraurelia. PLoS ONE 2018, 13, 1–14. [Google Scholar] [CrossRef]
- Binz, T.; D’Mello, N.; Horgen, P.A. A comparison of DNA methylation levels in selected isolates of higher fungi. Mycologia 1998, 90, 785–790. [Google Scholar] [CrossRef]
- Korpys-Woźniak, P.; Kubiak, P.; Białas, W.; Celińska, E. Impact of overproduced heterologous protein characteristics on physiological response in Yarrowia lipolytica steady-state-maintained continuous cultures. Appl. Microbiol. Biotechnol. 2020, 104, 9785–9800. [Google Scholar] [CrossRef]
- Kawasse, F.M.; Amaral, P.F.; Rocha-Leao, M.H.M.; Amaral, A.L.; Ferreira, E.C.; Coelho, M.A.Z. Morphological analysis of Yarrowia lipolytica under stress conditions through image processing. Bioprocess Biosyst. Eng. 2003, 25, 371–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Herrera, J.; Sentandreu, R. Different effectors of dimorphism in Yarrowia lipolytica. Arch. Microbiol. 2002, 178, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Reyna-Lopez, G.E.; Ruiz-Herrera, J. Specificity of DNA Methylation Changes During Fungal Dimorphism and Its Relationship to Polyamines. Curr. Microbiol. 2004, 48, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Pomraning, K.R.; Bredeweg, E.L.; Kerkhoven, E.J.; Barry, K.; Haridas, S.; Hundley, H.; LaButti, K.; Lipzen, A.; Yan, M.; Magnuson, J.K.; et al. Regulation of Yeast-to-Hyphae Transition in Yarrowia lipolytica. mSphere 2018, 3, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timoumi, A.; Bideaux, C.; Guillouet, S.E.; Allouche, Y.; Molina-Jouve, C.; Fillaudeau, L.; Gorret, N. Influence of oxygen availability on the metabolism and morphology of Yarrowia lipolytica: Insights into the impact of glucose levels on dimorphism. Appl. Microbiol. Biotechnol. 2017, 101, 7317–7333. [Google Scholar] [CrossRef]
- Timoumi, A.; Cléret, M.; Bideaux, C.; Guillouet, S.E. Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: Dependence of the stress response on the culture mode. Appl. Microbiol. Biotechnol. 2017, 101, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Szabo, R.; Štofaníková, V. Presence of organic sources of nitrogen is critical for filament formation and pH-dependent morphogenesis in Yarrowia lipolytica. FEMS Microbiol. Lett. 2002, 206, 45–50. [Google Scholar] [CrossRef]
- Capuano, F.; Kok, R.; Blom, H.J.; Ralser, M. Cytosine DNA Methylation Is Found in Drosophila melanogaster but Absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Other Yeast Species. Anal. Chem. 2014, 86, 3697–3702. [Google Scholar] [CrossRef]
- Becker, M.; Müller, S.; Nellen, W.; Jurkowski, T.P.; Jeltsch, A.; Ehrenhofer-Murray, A.E. Pmt1, a Dnmt2 homolog in Schizosaccharomyces pombe, mediates tRNA methylation in response to nutrient signaling. Nucleic Acids Res. 2012, 40, 11648–11658. [Google Scholar] [CrossRef] [Green Version]
- Korpys-Woźniak, P.; Celińska, E. Global transcriptome profiling reveals genes responding to overproduction of a small secretory, a high cysteine- and a high glycosylation-bearing protein in Yarrowia lipolytica. Biotechnol. Rep. 2021, 31, 1–19. [Google Scholar] [CrossRef]
- Iguchi, A.; Osawa, R.; Kawano, J.; Shimizu, A.; Terajima, J.; Watanabe, H. Effects of repeated subculturing and prolonged storage at room temperature of enterohemorrhagic Escherichia coli O157:H7 on pulsed-field gel electrophoresis profiles. J. Clin. Microbiol. 2002, 40, 3079–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, Y.; Qi, L.; Wu, J.K.; Wen, X.P.; Tang, X.X.; Ma, Z.J.; Wu, X.C.; Zhang, K.; Kokoska, R.J.; Zheng, D.Q.; et al. Genome-wide mapping of spontaneous genetic alterations in diploid yeast cells. Proc. Natl. Acad. Sci. USA 2020, 117, 28191–28200. [Google Scholar] [CrossRef]
- Ansari, M.A.; Butt, T.M. Effects of successive subculturing on stability, virulence, conidial yield, germination and shelf-life of entomopathogenic fungi. J. Appl. Microbiol. 2011, 110, 1460–1469. [Google Scholar] [CrossRef]
- Pryszcz, L.P.; Novoa, E.M.; Pryszcz, L. ModPhred: An integrative toolkit for the analysis and storage of nanopore sequencing DNA and RNA modification data. bioRxiv 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubiak-Szymendera, M.; Pryszcz, L.P.; Białas, W.; Celińska, E. Epigenetic Response of Yarrowia lipolytica to Stress: Tracking Methylation Level and Search for Methylation Patterns via Whole-Genome Sequencing. Microorganisms 2021, 9, 1798. https://doi.org/10.3390/microorganisms9091798
Kubiak-Szymendera M, Pryszcz LP, Białas W, Celińska E. Epigenetic Response of Yarrowia lipolytica to Stress: Tracking Methylation Level and Search for Methylation Patterns via Whole-Genome Sequencing. Microorganisms. 2021; 9(9):1798. https://doi.org/10.3390/microorganisms9091798
Chicago/Turabian StyleKubiak-Szymendera, Monika, Leszek P. Pryszcz, Wojciech Białas, and Ewelina Celińska. 2021. "Epigenetic Response of Yarrowia lipolytica to Stress: Tracking Methylation Level and Search for Methylation Patterns via Whole-Genome Sequencing" Microorganisms 9, no. 9: 1798. https://doi.org/10.3390/microorganisms9091798
APA StyleKubiak-Szymendera, M., Pryszcz, L. P., Białas, W., & Celińska, E. (2021). Epigenetic Response of Yarrowia lipolytica to Stress: Tracking Methylation Level and Search for Methylation Patterns via Whole-Genome Sequencing. Microorganisms, 9(9), 1798. https://doi.org/10.3390/microorganisms9091798